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ABSTRACT 

Feature extraction is a process to extract information from the electroencephalogram (EEG) signal to represent the 

large dataset before performing classification. This paper is intended to study the use of discrete wavelet transform (DWT) 

in extracting feature from EEG signal obtained by sensory response from autism children. In this study, DWT is used to 

decompose a filtered EEG signal into its frequency components and the statistical feature of the DWT coefficient are 

computed in time domain. The features are used to train a multilayer perceptron (MLP) neural network to classify the 

signals into three classes of autism severity (mild, moderate and severe). The training results in classification accuracy 

achieved up to 92.3% with MSE of 0.0362. Testing on the trained neural network shows that all samples used for testing is 

being classified correctly. 
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INTRODUCTION 

Electroencephalogram (EEG) is a non-evasive 

technique used on the human skull to acquire electrical 

impulse produced from neuron activation in the brain. 

EEG electrodes are attached to the specific region of the 

scalp according to the type of study to be conducted. EEG 

is able to measure electrical signal from the human brain 

in the range of 1 to 100 microvolt (µV) (Teplan, 2002). 

There have been numerous studies on EEG classification, 

looking for new possibilities in the field of Brain-

Computer Interface (BCI), neurobiological analysis and 

automatic signal interpretation systems (Frédéric et al., 

2006). 

EEG signal can be categorized to bands of 

different frequency ranges. Delta wave lies below the 

frequency of 4Hz. Theta lies in the range of 4Hz to 8Hz 

while Alpha wave lies between 8Hz to 13Hz. The range of 

Beta wave lies in 14Hz to 32Hz where beyond 32Hz lies 

the Gamma wave. These frequency bands each 

corresponds to different activities carried out by the 

subject (Teplan, 2002).These different band of frequencies 

each contains certain information of the brain activity. 

However, the information hides within the EEG signal is 

not directly analytical by the human eyes. However, 

information on neural connectivity may be revealed with 

the analysis of signal complexity on multiple scale. The 

result of this analysis would be diagnostically useful 

(Varela et al., 2001).  

Analyzing EEG signals basically involves few 

steps of signal processing; usually begin by data collection 

which require the subject to perform certain task. In this 

study, the selected channel of interest is first artefact-

removed and filtered with a band pass filter with a pass 

band frequency of 0.4-60Hz to eliminate the power line 

frequency, noise and extremely low frequency.  

Given the fact that EEG signals are non-

stationary, time-varying computation is required to extract 

the features from the signal in order to be classified 

(Suleiman and Fatehi, 2007). Wavelet transform, being 

one of the non-stationary time-scale analysis methods, is 

used to decompose the signal for feature extraction. The 

transient features of EEG signals are able to be accurately 

captured (Jahankhani et al., 2006). The extracted features 

are then used to train a neural network for classification 

purpose. All the processes are performed and encoded in 

MATLAB. 

 

 
 

Figure-1. Processes involved in this study. 

 

METHOD 

 

Data acquisition and experimental setup 

This study utilizes sensory data collected by 

Sudirman and Hussin, (2014) from 30 autism children 
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aged between 3 to 10 years old. Among these children, 5 

of them have mild autism, 11 have moderate autism and 

14 have severe autism. All of them performed tasks on 

taste sensory, involving stimulation of three taste, which is 

sweet, sour and salty. Stimulation of the three tastes is 

done with sugar solution, vinegar solution and salt 

solution. While the data is being read, the subjects’ eyes is 
blindfolded except during visual task to prevent visual 

artefact. In between different taste stimuli, the subjects are 

given plain water to rinse away the residual taste stimuli. 

The brain waves are recorded using Neurofax JE-921A 

EEG machine together with an electrode cap following the 

standard 10-20 international electrode placement system. 

The data was sampled with an interval of 2ms  and was 

stored as ASCII files in the recording computer (Sudirman 

and Hussin, 2014). Out of the 30 samples, 26 are used for 

neural network training and 4 are reserved for testing (1 

mild, 1 moderate and 2 severe) on the trained neural 

network. 

 

Signal preprocessing 

From the collected multichannel signal, only the 

parietal lobe channels, Cଷ, Cସ and CZ which is related to the 

taste sensory is used for processing. The signal is first 

epoched and the epoch with artefact and corrupted signal 

are removed automatically using simple voltage threshold 

method. The threshold is set to the standard deviation of 

the whole signal of a particular channel. Flat lines are 

removed using blocking and flat line function. Both are 

performed using the source code of ERPLAB.  

Then, the signal is filtered using a band pass filter 

with pass band frequency of 0.4Hz to 60Hz and filter order 

of 60 to remove the extremely low frequency components 

such as those caused by movement and breathing (less 

than 0.4Hz) (Suleiman and Fatehi, 2007), power line 

frequency (60Hz) and noise (more than 60Hz). 

 

 
 

Figure-2. Bandpass filter used to filter raw signal. 

 

Feature extraction in time domain using DWT 

Wavelet transform is a non-stationary time-scale 

analysis method suitable to be used with EEG signals. It is 

a useful tool to separate and sort non-stationary signal into 

its various frequency elements in different time-scales 

(Hazarika et al., 1997).  

Quantitatively, discrete wavelet transform can be 

applied to decompose a discrete time series,�ሺ�ሻ where �ሺ�ሻ is the discrete signal of �ሺݔሻ sampled at 500Hz in 

this study, to its sub-bands of wavelet coefficients that 

contains the feature (Hazarika et al., 1997). The wavelet 

coefficients can be computed by dilation and translation of 

the mother wavelet �௦,�ሺݔሻ as shown in (1), where ݏ, � ∈ ܴ, ݏ > Ͳ, and ܴ is the wavelet space, while ݏ and � 

are the scaling factor and shifting factor respectively 

(Murugappan et al., 2010). 

 �௦,�ሺݔሻ = ଵ√௦ � ቀ௧−�௦ ቁ                    (1) 

 

The decomposition is computed by filtering the 

discrete signal �ሺ�ሻ repeatedly up to a predetermined 

level ܰ. The filter consist of a low pass filter to obtain the 

approximation coefficient (CA) and high pass filter to 

obtain the detailed coefficient (CD) (Murugappan et al., 

2010). After each level of filter, the signal is down-

sampled by half the sampling frequency in the previous 

level ܰ − ͳ since the frequency element is reduced by 

half.  

 

 
 

Figure-3. Level 3 decomposing the signal f(n). 

 

Daubechies 4 (db4) wavelet is used as the mother 

wavelet in this study since that it is most suitable to 

process biomedical signals. The input signal �ሺ�ሻ has a 

frequency band of 0-500Hz. With the interest area of 0-

60Hz for EEG signal, the signal should be decomposed up 

to level 8 to be fully separated into the lowest frequency 

delta band but since the relevant frequency band lies in the 

alpha rhythm (8-16Hz), the filtered signal will be 

decomposed only up to level 6 to obtain the alpha band in 

CD6 as shown in Table-4. The detail coefficient of level 1, 

2 and 3 is considered noise as their frequency did not lie 

within the EEG frequency of 0-60Hz.  
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Table-1. Wavelet coefficient and its signal information. 
 

Wavelet 

coefficient 
Frequency (Hz) 

Signal 

information 

D1 250 – 500 Noise 

D2 125 – 250 Noise 

D3 63 – 125 Noise 

D4 32 - 63 Gamma 

D5 16 - 32 Beta 

D6 8 - 16 Alpha 

D7 4 - 8 Theta 

D8 0 - 4 Delta 

 

 
 

Figure-4. Reconstructed CD6 coefficient containing 

alpha band of the signal. 

 

The wavelet coefficient of the decomposed signal 

is still too large and not suitable to be directly used for 

pattern recognition with neural network. Therefore, feature 

extraction is done to reduce the signal to its representation 

set of features vector by simplifying the description of a 

large set of data (Nandish et al., 2012).  

The feature can be extracted into time domain 

feature and frequency domain feature. The most simple 

and commonly used feature to represent the large set of 

data is by statistical approach of the time domain feature. 

Statistical feature such as mean, median, mode, standard 

deviation, maximum and minimum can be used. In this 

study, standard deviation of the wavelet coefficient 

discrete-time series is computed using (2), where � 

represents the discrete signal length while ݔ represents the 

signal level of the particular �. 

 �ଶ = ͳ� − ͳ ∑ሺݔ� − �ሻଶ                                                       ሺʹሻ�−ଵ
�=଴  

 

Other methods such as those in frequency domain 

can also be used for feature extraction. For example, 

previous study by Suleiman and Fatehi, (2007) uses STFT 

and FFT to extract feature in the frequency domain. The 2 

different methods yields different result of classification 

accuracy (Suleiman and Fatehi, 2007). 

 

Classification 

Neural network are composed of interconnecting 

artificial neurons, modelling in the way of how human 

brain works. Various neural network architecture have 

been developed over the years for different functions, 

where one of the most popular architecture is the feed 

forward network. Feed forward network is commonly 

known for its ability to recognize pattern, predict and fit 

nonlinear function (Nandish et al., 2012). 

 

 
 

Figure-5. Feed forward neural network. 

 

This work involve the use of multilayer 

perceptron (MLP) feed forward neural network as the 

signal classifier. It doesn’t require a large training set to 
learn and hence reducing the operation overhead 

(Jahankhani et al., 2006). Training the neural network 

require two sets of data, which is the input data that 

represents the information of the signal and the target data 

that defines desired output of the neural network.  

In this study, features of the discrete-time wavelet 

coefficient CD6 is presented to the neural network for 

training with scaled-conjugate backpropagation algorithm. 

The accuracy of the neural network is measured by the 

percentage of correct classification shown in (3). 

ݕ��ݎݑ���  = ܶ� + ܶܰܶ� + ܶܰ + �ܨ + ܶܰ × ͳͲͲ%                   ሺ͵ሻ 

 

 The computation of the accuracy takes in account 

of the true positive (TP), true negative (TN), false positive 

(FP) and false negative (FN): 

 

 TP = Number of correctly classified positive samples 

 TN = Correctly classified negative samples while  

 FP =  Negative sample being classified as positive  

 FP = Positive sample classified as negative. 
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 Neural network training parameters used in this 

study is shown in Table-2. Training stops when any of the 

parameter is fulfilled. Default data division setup (75% 

training, 15% validation and 15% testing) and 10 hidden 

layer is used to obtain the best cross entropy and percent 

error in the neural network training GUI. A script is then 

generated and performance is further improved by using 

command line approach until a desirable accuracy and 

MSE is obtained. 

ܧܵܯ  = ͳܰ ∑ሺݐ� −∝�ሻଶ�
�=ଵ                                                          ሺͶሻ 

 

Table-2. Training parameters of the neural network. 
 

Maximum number of epochs 1000 

Minimum performance gradient 0.000001 

Performance goal 0 

Maximum validation failures 5 

 

RESULTS AND DISCUSSIONS 

Figure 6(a) shows one of the raw signal acquired. 

The signal after artefact removal, rejection of corrupted 

epochs and removal of flat line is shown in Figure-6(b) 

while filtering gives a clean signal as in Figure-6(c). 

 

 
(a) 

 

 
(b) 

 
(c) 

 

Figure-6. (a) Raw EEG signal, (b) Removed artefact, 

corrupted signal and flat line, (c) Clean signal after 

filtering. 

 

DWT decomposition is performed on Cଷ, Cସ and CZ channel of the clean signal to obtain the alpha band 

which contains information that reflects the sensory 

responsiveness during a relaxed state. The level 6 

decomposition yields 6 detailed coefficients containing 

different band of frequencies as shown in Figure-7. Alpha 

band signal as shown in Figure-4 lies in the detailed 

coefficient at the 6
th

 level decomposition (CD6).  

 

 
 

Figure-7. Level 6 decomposition of the signal. 
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Table-3. Features extracted from 26 subjects and their corresponding autism classes. 
 

Expected 

class 

Salty, �� (µV) Sour, �� (µV) Sweet, �� (µV) 

C3 CZ C4 C3 CZ C4 C3 CZ C4 

Severe 117.14 119.44 113.38 130.90 189.93 142.32 134.51 140.91 144.04 

Moderate 84.71 89.74 68.81 88.52 100.06 102.00 60.73 68.42 58.84 

Moderate 98.54 146.20 131.41 46.69 33.24 32.57 93.21 100.74 118.98 

Severe 179.89 178.90 214.50 198.89 196.99 195.94 122.93 137.09 130.12 

Moderate 154.25 129.66 162.06 67.55 55.05 62.23 101.77 102.74 98.93 

Moderate 149.32 126.15 108.94 47.18 47.80 51.07 47.03 55.41 50.17 

Moderate 71.49 75.75 77.86 92.15 85.48 89.25 82.04 81.59 79.86 

Severe 124.61 222.02 261.51 81.44 44.88 88.70 96.11 91.68 101.73 

Mild 52.10 48.23 45.08 46.41 48.96 40.36 36.69 36.29 43.41 

Severe 172.26 183.89 222.51 133.83 146.68 134.89 157.43 210.36 151.54 

Moderate 100.96 98.86 130.14 78.63 80.87 82.06 93.58 78.41 90.30 

Mild 80.59 58.48 64.34 67.34 76.55 93.04 75.12 72.15 74.34 

Severe 314.29 296.12 337.38 165.43 153.63 147.12 82.04 81.59 79.86 

Severe 244.48 305.36 209.36 272.81 370.34 283.65 247.92 283.59 254.78 

Moderate 37.31 38.55 45.93 216.21 177.18 81.10 147.16 38.17 29.99 

Moderate 146.46 136.62 138.21 71.86 82.07 79.64 59.90 52.18 46.55 

Severe 96.97 106.01 109.01 163.21 149.82 157.79 98.48 97.13 103.48 

Severe 122.88 130.59 125.47 103.28 107.98 99.93 124.46 148.08 143.33 

Mild 88.40 77.24 52.96 37.02 52.20 47.46 115.17 42.12 153.41 

Severe 57.84 51.92 60.38 166.46 181.28 191.80 99.05 102.99 116.65 

Severe 210.84 183.59 202.89 72.74 72.81 70.84 52.60 52.11 49.91 

Severe 166.66 176.92 162.85 94.77 98.34 97.65 116.03 120.38 151.40 

Mild 52.31 51.65 61.11 49.03 45.71 57.76 42.30 47.65 54.93 

Moderate 113.31 111.26 111.83 99.77 112.47 114.09 85.74 94.33 85.71 

Moderate 55.22 68.88 55.58 59.98 67.53 66.51 114.88 103.73 101.37 

Severe 202.06 200.13 258.68 192.18 179.16 199.35 233.97 222.31 202.41 

Mean 126.73 131.24 135.85 109.40 113.73 108.04 104.65 102.39 104.46 

SD 66.32 71.52 78.25 61.81 73.64 59.38 50.96 60.02 52.50 

 

Feature extraction is performed in time domain 

by computing the standard deviation of the discrete signal 

level of the alpha band (D6) in microvolt (µV) using 

equation (2) for all 3 taste sensory with 3 channels each. 

The extracted features of the 3 taste sensory are shown in 

Table-3 with mean and standard deviation of the features 

in each channel. 
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Figure-8. Mean and standard deviation of features across channels and taste. 

 

From Figure-8, it was observed that the mean of 

the 3 features of salty taste is slightly higher (126.73 µV, 

131.24 µV, 135.85 µV) compared to that of sweet taste 

(104.65 µV, 102.39 µV, 104.46 µV), which indicates that 

the feature value acquired by salty taste is higher. This is 

potentially due to the children being not comfortable with 

the taste of salt (Sudirman and Hussin, 2014).  

Generally, it can be seen that feature of subjects 

with mild autism generally have a lower value, which also 

has higher coherence across different type of taste sensory. 

Subjects with severe autism has higher standard deviation, 

where the coherence of the standard deviation across 

different type of taste sensory is lower. Standard deviation 

is the lowest at the C4 channel of subject 3 (32.57 μV) 
with sour taste and highest in C4 channel of subject 19 

(337.38 μV) with salty taste. Finding of the highest feature 
value on salty taste is similar to the study by Sudirman and 

Hussin, (2014), where the highest standard deviation 

obtained is 336.83 μV from salty taste. 
This dataset is used as an input data consisting of 

26 samples with 9 elements and is fed into the neural 

network for training. Trial and error is performed to obtain 

the suitable data division ratio and number of hidden 

neurons. The settings that gave the best performance in 

cross entropy and percent error is shown in Table-4. The 

neural network is designed to have 9 input neurons for the 

9 features, 8 hidden neurons, and 3 output neurons for the 

3 output classes, which is mild, moderate and severe 

autism.  

 

 

 

 

 

 

 

Table-4. Network setup that gives best performance. 
 

Data division setup 

Training percentage 65 % 

Validation percentage 25 % 

Testing percentage 10 % 

Hidden layer setting 

Hidden neurons 8 

 

 
 

Figure-9. Architecture of the neural network. 

 

Training of the neural network with settings 

shown in Table-4 yields accuracy of 92.3%. Despite the 

high accuracy, the mean squared error (MSE) is quite high 

at 0.0362 with the cross entropy at 0.15822. This is 

probably due to the large number of features and the 

limited amount of samples for the neural network to 

generalize the data. 

The confusion matrix shown in Figure-10 shows 

that only 1 sample from moderate autism and 1 from 

severe autism is wrongly classified during training and 

testing. The best performance is obtained after 18 

iterations with the best validation performance obtained at 

epoch 12 and gradient of 0.0729 as shown in the 

performance plot in Figure-11. The constantly decreasing 

cross-entropy indicates that the cross-entropy performance 

is decreased as the training proceeds. 
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Figure-10. Confusion matrix showing output of training. 

 

 
 

Figure-11. Performance plot of the training. 

 

The trained neural network is tested with the 4 

samples reserved earlier. These samples perform the 

similar preprocessing and feature extraction steps. Then, 

they were classified with the trained neural network. 

Classification shows that all 4 samples is correctly 

classified as shown in Table-5. 

 

 

 

 

 

 

Table-5. Output of classification testing. 
 

Subject 

number 

Expected 

severity 

Classification 
output (%) 

Output 

class 

6 Mild 

Mild 65.20 

Mild Moderate 34.76 

Severe 0.04 

10 Moderate 

Mild 6.77 

Moderate Moderate 92.36 

Severe 0.86 

26 Severe 

Mild 0.06 

Severe Moderate 6.27 

Severe 93.66 

36 Severe 

Mild 0.30 

Severe Moderate 11.06 

Severe 88.64 

 

Previous study by Suleiman and Fatehi, (2007) 

who performed feature extraction with STFT to perform 

classification with MLP for BCI purpose achieve average 

classification accuracy of 85.99% for all channels which is 

slightly lower than by using DWT. While wavelet 

transform is a time-scale analysis method, this simple 

comparison of feature extraction with frequency analysis 

might suggest that time domain features provides a 

slightly clearer class boundary than frequency domain 

features. However, the difference might also due to the 

difference in training parameters being used during neural 

network training and different linearity of dataset. 

 

CONCLUSIONS 

As EEG signal analysis is gaining popularity in 

the field of neuroscience, brain-computer interface and 

physiological evaluation, a robust method of feature 

extraction must present to increase the reliability of the 

method in providing a representation of the data. 

DWT’s ability to decompose a signal down to its 
frequency components shows that it is a simple and direct 

method to analyze EEG signals in different frequency 

band representing different activities in the brain. Results 

shows that features extracted with DWT is able to display 

various correlations between standard deviation of the 

alpha band and the feature characteristics of different taste 

sensory and also the severity of autism. This makes DWT 

a suitable tool to analyze EEG signal of autism patients. 

Training of the neural network with features extracted 

with DWT shows that the network is able to achieve 

classification accuracy at 92.3% despite having high MSE 

of 0.0362. The trained network is able to classify all 

testing data correctly.  



                               VOL. 10, NO 19, OCTOBER, 2015                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                8540 

In future, researchers are suggested to find the 

best combination of feature extraction method and 

classifier that give the best accuracy and performance. 

This can maximize the potential of using EEG 

classification as a reliable method to diagnose autism. 
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