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ABSTRACT 
 Nowadays to expand assortment and execution of contracts iron and steel manufacturers facing fierce competition 
need to produce quality steel, satisfying the hardenability requirements, provided by certain alloying modes. One of the 
solutions of this problem is to develop models for predicting hardness of steel and optimal control algorithms for steel-
making process with specified hardness, which will enable to increase process control effectiveness and quality of the 
obtained products. The article presents the model of relation between depth-distributed steel hardness and its chemical 
composition in the form of a system of fuzzy production rules (Takagi-Sugeno-Kang model - TSK) that allowed 
determining predicted values of the distributed steel hardness as weighted average outputs of a set of linear regression 
models and eliminating the problem of selection of the most adequate regression model.   
 
Keywords: fuzzy modeling, Takagi-Sugeno-Kang model, optimal chemical composition of steel. 
 
INTRODUCTION 

Currently metals and alloys retain their prevailing 
position as the basic structural materials; primarily this 
refers to iron-based metal materials.  

Metallurgical technology of steel production, and 
first of all steel-making practice, is the main factor of 
obtaining the required mechanical properties of steel and 
specified chemical composition. 

The need to expand the assortment and 
production of steel, satisfying the hardenability 
requirements (final hardness of steel), made steel 
manufacturers revise their views on the steel-making 
practice. 

Solution of problems relating to the search for 
optimal control of steel-making processes implies 
availability of the appropriate mathematical description, 
which is frequently complicated by the fact that use of 
industrial experiment results is only possible way to solve 
the problem.    

Such results are a sample of the input and output 
variables measured in the same process or estimated on the 
basis of laboratory measurements, and in this case there is 
a time shift between the moment of action of the input 
variables and obtaining the estimation magnitude of 
response.  

Unavailability of control over a number of 
parameters included in the mathematical description of the 
controlled metallurgical process makes the procedure of 
constructing mathematical models extremely difficult. If 
there is an analytic description of relation between the 
variables, included into the controlled process model, and 
the measured parameters of this process, the input 
variables can be estimated on the basis of such a 
description. However it may include empirical 
coefficients, which makes the obtained result fuzzy. 

This determines the relevance of the task to 
analyze and improve models and optimal control 

algorithms for steel-making process in conditions of fuzzy 
and stochastic uncertainty.  
 
LITERATURE REVIEW    

Analyzing investigations in the area of the 
melting process control, one can assume that metallurgical 
units and the melting processes implemented therein refer 
to the facilities that can be effectively controlled based on 
the theory of fuzzy sets. 

For example, electroslag remelting process 
control under uncertainty is studied in [1], demonstrating 
the possibility of building control system and solving 
identification problems for electro-slag remelting plants 
using neural networks and fuzzy logic. On the basis of the 
developed mathematical model of electroslag remelting 
control system using the theory of neuro-fuzzy 
identification, the author created a phenomenological 
model of thermal processes for electroslag remelting and 
offered the method for determining the slag bath (metal) 
level by ‘thermal portrait.’  

The problems of mathematical modeling of steel-
making process n electric arc furnaces (EAF) are 
investigated in [2]. Control over technological mode of the 
process is mainly selected under uncertainty, not only 
because of the controllable object properties, but also due 
to the lack of advanced information technologies enabling 
to improve the EAF control efficiency by better 
integration of information available.  

Given that the composition of the scrap metal, 
charging materials, fluxes and ferroalloys as well as the 
state of the furnace hearth, the walls and roof changes 
from heat to heat, it is necessary to use not only the set of 
process operations altering the equilibrium state of the 
system ‘metal - slag, but also qualitative parameters of 
substances used in the individual melting stages as process 
control actions. In this case it is important to have the 
available database enabling to extract the necessary 
information for the melting process control. 
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In [3] Zmak and Filetin suggested a steel-making 
process control method based on predicting various 
mechanical and thermal properties of steel with definite 
chemical composition using artificial neural network. The 
goal of the learning algorithm is to adjust the neural 
network parameters based on a given set of input and 
output data and also to determine the optimal network 
parameter set that minimizes a performance index. The 
calculation of this index is based on the difference 
between the desired response and the actual neuron 
response. The error, which is calculated at the output 
layer, is propagated back to the input layer through the 
static neurons in the hidden layers. To determine the 
optimal network parameters minimizing the performance 
index, a gradient method is applied. Iteratively, the 
optimal parameters are approximated, by moving in the 
direction of steepest descent. Thus, as a result of modeling 
index of accuracy remains insensitive to the dynamic 
range of the learning data, and allows an easy comparison 
with other learning algorithms.  

The use of artificial neural networks in steel-
making process control based on prediction of its chemical 
composition to achieve the desired hardness is also 
considered in [4]. The modeling result shows that the 
network model can efficiently predict the mechanical 
properties of the material. To predict the properties of the 
materials it was proposed to use radial basis function and 
the feedback procedure. Application of the proposed 
method allows analyzing the influence of alloying 
elements, without additional experimental studies. 

With the help of neural networks [5] presented 
modeling of the relationship between mechanical 
properties and chemical composition of steel, which also 
affects the efficiency of the steel-making process.  

In [6] it is proposed to predict the micro hardness 
of a steel plate using an artificial neural network with two 
hidden feedforward layers. The authors carried out 
optimization of the neural network architecture to find the 
best equation for predicting the of micro hardness value 
with specific inputs.  

Summarizing the results of the above papers 
devoted to the issues of fuzzy control over complex 
production facilities and systems, including melting 
processes, it can be assumed that modeling of the control 
processes for smelting steel and alloys of different grades 
involves the need to develop uncertainty models, which is 
determined by the inability to control many parameters in 
real-time environment, inability to accurately estimate 
system state, multifactorial nature of the process and the 
lack of sufficient information for the control 
implementation. 

Taking into account this peculiarity, it can be 
concluded that the nonlinear regression methods and 
neural network methods might apparently describe the 
steelmaking process with a reasonable degree of accuracy. 
However, in terms of making further managerial decisions 
these methods cause some difficulties in choosing the 
required chemical composition. In this sense, it seems 
more appropriate to model predicted values based on 
fuzzy modeling. 

EXPERIMENTAL SETUP 
The main task of this study is to improve 

effectiveness of steel-making process control, which is, in 
fact, fuzzy control, and as a consequence, to increase the 
product quality by developing models for steel hardness 
prediction and optimal control algorithms for steel-making 
process with specified hardness.  

It is known that steel production is carried out 
according to an individual custom specification, which 
indicates the form of the smelted product, permissible 
variation range for the chemical composition and 
hardenability, which is understood as the penetration depth 
of the hardened area or the steel hardness at different 
depths from the surface. Hardenability (hereinafter 
referred to as the final hardness of steel) is determined by 
many factors, among them chemical composition is the 
most relevant controlling factor that can be varied in the 
course of steel-making by adding the appropriate 
ferroalloys [7], [8]. 

To select the required chemical regressional 
relationship between hardness and the percentage of 
chemical elements is often used. In this case composition 
limits are selected in the set of admissible values of the 
concentrations of elements, with a definite, as a rule, linear 
regressional relationship model corresponding to the 
specified (but not any) set of values.  

Then the experts are posed with the problem of 
selecting a model that is the most adequate to the specified 
initial conditions of the chemical composition of steel. 
According to the selected regression model the steel 
hardness distribution is predicted, and based on this 
prediction the required chemical composition is 
determined by exhaustion method. Inevitable errors, 
relating to the expert selection of the adequate model and 
chemical composition result in deterioration of the melted 
steel quality.  

One of the solutions is to develop steel hardness 
prediction models. Control efficiency and quality of the 
melted steel may be increased obtaining a model-based 
prediction for ‘composition-hardness’ ratio by the system 
of fuzzy production rules of Takagi-Sugeno-Kang model 
(TSK). Thus, the relevance of analysis and improvement 
of models and melted steel hardness control algorithms 
under uncertainty is demonstrated [9], [10]. 
 
MATERIALS AND METHODS 

It is known that a variety of methods can be used 
to build a mathematical prediction model; however, it is 
most suitable to apply fuzzy modeling for predicted values 
in the problem under study.   

Let us denote chemical elements by sequential 
numbers, then xi, i= 1.2,…, p – content of the i-th element. 
The number of intervals into which the variation range of 
the mass fraction of each i-th element is divided ni = Z for 
all i = 1,…, p. Let us denote k-th variation interval of i-th 
chemical element by Xi

k. All possible combinations of 
interval classes for various elements are formed by the 
operation of the direct product of the sets of intervals,
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Each vector inside the round parenthesis will be 

defined as a certain class of possible values of the 
chemical composition and denoted as Kj. The total number 
of such classes in our case is ZP. Each class Kj s assigned a 
linear regression model in the form of a system of linear 
equations [11], [12]: 
 

xAay jjj  0 ,  j=1.2,…, D.                                    (1) 

 
or in the expanded form 
 

, (2) 
 

The predicted value y is a random variable. Since 
the predicted values of steel hardness are restricted by the 
customer specification in terms of accuracy, it is advisable 
to consider the confidence interval of the prediction in 
accordance with its specified accuracy tolerances. The size 
of the confidence interval of the steel hardness prediction 
will vary with the changes in the chemical composition.   

Prediction of steel hardness values by the 
regression equation (1) is justified, if the values of the 
chemical element content are within the range of values in 
the sample determined by the boundaries of the 
fragmentation intervals. In this case the best accuracy is 
achieved with the prediction at the point close to the 
expectation of mass fractions in the sample, which in turn 
is expected in the middle of the range. Prediction outside 
the range is possible, but it can lead to significant errors 
[11]; [12]. 

The performed analysis suggests the fuzzy nature 
of compliance of the linear models (1) with the selected 
classes of mass fraction variation of chemical elements KJ. 
Therefore, the current system of distributed steel hardness 
prediction models can be represented as follows: 

If )(xcKx Kj
j  , then 
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0
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cxjAjahy   for all j, where – Ki
 j – 

j-th variation interval of the i-th chemical element; 
)( iKji x  - value of the membership function xi for the 

appropriate interval; )(xKj  - value of the membership 

function x  for the K j class.  

Value of function )(xKj  is defined by values 

of )( iKji x  in accordance with the following 

expression:  
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where   - symbol synonym of triangular t-norm 

Application of Takagi-Sugeno-Kang model 
(TSK) for prediction requires defining membership 
functions )( ij

iK
x .  

A possible approach to solving the fuzzification 
problem is to use a triangular fuzzy numbers. It is assumed 
that the maximum value of the membership function 
( 1)( iX
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In compliance with the TSK model discrete 

values of steel hardness are calculated by formula: 
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i.e. predicted value of steel hardness for each i-th line of A 
matrix is calculated for all available models taking into 

account the extent of compliance )(xKj  of the input 

vector x  for Kj class [13].  
For the implementation of possible approaches to 

the control it is necessary to reduce the TSK model, 
represented by the system of fuzzy production rules, to a 
matrix form. For this purpose, we substitute the 
appropriate equations of the system (2) to (3): 
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After transformation we get expression for 

calculation of iy - steel hardness values in the i-th point of 

depth: 
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By taking the following notation: 
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We get the TSK model, which looks as follows in the 
matrix form: 
 

)()( 0 xaxxAy TSKTSK  , 
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is a TSK model matrix, elements of which depend on the 
vector x ; )(0 xa TSK – the transpose of the column vector 

of intercept terms depending on the vector x .  
Despite the fact that formally the TSK model is 

written in the matrix form, this model is nonlinear with 
respect to the vector x . And also it satisfactorily describes 
the relationship and can be used to control the processes.  
 
RESULTS 

The analysis of the peculiarities of steel-making 
process control modeling demonstrated that statistical 
modeling techniques in combination with the methods of 
fuzzy inference are the most adequate approach to 
building models of relationship between the steel hardness 
and its chemical composition.  

As a result of the research there was developed 
the model of the relation between depth-distributed steel 
hardness and its chemical composition in the form of a 
system of fuzzy production rules (the TSK model), 
enabling to determine predicted values of the distributed 
steel hardness as weighted average outputs of a set of 
linear regression models.  

Each model includes acceptable ranges of steel 
hardness for each class from 1 to 8. These acceptable 
ranges can be used to verify the adequacy of the ТSК 
model.  

Figure-1 shows acceptable range of steel hardness 
values for a definite heat. 

 

 
 

Figure-1. Acceptable range of steel hardness versus its depth using the TSK model. 
 

The computations were carried out in the paper 
with steel hardness computation results presented for all 
eight existing models. Also each calculated steel hardness 
value of the models was tested for the range check [14]. 

After analyzing the data it is possible to conclude that the 
calculated values of steel hardenability fall in the 
acceptable range. Final values of steel hardness for the 
chemical composition No.1 are given in Table-1. 

 
 

Table-1. Steel hardness for the chemical composition No.1. 
 

Depth, mm 1.5 3.0 5.0 7.0 9.0 11 13 15 20 

Hardness, HRC 51.4 50.5 46.1 41.7 39.6 36.7 35.6 34.1 31.8 
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Acceptable range of steel hardness values for the chemical composition No.1 is shown in Figure-2. 
 

 
 

Figure-2. Confidence interval and steel hardness values calculated using the TSK model. 
 

To estimate the prediction quality a numerical 
experiment was carried out - using TSK model predicted 
values were determined for output variable yi and the 
predicted and actual distributions of hardness in the 308 
points x of industrial statistics were compared. 

The resulting average and maximum deviation of 
the predicted value from the actual hardness of steel is 
connected not only with the TSK model error. Also these 
deviations refer to the error associated with the 
determination of the actual hardness of the steel as well as 
the accuracy of determination of the chemical composition 

of the steel, which in turn serves as the initial data for 
hardness computation using the TSK model. 

In all customer steel-making specifications the 
acceptable range of steel hardness for one point makes at 
least 6 units. Despite the fact that the maximum deviation 
of the TSK model and the minimum acceptable range of 
steel hardness were used, the calculated hardness of steel 
(including possible errors) almost always falls into the 
acceptable range of steel hardenability specified in the 
customer specifications (Figure-3).  

 

 
 

Figure-3. Predicted distribution of steel hardness using TSK model. 
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Thus, the obtained model eliminates the problem 
of selecting the most appropriate regression model, and 
therefore, inevitable errors of experts, which result in loss 
of quality of steel produced.  

 
CONCLUSIONS 

This study focuses on the issues of chemical 
composition impact on properties such as a stage, which is 
obligatory for the search for the optimal melting control. 
In practice, when selecting the desired chemical 
composition mathematical models are used in the form of 
regressional relationship between the hardness and the 
percentage of chemical elements. Given the complexity of 
building such a relationship, composition limits are 
selected in the set of admissible values of the 
concentrations of elements, with a definite, as a rule, linear 
regressional relationship model corresponding to the 
specified (but not any) set of values. 

Such approach corresponds to a piecewise-linear 
approximation of a nonlinear multi-factor dependence. 
This raises the problem of selecting the model, which is 
the most appropriate to the given initial conditions of the 
chemical composition of steel. This problem is solved by 
exhaustion method based on empirical considerations of 
professional experts controlling steelmaking process.  

According to the selected regression model, steel 
hardness distribution is predicted, and the required 
chemical composition is chosen by the exhaustion method 
based on this prediction. The inevitable errors associated 
with the expert selection of an adequate model and the 
chemical composition deteriorates the quality of steel 
produced. Effectiveness of steel-making process control 
and melted steel quality can be improved when obtaining a 
model-based prediction for ‘composition-hardness’ ratio 
by the system of fuzzy production rules of Takagi-Sugeno-
Kang model (TSK) and optimization  of selection of 
chemical composition of steel under parameter 
stochasticity of the regression models.   

It should be noted that statistical modeling 
techniques in combination with the methods of fuzzy 
inference are the most appropriate approach to building 
models of relationship between the steel hardness and its 
chemical composition.  

The steel-making process control (chemical 
composition selection) may be presented either as a 
solution of nonlinear equation systems, or in the form of 
optimal selection models. The suggested model of 
relationship between the depth-distributed steel hardness 
and its chemical composition in the form of fuzzy 
production rule system (the TSK model) provides 
determination of the predicted values for the distributed 
steel hardness as weighted average outputs of a set of 
linear regression models and elimination of the problem of 
selecting the most adequate regression model.  

The result obtained allows using the proposed 
steelmaking control models for different groups of steel 
grades and adjusting the software system of SEP 1664 
modeling and controlling by means of including the 
programs for implementation of the TSK model and 
algorithms of quasi-quadratic programming problems.   
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