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ABSTRACT 

A Sludge Drying Plant (SDP) produces bio-sludge cakes as end products. In most cases, it is the final processing 
facility of Effluent Treatment System (ETS) before it is sent out for final disposal, either through landfill or handing it over 
to a third party body with some economic impacts. Efficiency of the SDP determines the economic impact should this bio-
sludge is handed over to a third party body for disposal. The resultant of the dry solid produced from the SDP can also 
tremendously affect the overall process costs. In an ideal state, the dry solid produces contain 0% water content; however, 
in an actual plant 0% water content can never be achieved. On disposal, Kualiti Alam, a body appointed for disposal 
purposes, will charge the dried cake sludge based on the weight, regardless water or dry solids. Therefore it is only sensible 
to export the dried cake at maximum dryness. Suitable sludge management which includes preventive maintenance and 
operating costs can reduce the overall process costs. This paper focuses on how cost and sludge management correlates and 
improvement is practically seen on an actual implementation of this optimization. Factors that contributes to the overall 
SDP performance for parameter optimization for the SDP is identified through actual process data a capture from a life 
SDP plant and analysis as well as identification of the subsystems within the SDP itself. 
 
Keywords: sludge drying plant, process design, parameter optimization, effluent treatment system, sludge management. 

 
INTRODUCTION 

A typical output of an oil and gas or other similar 
facility processing plant is normally sent to a water 
treatment unit namely, the Effluent Treatment System 
(ETS). Other industries may also refer the ETS as Water 
Treatment Facility, which treats process discharge before 
being disposed into the sea, unused sludge as landfill or 
through a government controlled body for disposal 
(A.Bhardwaj et al., 1993). The output of the ETS itself, 
which may also be referred as bio-sludge is sent to the 
Sludge Drying Plant (SDP) in which it will perform the 
final processing on a wet sludge to produce a dry cake like 
product. This cake is then sent for disposal through the 
government controlled body with a cost incurred onto the 
industry. Industries’ inability to sustain the low processing 
cost to produce dry solid for disposal is a major concern to 
some oil and gas industry and in turn reflects the currently 
un-optimized processing which has a high financial 
implication. In an ideal case for SDP with all the series of 
processes are at optimum level of operating, the weight 
ton (wt%) may reach as high as 90wt% with minimum 
processing cost. Other industries have already applied 
parameter optimization and have significantly showed a 
high impact on finance (Thomas E.Kissell, 2000). The 
ETS units operation is shown in Table-1. The typical 
overall ETS process flow is shown in Figure-1.  
 
 
 
 

Table-1. ETS units operation. 
 

 
 
COST EFFICIENCY AND PARAMETER 
OPTIMIZATION 

To have a cost efficient SDP, tweaks are required 
on the overall system (P. A. Miderman, et al., 1993). Thus, 
in order to establish an optimum system for cost efficient 
purposes, optimization is required. To make this possible, 
system optimization requires understanding on the type of 
process and medium that the system is managing (B. G. 
Liptak, 2006). As much data is required to determine the 
current performance in order to achieve a successful 
parameter optimization on a complex process such as the 
SDP (S. A. Rounds, 2002). Data collection for 
optimization is obtained on each step of the SDP process, 
which is summarized in Figure-2. Optimization may 
include defining the best measurement range for the 
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sensors whereby each of the sensors and equipment is 
analyzed and compared with the targeted operating 

parameter to reach 90wt% optimization. 

 

 
 

Figure-1. Overall ETS process flow. 
 

 
 

Figure-2. Stage in SDP process. 
 

The optimization method of this study is not 
purely on paper. A pilot study has been conducted and 
actual data collection has been taken to estimate the 
current deviation from target, shown in Table-2. To ensure 
consistency and accuracy, these data are taken on random 
intervals to expand the variations on the sample properties 
during different batches of operations. The observed dry 
solid from the SDP, solid weight and flow rate are 
benchmarked against the desired output. Based on the 
current operating results, the calculated deviation from the 
target ranges from 45.7% to 52.7%, which is a gap of 7% 
of inconsistency. On this normal process the percentage of 
dry solid only reaches up to 35% dry solid compared to a 
target of 90% dry solid.  

Table-2. Data collection on Pilot study. 
 

Dry solid 
(%) 

Solid weight 
(Ton) 

Flow rate (m3/hr) 
Deviation from 

target (%) 

25 0.47 2.4 52.3 

27 0.45 2.7 48.7 

30 0.44 2.1 52.3 

29 0.46 2.2 50.7 

35 0.45 2.6 45.7 
 

a. Only showing a few number of data for paper reference. 
 
 
 
  



                               VOL. 10, NO 19, OCTOBER, 2015                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                 8615 

OPERATING COST ESTIMATES 
The parameter for optimization that contributes to 

the highest processing cost is summarized in Table-3. The 
elements taken into considerations are the flow rate and 
pressure of the bio-sludge going in and out of the SDP, the 
chemical reaction and consumption, pumping efficiency, 

homogenous mixer operations, polymer feeder operation, 
filter press system and finally the logic controller itself. 
Quantified Element in the table describes the details on 
how each element can be quantified to determine the cost 
estimates.

  
Table-3. Data collection for parameter optimization and cost estimates. 

 

Observed parameters Quantified element 

Flow rate and pressure Time is quantified as in volume/time 

Chemical Utilization 
Volume of chemical usage of batch per 

usage. 

Polymer feeder operation Polymer volume usage is quantified. 

Filter press system Time is to process per batch is quantified. 

Diaphragm pump operation Volume transferred per batch is quantified. 

Programmable logic 
controller 

Time is quantified for process per cycle. 

 
Figure-3 is showing a detailed optimization on 

the SDP elements that is then further translated into 
operating cost. This method is indeed more accurate as the 
overall system has been divided in sub-systems, which 
each sub-system is analyzed for its performance. Each of 
the subsystem optimization is then reviewed thoroughly to 

ensure that the cost reflects the actual performance. Also 
as seen Figure 3, the non-optimized elements are mainly 
due to mechanical movement and limitations. An example 
of elements that is optimized is shown in Table-4. The 
percentage optimization is then translated into cost. 

 
Table-4. Optimization of parameters. 

 

 
 

Table-5 shows the cost efficient through 
optimization of the SDP process, where the cost of water 
is reduced from $1.8m to below $500k. Pilot study showed 
there is correlation between system overall performance 
and the cost effectiveness on the operation and it is proven 

through actual implementation of this optimization on a 
live running SDP. Analysis also showed that the current 
efficiency of the overall system is only 50% efficient on 
average, which is indeed considered as poor performance 
by the SDP system.  
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Table-5. Cost Efficiency through optimization. 
 

 
Ideal case 

(100% solid) 
Current operating 
output (25% solid) 

Ideal weight (per month) 56 Tons 56 Tons 

Selling price $2700 per Ton $2700 per Ton 

Cost incurred for solid (per year) $1,814,400 $453,600 

Cost incurred for water (per year) $0 $1,360,800 

 
Results from the pilot study showed that this 

process is nonlinear due to different product specifications 
per process batch, thus in order too close the gap of 40% 
optimization, the system has got to be divided down to 
sub-systems, where each sub-system is then gauged for the 
performance and tweaked. The non-optimized elements 
are improved as shown in Figure-3. As seen in Table-6, 
the total cost incurred on water before system optimization 

is $1, 360, 800, in which only 25% of the system is fully 
utilized for solid disposal.  

Upon optimization on the actual implementation 
on the operating output, 90% solid content can be 
achieved which only $181, 440 is spent on water disposal. 
In an ideal case, the system can produce up to 100% solid 
content with $0 spent on water disposal. However, the 
author believes that it is not practical to achieve actual 
optimization performance up to ideal target.  

 

 
 

Figure-3. Non-optimized elements and optimized elements. 
 

Table-6. Cost efficiency through optimization At 90% system efficiency. 
 

 
Ideal case 

(100% solid) 

Current operating 
output (25% 

solid) 

Optimized operating 
output (90% solid) 

Ideal weight (per 
month) 

56 Tons 56 Tons 56 Tons 

Selling price $2700 per Ton $2700 per Ton $2700 per Ton 

Cost incurred for 
solid (per year) 

$1,814,400 $453,600 $1,632,960 

Cost incurred for 
water (per year) 

$0 $1,360,800 $181,440 
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ALTERNATE APPROACH FOR OPTIMIZATION 
On the other hand, another method of 

optimization on the process can also be achieved through a 
model based control strategy that can be implemented as 
this nonlinear process can be optimized through Artificial 
Neural Network (ANN) (A. Degani, et al., 2001). To 
adopt and utilize ANN optimization on SDP’s process, the 

processes executed has been distinguished and treated as 
separate subsystem during performance gap identification 
but treated as a whole during ANN implementation. Due 
to process nonlinearity and inconsistent repeatability, the 
process optimization can be visualized through ANN 
shown in Figure-4 (Han Chunji, et al., 2009). 

 

 
 

Figure-4. A Brief visualization of the ANN topology. 
 

Similar to the optimization mentioned earlier in 
this paper, the identified subsystems on the SDP are the 
main programmable logic controller (PLC) that controls 
the overall process sequence, the chemical dosing system 
as the coagulate agent, and the non-fuel dryer system. On 
parameter optimization for all these subsystems, the SDP 
will produce up to 90wt% solid content.  

The parameters on the input layer of the neural 
network must be a crisp representative of the processes in 

order to achieve the desired output (D. C. Psichogios, et 
al., 1991). Figure-5 is visualization on the ANN to be 
implemented (B. Lennox, et al., 2001). Author is 
emphasizing that ANN is also a possible method of 
optimization. ANN implementation onto this live system 
is currently being taken into considerations by the 
management for approval both technically and 
economically. 

 

 
 

Figure-5. A Brief visualization of the ANN implementation on the subsystems’ output. 
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CONCLUSIONS 
Pilot study showed a nonlinear process and 

utilizing current controls is not sufficient to improve the 
SDP efficiency which greatly affect the processing cost to 
this industry. With the SDP’s current performance, the 
SDP is only capable of performing up to an average of 
50% efficiency and in overall, and worst, the company is 
spending more than $1, 000, 000 annually on water 
disposal itself. To reduce the gap from the targeted 
performance; this study has identified major subsystems 
that each requires fine tuning, which are mainly due to 
mechanical factors. Upon optimization up to 90% solid 
content, the company is only spending less than $200, 000 
for water disposal, in which is accepted by the 
management. Note that this optimization is implemented 
on an actual SDP with real optimized results. For future 
study to improve efficiency and constant output of the 
SDP, Author believes that an ANN can be implemented. 
This would ensure that the output cake up to 90wt% solid 
content is continuous repetitive. Analogue sensors must be 
installed and diagnostics features for sensors and system 
must be available to further enhance the computing 
system. 
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