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ABSTRACT 

The paper considers the phase methods for measuring an object spatial orientation by means of satellite navigation 
equipment. Methods for the resolution of phase ambiguity are analyzed. Effectiveness and applicability of the one-step 
methods are discussed in more detail. It is proved that for the realization of the exhaustion method the minimal group of 
navigation space crafts should include 5–6 observed ones. When measuring signals of 8 space crafts with base length of 1 
m, an unambiguous solution is achieved practically in all cases. 
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INTRODUCTION 

Development of professional radio-navigation 
equipment to improve accuracy was ensured by the 
application of phase methods for the measurement of 
navigation signals parameters. Their application in the 
geodesic class equipment allows determining relative 
coordinates of the objects with a centimeter and millimeter 
accuracy. Phase methods can also be applied to determine 
space orientation of the objects by GLONASS/GPS 
signals.  

Angular location of the object in the space by the 
signals of satellite radio-navigation systems may be 
determined based on the measurement of difference in the 
speed of navigation spacecrafts signals between the 
antennas located at the ends of base vectors. 
Interferometers with the distance between the antennas 
(base length) up to several meters are applied to improve 
the accuracy of space orientation determination. The main 
problem in phase changes is the phase ambiguity resulting 
from the fact that the wavelength of the measured signals 
is relatively short (about 19 cm) which is much lower than 
the length without the interferometer [16]. 

Currently, LAMBDA-method is applied to the 
majority of goniometric and geodetic equipment to resolve 
phase ambiguity. To solve the problem by LAMBDA-
method at least two dimensions are required, on condition 
that the phase ambiguity of the measurements does not 
vary. Therefore, single-stage methods of resolving 
ambiguities are of interest. Single-stage method based on 
maximum likelihood use the redundancy of the system of 
equations that can be obtained by using excessive 
constellation of navigation spacecrafts [13], [18]. 

Exhaustion search method is used to resolve 
phase ambiguity in a single-base interferometer. The 
solution is chosen based on the maximum likelihood 
criteria. The minimum constellation of navigation 
spacecrafts for the implementation of exhaustion search 
method is 5-6. When measuring signals of 8 navigation 
spacecrafts with the base length of 1 m the solution in 
almost all cases is unique. 

Satellite radio-navigation systems (SRNS) are 
widely used in almost all areas of science and technology. 

Modern navigation receivers are able to determine the 
current position of the object with an accuracy of 3-5 
meters and the velocity vector of up to 0.1 m/s. In 
addition, the frequency and time-based equipment is used 
based on GLONASS/GPS radio-navigation systems 
allowing synchronizing on-board time scale with the UTC 
scale with an accuracy of up to 100 ns. Scientists and 
engineers have applied significant efforts to further 
improve the accuracy of navigation parameters. Work on 
the integration of receivers for satellite navigation systems 
and inertial navigation systems are ongoing [8]. The 
application of a joint digital filtering of navigation data 
and stand-alone systems data with Kalman filter may also 
significantly improve the accuracy  [2], [11], [12], [14]. 
The multipath reception error compensation [15] allows 
increasing the accuracy of determining the coordinates and 
velocity vector of the object. 

Further development of the radio-navigation 
equipment is represented by the application of phase 
methods for measurement of navigation signals 
parameters. Application of phase methods in geodetic 
equipment allows determining the relative coordinates of 
objects with a centimeter and millimeter accuracy. 

Phase methods can also be applied to determine 
space orientation of objects by GLONASS/GPS signals 
with high accuracy. In contrast to magnetic sensors and 
inertial systems measuring the space orientation of objects, 
the satellite goniometric equipment determines the angle 
of head, pitch and bank to the true meridian and has no 
drift of measured parameters. Furthermore, compared to 
inertial sensors, the goniometric satellite equipment is 
characterized by short initialization time and low cost. 
However, the implementation of this method requires 
measurement of the coordinates of the phase centers of the 
antennas with millimeter accuracy [19]. 

The angular position of an object in space by 
SRNS signals can be determined by measuring the path 
difference of the navigation spacecrafts (NS) signals 
between the antennas located on the ends of base vectors 
[3]. To determine the space orientation, two non-collinear 
base vectors are sufficient, i.e. three antennas. 
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The phase shift of the NS signal received at two 
spaced antennas, and the cosine of angle between the base 
vector and the direction vector to the NS is associated with 
the following formula (Figure-1): 
 

λ φ
cosα

2πB


 ,                                                                (1) 

 
where  – wavelength of the NS signal;  - phase shift; В - 
base length;  - angle between base vector and direction 
vector to NS. 

Formula (1) is an equation of a single-base 
interferometer and is widely applied in the theory of phase 
direction finders and antenna arrays. 
 

 
 

Figure-1. Single-base interferometer. 
 

The base vector coordinates may be determined 
by the equation based on scalar product of vectors: 
 

Φ
Δ λ

2πx y zk x k y k z R    ,                                  (2) 

 
where kx, ky, kz – directional cosines of direction vector at 
NS; x, y, z – coordinates of the base vector; R – path 
difference;  – signal phase shift;  – wavelength. 

Not less than three equations are required for 
determination of all unknowns. Taking into account the 
interrelation of base vector coordinates, knowing the base 
length B the system of equations may be as follows: 
 

2 2 2 2

,

,

xi yi zi ik x k y k z

x y z B

   


  
                                            (3) 

 
where i is the satellite number. 

The main problem in phase measurements is 
phase ambiguity. In order to improve the accuracy of 
determining the space orientation, the interferometers with 

the distance between the antennas (base length) up to 
several meters are applied. The ambiguity of the 
measurement of the phase shift is due to the fact that the 
wavelength of the measured signal is short enough (about 
19 cm), which is much shorter than the interferometer base 
lines [11], [12]. Phase ambiguity resolution methods may 
be divided into two classes: single-stage operation based 
on the results of each measurement [8], [14] and methods 
based on filtration, requiring the measurement of phase 
shifts within a certain time interval [2], [15], [19].  
 

 λx y z i i ik x k y k z n                                           (4) 

 
where n – integer-valued phase ambiguity; i = 1, 2, … N – 
order number of the NS under consideration. 

Currently, the majority of goniometric and 
geodetic equipment to resolve phase ambiguities applies 
LAMBDA-method [4], [7], [10]. 

According to this method, at the first stage the 
integer ambiguity n is represented as an additional 
unknown quantity without regard to its integer. Then each 
measurement gives one unknown value ni. As a result, 
each measurement by N of the NS, the system of equations 
will have N + 3 unknowns; therefore, the equations prove 
to be insufficient. Hence, to solve the problem by 
LAMBDA-method, at least two measurements are 
required, considering that the phase ambiguity of the 
measurements does not vary. However, due to the fact that 
the position of NS is changing slowly, with a stationary 
object in each new measurement, equations (2) are 
strongly correlated with the previous ones, and the system 
of equations, despite the redundancy, is close to 
degeneration. To solve the obtained improperly justified 
system of equations, decorrelation is used; herewith, a 
more or less reliable estimation of the unknowns ni is 
ensured. At the second stage the obtained values of phase 
ambiguity are reduced to an integer (mainly by rounding), 
and then the original system of equations is solved.   
 
THE EXHAUSTION METHOD 

Single-stage methods applied to resolve phase 
ambiguity [1], [5], [6] are of special interest. Single-stage 
methods based on maximum likelihood use the 
redundancy of the equation system that can be obtained by 
using an excessive constellation of NS.  

To resolve phase ambiguity in a single-base 
interferometer, and exhaustion method is applied in a 
single-stage method. The solution is selected by the 
criteria of maximum likelihood. The likelihood formula 
(LF) with the system of signals N of the NS may be 
presented as follows: 
 

 

 
  2

1 2 2
11

λ1
, , | , , exp

2σσ 2π

N N
i i i xi yi zi

n
ii ii

n k x k y k z
W x y z



                      
                                        (5) 
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x2 + y2 + z2 = B2.                                                               (6) 
 
With an additional condition 

Formula (5) may have a local minimum for each 
combination of ambiguities ni. The task to minimize the 
likelihood formula by all possible values ni is solved by 
their sorting. The main disadvantage of the minimization 
method is a large amount of ambiguity combinations ni. 
The number of ambiguity combinations upon receipt of 

signals N of the NS will be max
Nn , where nmax = 

int(2B/+1). For instance, with a base length B = 1 m the 
ambiguity n for each NS may take 11 values (from –5 to 
5).  The general amount of ambiguity combinations in case 
of measurements at three NS will be 113 =1331, at four NS 
- 114 = 14641, at eight NS -  2·108.  A local minimum of 
formula (5) corresponds to each combination ni. In case of 
large amount of combinations ni, a situation may occur 
when the values of local minimums are close to the global 
minimum resulting in the likelihood of a wrong solution. 
To reduce the volume of calculations in resolving 
ambiguities of phase dimensions, the base length may be 
reduced; however, in this case the accuracy of angle 
measurements deteriorates. 

The amount of calculations may be significantly 
reduced if we choose an initial constellation with a 
minimum number of NS (non-excessive constellation of 
NS). Based on possible combinations of phase ambiguities 
and solving the problem at these values of phase 
ambiguity, an initial set of solutions is developed. Then 
every solution of the initial set of solutions is checked by 
the solution with regard to a complete constellation. 
Screening of the spurious solutions by the maximum 

likelihood criteria, or similarly, by a total discrepancy 
between the minimum least squares solutions (MLS). 

Potential exhaustion search methods may be 
explored through the analysis of the likelihood function. 
The angular position of the base vector at a known length 
may be set by two parameters – angle of head K and angle 
of pitch ; herewith, the likelihood function will be two-
dimensional. Angles of head and pitch are connected with 
rectangular coordinates with the help of the following 
formula: 
 

cos K cosX B    ; sin K cosY B    ; sinΨZ B  . (7) 
 

When resolving phase ambiguities, special 
interest is paid to the likelihood of gross errors, i.e. the 
cases in which the phase ambiguity is determined 
incorrectly. Gross errors occur when LF has side lobe 
values comparable with the main maximum value 
corresponding to the right solution. This situation is 
illustrated in Figure-2, which shows the likelihood 
function for one NS. The figure shows that the resolution 
of phase ambiguities in the measurement of one base for 
each NS alone is impossible, because the likelihood 
function takes the extreme values in the whole areas and 
spurious solutions are indistinguishable from true 
solutions. 

By increasing the number of observed NS the 
total residual error represents the sum of sinuous functions 
obtained by measuring each NS, and is the result of the 
interference of these functions. Figure 3 shows LF at four 
NS. There are clearly distinguished main and side lobes. 

 

 
 

 
 

 
Figure-2. LF in measurements by one NS. 
 
 

 
Figure-3. LF in measurements by four NS. 
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LF is quite complicated to analyze; therefore, it is 
necessary to introduce one parameter enabling to assess 
the likelihood of missing the correct solution and the 
probability of gross errors, i.e. spurious solution. LF 
indicator may be used as such parameter representing a 
total residual error MLS of solution, equal to the sum of 
squared residual errors for all NS, or the square root of this 
value. 

Residual errors are composed of two elements: 
one of them is due to discrepancies in the side lobes 
resulting from spurious solutions adopted, and the other is 
due to the dispersion of the measured phase shifts. The 
side lobe of LF provides spurious solution; herewith in 
case of redundancy, the system of equations becomes 
inconsistent even at zero values of error of phase shifts 
measurement. The value of residual errors in side lobes of 
LF in case of no measurement noise depends on the 
configuration of NS and values of phase ambiguity; hence, 
this value can be considered as the mathematical 
expectation of residual errors. Noise measurement error of 
the phase shift is characterized by normal distribution. 
Thus, the residual error for each NS in solving the system 
of equations (3) in the main and side LF, maximums LF 
are distributed in accordance with the normal law with the 
mathematical expectation, equal residual errors that arise 
in the absence of noise measurements. 

Let us consider the function of the likelihood of 
closing error distribution. If mathematical expectations of 
values xi equal to zero and their dispersions are equal, than 
the value z = x1

2 + x2
2 +…+ xn

2   is distributed in 
accordance with the law 2 with n degrees of freedom [9]. 
This refers to the main maximum of LF at equally accurate 
measurements of phase shifts. In side lobes mathematical 
expectations are not equal to zero and the application of 
the distribution law 2 is not allowed. 

The formula for the distribution of total residual 
error may be obtained in accordance with the following 
procedure. Firstly, we need to obtain the likelihood density 
of the square for one random value; then by applying the 
law of random variables addition, we can obtain the 
desired likelihood density. To calculate the distribution 
function of the total residual error square value, the 
characteristic formulas should be used [17]. 

The characteristic formula for the calculation of 
the random variable square value with a non-zero 
mathematical expectation is as follows: 
 

 
2

21 2 σ

2

1
Θ e .

1 2 σ

im v

i vv
i v

 
                                       (8) 

 
 The characteristic formula for the calculation of 
the total square values of the independent normal random 
values with a non-zero average equals to the multiplication 
of characteristic formulas of additives: 
 

   
2

1
22 1 2 σ21 2 σ

n

k
k

v m
n i

i v
n v i v e










   
                                (9) 

 
Formula (9) shows that one of the features of the 

characteristic formula is as follows: it depends not on 
mathematical expectations of the initial random values but 

on the total of their square values 2 2
k

k

m m . The 

formula for distribution of the total square value of 
residual errors should also have the same characteristic. 

The likelihood density may be obtained by 
Fourier reverse transformation of the characteristic 
formula (9).  
 

     
2

22 1 2 σ2
1 1

1 2 σ
2π 2π

v mn i
ivx ivxi v

n nP x v e dv i v e e dv
 

 

 

         
 (10) 

 
The likelihood density diagrams at different 

values m in case of five NS under consideration are shown 
in Figure-4. The diagrams show principal possibility of 
spurious solutions screening at m > 5. 
 

 
 

Figure-4. Likelihood density of total residual error at 
different parameter values m 

 
The likelihood density (10) is not represented via 

elementary and tabulated formulas that complicate the task 
to calculate likelihood of finding a specific value in a 
certain area. For this purpose, a cumulative distribution 
formula may be applied: 
 

       

   
2

2

2 2

1 2 σ

1 1
1

2π 2π

1 2 σ1
1

2π

x
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n

n
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ivxi v

v
W x v e dvdx e dv

iv

i v
e e dv

iv

 
 

  









      


  

  



 (11) 

 
To determine the likelihood of a spurious solution 

with the specified likelihood of missing the correct 
solution it is necessary to determine the threshold value at 
which the correct solution gets to the list of possible 
solutions with the specified probability. The threshold 
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value can be selected by using the cumulative distribution 
function (11), assuming m = 0. 

Figure-5 shows the likelihood of a spurious 
solution versus the ratio between total expected residual 
errors and their mean-square deviation (MSD) at different 
number of the observed NS. The likelihood of producing a 
spurious solution is largely characterized by a minimum 
expectation of the total residual error in the side lobes. 
One can see from Figure 5 that the effectiveness of the 
rejection of spurious solution is achieved in case m > 
(5…6)·.  
 

 
Figure-5. Likelihood of a spurious solution versus the 

ratio between total expected residual errors and 
their MSD. 

 
Exhaustion of possible solutions gives a set of 

residual error components by means of incorrect phase 
ambiguity resolution, which are a deterministic magnitude 
and represent residual error expectations m. They can be 
calculated a priori for each combination of phase 

ambiguities. The minimum value of this magnitude is of 
interest, since precisely such options have the greatest 
likelihood of a spurious solution, while increasing the 
value of m the likelihood of a spurious solution decreases 
rapidly. However, the calculation of residual errors for 
each specific case runs into considerable difficulties, 
primarily because of the large number of phase ambiguity 
combinations, which occur during exhaustion of all 
options.  

When analyzing, the residual error expectations 
in side lobes (with zero phase shift measurement error) can 
be considered as a random variable. According to the 
obtained data, distribution of the residual error 
expectations is practically independent of the 
configuration of the constellation of NS, the spatial 
arrangement and the base vector length; however the 
minimum value of the total residual error decreases with 
the increasing base length. This dependence is explained 
by the quadratic increase in the number of possible 
positions of the base vector with an increase in its length. 
The square root of the sum of squared residual errors (total 
residual error) is described rather accurately by a normal 
distribution, and in this case the standard deviation does 
not depend on the number of NS in the constellation (the 
number of NS was considered in the constellation of 4 to 
13, at different positions, and the base vector length) and 
makes 28 mm. The only exception is the case when 
measuring on 4 NS. Distribution histograms for n = 4 and 
n = 9 are shown in Figure-6. The normal distribution with 
a large number of NS can be explained as a conclusion of 
the central limit theorem. The mean value of the total 
residual error with the number of NS exceeding 5 is 
linearly dependent on the number of NS in the 
constellation. 

 

a) b) 
Figure-6. Distribution histograms of total residual error with four (a) and six (b) observed NS. 

 
The likelihood of producing spurious solution is 

largely characterized by the minimum residual error in 
side lobes. Making use of expression (11) for cumulative 
distribution function, it is possible to determine likelihood 

of producing spurious solution. Figures 7 and 8 
demonstrate gross error likelihood with the minimum 
residual error and the base length of 1 and 10 m versus 
phase shift measurement error. 
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a) b) 
 Figure-7. Gross error likelihood with the base length of 1 m (a) and 10 m (b).  

 
CONCLUSIONS 

Based on the research findings, the following 
conclusions may be made: 

1) The efficiency of the exhaustion method for 
the phase ambiguity resolution depends on the number of 
the observed NS and the base length. With the base length 
of 1 m the exhaustion method can operate even at 5 
observed NS, noise error of the phase shift measurement 
being 5, whereas the base length of 10 m and the same 
phase shift measurement error requires observation of 7–8 
NS. 

2) Exhaustion method of phase ambiguity 
resolution may be applied with interferometer base length 
up to 3 m and limiting MSD of phase shift measurement 
error ranging from 15…20. 

3) Minimum constellation of NS for the 
exhaustion method implementation makes 5–6 observed 
NS. Measurement of signals of 8 NS and use of the base 
length of 1 m produces an unambiguous solution in almost 
all cases. 

It should be noted that the single-step exhaustion 
method in a single based interferometer is used in practice 
to compile an initial set of solutions; therefore the most 
important characteristic is the likelihood of missing the 
correct solution, which is determined by a threshold value 
of the likelihood function. The presence of spurious 
solutions in the initial set does not mean a gross error if 
the correct solution is also present in the initial set of 
solutions. Further rejection of spurious solutions can be 
carried out by filtration of solutions from the initial set of 
solutions and by using a multi-base antenna system.  
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