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ABSTRACT 
 In today’s VLSI design, one of the most critical performance metric is the interconnect delay. As design 
dimension shrinks, the interconnect delay becomes the dominant factor for overall signal delay. Buffer insertion is proven 
to be an effective technique to minimize the interconnect delay. In conventional buffer insertion algorithms, the buffers are 
inserted on the fixed routing paths. However, in a modern design, there are macro blocks that prohibit any buffer insertion 
in their area. Many conventional buffer insertion algorithms do not consider these obstacles. This paper presents an 
algorithm for simultaneous routing and buffer insertion using look-ahead optimization technique. Simulation results show 
that the proposed algorithm can produce up to 47% better solution compared to the conventional algorithms. Although 
research has shown that simultaneous routing and buffer insertion is NP-complete, however, with the aid of look-ahead 
technique, the runtime of the algorithm can be reduced significantly. 
 
Keywords: buffer insertion, VLSI routing, VLSI design automation, dynamic programming. 
 
INTRODUCTION 
 Interconnect is a wiring system that propagates 
signals to the various functional blocks in VLSI circuits. 
When VLSI technology is scaled down, gate delay and 
interconnects delay change in opposite directions. Smaller 
devices lead to less gate switching delay. In contrast, 
thinner wire increases wire resistance and signal 
propagation delay. As a result, interconnect delay has 
become the dominating factor for VLSI circuit 
performance (ITRS 2013; Alpert 3 2009). Among the 
available techniques, buffer insertion has been proven to 
be one of the best techniques to reduce the interconnect 
delay for a long wire. The main challenge in interconnect 
buffer insertion is how to determine the optimal number of 
buffers and their placement in the given interconnect tree. 
The most influential and systematic technique was 
proposed by van Ginneken (van Ginneken 1990). Given 
the possible buffer locations, this algorithm can find the 
optimum buffering solution for the fixed signal routing 
tree that will maximize timing slack at the source 
according to Elmore delay model (Elmore 1948). 
 Recently, many techniques to speed-up van 
Ginneken algorithm and its extensions were proposed, 
such as in (Shi and Li 2003; Shi and Li 2005; Li and Shi 
2006b; Li and Shi 2006a; Li et al. 2012). However, van 
Ginneken algorithm and its extensions can only operate on 
a fixed routing tree. They will give optimal solution when 
the best routing tree is given, but produce a poor solution 
when a poor routing tree is provided, especially when 
there are obstacles in the design. In today’s VLSI design, 
some regions may be occupied by predesigned libraries 
such as IP blocks and memory arrays. Some of these 
regions do not allow buffer or wire to pass through and 
some regions only allow wire to go through but are 
restricted for any buffer insertion. Therefore, buffer 
insertion has to be performed with consideration of this 

buffer and wire obstacles (Alpert et al. 2009; Khalil-Hani 
and Shaikh-Husin 2009). The best way to handle the 
obstacles is to perform the routing and buffer insertion 
simultaneously using a grid graph technique. However, 
research has shown that simultaneous routing and buffer 
insertion is NP-complete (Hu et al. 2009). The available 
known techniques today are either using dynamic 
programming to compute optimal solution in the worst-
case exponential time or design efficient heuristic without 
performance guarantee. 
 The dynamic programming algorithm such as 
RMP (Recursive Merging and Pruning) algorithm can find 
an optimal buffering solution for multi-terminal nets 
(Cong and Yuan 2000), but it is not efficient when the 
number of sinks and the number of possible buffer 
locations are big as the search space is very large. Indeed, 
Hu et al. show that the searching in RMP is NP-complete.  
They also proposed a heuristic algorithm to solve multi-
terminal nets buffer insertion problem by constructing a 
performance driven Steiner tree where an alternative 
Steiner node is created if the original Steiner node is inside 
the obstacle area (Hu et al. 2003). The algorithm is called 
RIATA for Repeater Insertion with Adaptive Tree 
Adjustment. RIATA is very fast because it operates on a 
fixed tree. However, the quality of the solution may not be 
good enough if many paths of the adjusted tree still 
overlap with the buffer obstacles. 
 Instead of fully constructing the routing path 
simultaneously with buffer insertion like in RMP 
algorithm, a simultaneous approach on the adjusted tree is 
proposed. The algorithm is called HRTB-LA for Hybrid 
Routing Tree and Buffer insertion with Look-Ahead. 
HRTB-LA produces the best result compared to the 
techniques that perform buffer insertion on the fixed 
routing path like van Ginneken algorithm (and its 
extensions) and RIATA. The runtime of HRTB-LA is 
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improved by adopting a technique called look-ahead 
proposed by (Khalil-Hani and Shaikh-Husin 2009) to 
solve the simultaneous routing and buffer insertion for 
single-sink net problems.  
 This paper is organized as follows: section 2 
gives problem formulation, section 3 provides the 
background of the study, section 4 describes the proposed 
algorithm, section 5 presents the experimental results and 
section 6 summarizes the conclusion. 
 
PROBLEM FORMULATION 

The simultaneous routing and buffer insertion 
problem in VLSI layout design is essentially a buffered 
routing path search problem. In this work, it is formulated 
as a shortest-path problem in a weighted graph specified as 
follows. Given a routing grid graph G = (V, E) 
corresponding to VLSI layout where v  V and e  E is a 
set of internal vertices and a set of internal edges 
respectively, with a source vertex S0  V, n sink vertices 
s1, s2, …, sn  V, n – 1 Steiner vertices m1, m2, …, mn-1  
V, a buffer library B and a wire parameter W. The goal is 
to find a routing path simultaneously with buffer insertion 
such that the delay at the source is minimized. A vertex vi 

 V may belong to the set of buffer obstacle vertices, 
denoted VOB or a set of wire obstacle vertices, denoted as 
VOW. A buffer library B contains different types of buffer. 
For each edge e = u  v, signal travels from u to v, where 
u is the upstream vertex and v is the downstream vertex 
and u, v  VoW. A uniform grid graph illustrating some of 
the parameters for the problem formulation is shown in 
Figure-1. 
 

 
 

Figure-1. A uniform grid graph G = (V, E). 
 
BACKGROUND 

In simultaneous routing and buffer insertion 
algorithm, the VLSI layout is represented by a uniform 2D 
grid graph as shown in Figure-1. Each wire segment (each 
edge of the graph e  E) is modeled as -model RC circuit 
as shown in Figure-2a while the buffer model is shown in 
Figure-2b. The label cw and rw are the capacitance and 
resistance per wire segment respectively while rb, cb and db 
are the output resistance, input capacitance and intrinsic 
delay of the buffer respectively. 
 

 
 

Figure-2. (a) Wire segment model (b) Buffer model. 
 

 The goal of the algorithm is to determine the best 
location of buffers on a given interconnect (at the vertex 
between each segment) in order to optimize the Elmore 
delay. The delay is calculated for each segment starting 
from a sink vertex toward the source (this is called 
upstream computation). The computation is characterized 
by two parameters, which are downstream capacitance and 
downstream delay. Each capacitance-delay (c, t) pair is 
called a candidate solution. This candidate solution is 
expanded toward the source by the following operations 
(these operations are also known as path expansions): 
(1) Wire expansion: Expand the candidate solution from 
vertex v to u by inserting a wire segment between v and u 
as shown in Figure-3. If (c, t) is the candidate solution at 
vertex v, then the new candidate solution at vertex u is (c’, 
t’) pair given by 
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Figure-3. Wire expansion from vertex v to vertex u for 
upstream path expansion. 

 
(2) Wire expansion terminated by buffer: Expand the 
candidate solution from vertex v to u by inserting a wire 
segment between v and u and insert the buffer at vertex v 
as shown in Figure-4. If (c, t) is the candidate solution at 
vertex v, then the new candidate solution (c’, t’) at vertex u 
is given by 
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Figure-4. Wire expansion from vertex v to vertex u and 
buffer insertion at v. 

 
(3) Branch merging: If the solution reach a Steiner vertex, 
the candidate solution from the left branch (c, t)left is 
merged with the candidate solution from the right branch 
(c, t)right. The merging solution (c’, t’) is given by. 
 

leftright ccc ' and  leftright ttt ,max' .    (3) 
 

(4)When the candidate solution reaches the source vertex, 
the delay at source is computed with consideration for the 
source resistance, Rs as follows 
 

.ssource cRtt              (4) 
 
PROPOSED ALGORITHM 
 
Design descriptions of the proposed algorithm 
 HRTB-LA algorithm comprises of five main 
stages as shown in Figure-5. The first stage is the graph 
construction phase where the 2D grid graph is constructed 
to represent the VLSI layout. 
 

 
 

Figure-5. Main stages in HRTB-LA. 
 

The tree modification is performed in stage two. 
The tree adjustment in HRTB-LA is adopted from (Hu et 
al. 2003) where the initial tree is adjusted according to the 
obstacles before the path expansions are performed. 
According to (Hu et al. 2003), the difficulty of buffer 
obstacle problem occurs when a Steiner vertex lies in an 
obstacle region, which eliminates opportunities for buffer 
insertion at the vertex. The key idea of tree adjustment is 

to consider an alternative Steiner vertex outside of the 
obstacle without changing the original topology.  
 The graph pruning in stage three is used to reduce 
the search space of the algorithm. The idea is to remove 
the redundant vertices from the graph before the search for 
path expansion is performed. Stage 4 is the look-ahead 
weight vector calculation, and stage 5 is the path 
expansion stage. The maze search starts from each sink 
towards the Steiner vertex where the branch merging 
operations are performed to create a new solution set. 
These solutions will be propagated toward the source and 
the best solution is selected as a final solution. As they are 
the most critical parts of the proposed algorithm, stages 
four and five of the algorithm are explained in more detail 
in the following sub-sections. 
 
Look-ahead scheme 
 The look-ahead concept is a mechanism to reduce 
the search space of possible paths. The first idea was 
introduced in the field of artificial intelligence (Lin 1965; 
Newell and Ernst 1965). The idea is to limit the set of 
possible paths by using information of the remaining sub-
paths toward the destination. The look-ahead concept was 
then adopted in the QoS routing in (Mieghem and Kuipers 
2004) where the look-ahead was proposed to further limit 
the set of possible sub-paths when solving the MCP 
(multi-constraint paths) problem. In VLSI routing and 
buffer insertion problem, it was utilized by (Khalil-Hani 
and Shaikh-Husin 2009) but it was only for two-terminal 
nets. In this work, we extend this idea into the multi-
terminal nets optimization. The concept of look-ahead is to 
maintain the lowest weight component wi  1 ≤ i ≤ m from 
the source vertex to the destination vertex. This 
information provides each vertex u with attainable lower 
bound of wi(Pu  vdes) where vdes is the destination vertex. 
We denote by LA(u)the lower bound weight vector for 
vertex u, known as the look-ahead weight vector.  
 In HRTB-LA, the look-ahead weight vectors are 
used to guide the path expansion from one node to another 
node, i.e. from sink node to Steiner node and so on. These 
weights will be combined with the weights from normal 
path expansion to form a so-called predicted end-to-end 
delay. The look-ahead weight vectors are the resistance-
delay (r, t) pair from a node (we call this as a start node) to 
the next downstream node (end node). In other words, the 
look-ahead weight vectors are the candidate solutions for 
the downstream path expansions. Hence, the computation 
for look-ahead weight vectors are as follows; 
(1) Look-ahead wire expansion: Expand the candidate 
solution from vertex u to v by inserting a wire segment 
between u and v as shown in Figure-6. If (r, t) is the 
candidate solution at vertex u, then the new candidate 
solution (r’, t’) at vertex v is given by. 
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Figure-6. Wire expansion from vertex u to vertex v for 
downstream path expansion. 

 
(2) Look-ahead wire expansion terminated by buffer: 
Expand the candidate solution from vertex u to v by 
inserting a wire segment between u and v and insert the 
buffer at vertex v as shown in Figure-7. 
 

 
 

Figure-7. Wire expansion from vertex u to vertex v and 
buffer insertion at v. 

 
If (r, t) is the candidate solution at vertex u, then the new 
candidate solution (r’, t’) at vertex v is given by 
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 To understand the concept of look-ahead, we now 
explain the look-ahead scheme using the following 
example. Figure-8 shows an interconnect tree with two 
sinks.  
 

 
 

Figure-8. A sample tree. 
 
 The corresponding 2D grid graph for the area 
between sink1 and Steiner node is shown in Figure-9. In 
Figure-9, Steiner node and sink1 are located in vertices 39 
and 14 respectively. Vertices 12, 13, 26 and 27 are wire 
obstacle vertices VOW while vertices 40 and 41 are buffer 
obstacle vertices VOB. The computations for this 
illustration are performed using the following parameters; 

Load capacitance CL = 0.022 pF, wire resistance rw = 37.5 
Ω/segment, wire capacitance cw = 0.1026 pF/segment, 
buffer input capacitance cb = 0.022 pF, buffer output 
resistance rb = 104.2 Ω, buffer intrinsic delay db = 20 ps 
and the source output resistance Rs = 104.2 Ω. 
 

 
 

Figure-9. A 2D grid graph representing a tree in Figure-8 
between STEINER node and sink1. 

 
 At first, HRTB-LA transforms the 2D grid graph 
into a 1D graph. The 1D graph vertices is based on the 
shortest topological distance between Steiner vertex (start 
node) and sink1 vertex (end node) ignoring buffer 
obstacles VOB. For example, the shortest topological 
distance between Steiner vertex and sink1 of Figure-9 is 
five; therefore, the 1D graph to calculate the look-ahead 
weight vectors has six vertices as shown in Figure-10, 
where topological distance between vertex 1 and vertex 6 
is five. The look-ahead weight vectors are then calculated 
for each vertex in the 1D graph. Recall that the look-ahead 
weight vectors are the downstream candidate solutions, 
hence, they are computed using Equation. (5) and (6). 
 

 
 

Figure-10. 1D grid graph. 
 
 The look-ahead weight vectors for the graph in 
Figure-9 are shown in Figure-11. In the 1D graph, vertex 6 
corresponds to the sink1 vertex in the original 2D graph. 
Vertex 5 in 1D graph corresponds to all the vertices in the 
original 2D graph that are four grids away from the Steiner 
node (vertices 28 and 56) while vertex 3 in 1D graph 
corresponds to vertices two grids away from the Steiner 
node (vertices 41 and 54), and so on. The vertex that 
exceeds the topological start-to-end node distance will not 
have any look-ahead vector. A special value, WeightMax 
is assigned as the look-ahead weight for these vertices. 
WeightMax is the minimum delay at the end node taking 
into account the load capacitance CL and is given by 
 

 node endat  weight ),(,min trtrCWeightMax L       (7) 
 

The look-ahead weights will be combined with the 
weights from normal path expansion to form a so-called 
predicted end-to-end delay. The expansion is now guided 
by using the predicted end-to-end delay instead of the 
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normal path expansion delay. This will reduce the number 
of candidates significantly because the candidate that has a 
predicted end-to-end delay greater than a known end-to-
end delay will not be expanded. For a vertex v, the 
predicted end-to-end delay is given by 
 

vLALAv crttlayEndToEndDe          (8) 
 

 where tv and cv are the accumulated delay and 
capacitance to vertex v from sink node respectively while 
tLA and rLA  are the look-ahead delay and resistance for 
vertex v (i.e. the accumulated delay and resistance from 
Steiner node to node v) respectively. 
 
Path expansion 

 Path expansion is the process of constructing the 
path from sink nodes toward the source node. In HRTB-
LA, path expansion is implemented using priority queue. 
The pseudo-code for the path expansion in HRTB-LA is 
shown in Figure-12. 
 In Figure-9, the path expansion begins from sink1 
where the first (c, t) pair is (0.022, 0). At the beginning 

node, the delay is used as the key in the priority queue 
(line 1), hence the initial key value in the priority queue is 
0. The first EXRTACT_MIN (extract the minimum key 
value from the queue) will extract the candidate solution 
from sink node for the next path expansion as there is only 
one key value in the queue (lines 3 – 4). The algorithm 
will check if the extracted candidate is the candidate from 
the start node (in this case the Steiner node). The extracted 
candidate is not from the start node, therefore, lines 6 – 7 
are skipped. 
 The path expansion is performed in lines 9 – 16. 
For each allowable edge, wire expansion is performed in 
lines 11 – 12 where the new (c’, t’) = (0.12, 2.75) is 
computed using Equation. (1). This candidate is now 
inserted into the solution list and the delay component of 
the candidate is added into the queue by invoking the 
function InsertCandidate. The function InsertCandidate is 
shown in Figure-13. In this function, the (c’, t’) pair will 
be checked for domination in lines 2 – 8. 
 

 

 
 

Figure-11. Association of look-ahead weight vectors to input grid graph. 
 

 
 

Figure-12. Pseudo-code for the path expansion in HRTB-
LA. 

 In HRTB-LA, the candidate solution (c1, t1) is 
said to be dominated by (c2, t2) if c1 > c2 and t1 > t2. The 
predicted end-to-end delay is computed in lines 9 – 11 and 
it is pushed into the queue in line 12. 
 So far, the queue contains only the key associated 
with the candidate solution for vertex 28. The next 
EXTRACT_MIN will extract this candidate for the next 
path expansion. The expansion is from vertex 28 to vertex 
42 only because vertex 27 is located in the wire obstacle. 
There are two types of expansion which are wire 
expansion (lines 10 – 12 in Figure-12) and wire expansion 
terminated by buffer (lines 13 – 16) because buffer 
insertion is allowed at vertex 28. The path expansion is 
repeated until the first solution reaches the Steiner node 
(vertex 39). 
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Figure-13. Pseudo-code for the insert candidate in HRTB-
LA. 

 
 In order to make look-ahead possible for a multi-
terminal problem, a buffer must be inserted at the Steiner 
node such that end-to-end delay can be computed. By 
doing this, the quality of the solution may not be as good 
as the solution from the algorithm with normal path 
expansion (no look-ahead). However, from experimental 
results, the solution quality degradation is very small. 
 The predicted end-to-end delay that reaches the 
Steiner node (or source node) is recorded as a known 
minimum end-to-end delay. For the other path expansions, 
if their predicted end-to-end delay is greater than this 
actual known minimum end-to-end delay, then the 
dominated candidate will be removed. In this way, the 
number of candidates at the vertices can be substantially 
reduced, thus speeding up the routing path construction. 
 
Time complexity of HRTB-LA 
 The proposed algorithm uses the Fibonacci heap 
data structure (Cormen et al. 2009) to implement the 
priority queue required for its operations. The advantage 
of Fibonacci heap over other heap algorithms such as 
binary heap and binomial heap is that it has much faster 
operations for the INSERT (used to add new key into the 
queue) and DECREASE_KEY (used to remove a 
redundant key from the queue) functions. These two 
functions are implicitly called in function InsertCandidate 
of HRTB-LA. In HRTB-LA algorithm, the most time 
consuming part is the path expansion process. In the 
function Path_Expansion, the number of EXTRACT_MIN 
operations in the priority queue is upper bounded by the 
total number of vertices |V|. Since Fibonacci heap is used 
to implement the priority queue, therefore the amortized 
time for EXTRACT_MIN operation takes O(|B||V|2 log 
|V|) because the number of candidate solutions at each 
vertex is at most |B||V| (Zhou et al. 2000). In Fibonacci 
heap, each of the INSERT and DECREASE_KEY 
operations in the queue takes O(1). Hence, a wire 
expansion (lines 10 – 12 in Path_Expansion) takes 
O(|B||V|) times because the pruning and the end-to-end 

delay prediction operations are linear. Note that, the edge 
connection operation is bounded by O(|E|) where |E| is the 
total number of edges. Therefore the total computation 
time for wire expansions is O(|B||V||E|). Meanwhile, the 
second expansion (wire expansion terminated by buffer, in 
lines 13 – 16) takes O(|B|2|V||E|). Therefore the total 
running time for HRTB-LA algorithm is O(|M|(|B||V|2 log 
|V| + |B||V||E| + |B|2|V||E|))  O(|M|(|B||V|2 log |V| + 
|B||V|2|E|)) where |M| is the total number of sinks and 
Steiner nodes. In practice, the number of |E| and |V| are 
small due to look-ahead scheme and graph pruning. This is 
proved by the experimental results presented in the 
following section. 
 
RESULTS AND DISCUSSION 
 The proposed algorithm is implemented in C 
running on a 2.4 GHz Intel Core i5 PC with 4 GB RAM. 
Two set of experiments were performed. The first 
experiment was performed to prove that the solution 
quality of HRTB-LA (which applies the simultaneous 
routing and buffer insertion on adjusted tree) is better than 
algorithms which insert buffers on fixed routing tree. The 
second experiment was performed to demonstrate the 
effectiveness of the look-ahead scheme over the algorithm 
that performs normal path expansion (no look-ahead). We 
refer the algorithm with normal path expansion as HRTB 
(Uttraphan and Shaikh-Husin 2013) for Hybrid Routing 
Tree and Buffer insertion. 
 
Experiment 1 
 In this test, the solutions from HRTB-LA were 
compared with the solutions from FBI (fast buffer 
insertion) algorithm (Li et al. 2012) and RIATA (Hu et al. 
2003). The code for FBI algorithm is available for 
download at 
http://dropzone.tamu.edu/~zhuoli/GSRC/fast_buffer_insert
ion.html. However, the code for RIATA is not available 
for download. Therefore, we coded our version of RIATA 
based on the descriptions in (Alpert et al. 2009) and (Hu et 
al. 2003). HRTB-LA, FBI and RIATA were tested on 21 
different nets and graphs. The number of sink nodes 
ranges from 3 to 9 sinks. Graph sizes are from 30  30 to 
80  50 and the wire and buffer obstacles were randomly 
generated. 
 The test results are tabulated in Table-1. The 
table is organized as follows; columns 1 to 4 are the net 
name, graph size, the number of sink nodes in the net and 
the size of obstacle areas (wire/buffer) as compared to the 
size of the graph respectively. The fifth column shows the 
minimum delay after the net is optimized by FBI when 
there is no obstacle on the graph. This column indicates 
absolute minimum delay for the given net. These values 
are used as a reference in this test. Columns 6 to 8 are the 
delay at source obtained from FBI, RIATA and HRTB-LA 
algorithms respectively. Columns 9 and 10 are the delay 
improvement of HRTB_LA (in percentage) over FBI and 
RIATA respectively. As an example, for net 3S1, the 
graph size is a 30  30 grid (total vertices = 900). There 
are three sink nodes in this net and the obstacle areas are 
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26.9% of the graph.  When the obstacles are ignored (can 
insert buffer anywhere on the net), the delay measured at 
source is 1192.89 ps. Meanwhile, when the obstacles are 
taken into account, the FBI algorithm returns delay at the 
source of 2268.21 ps. RIATA returns 1201.08 ps and 
HRTB-LA returns 1195.52 ps. This means that the delay 
improvement of HRTB-LA over FBI and RIATA are 
47.29% and 0.46% respectively. 
 Clearly in all test cases, the solutions of HRTB-
LA are better than the solutions from FBI where the 
highest delay improvement was recorded at net 3S1 which 
is 47.29%. For the comparison with RIATA, HRTB-LA 
improves the delay for most of the nets where the highest 
delay improvement was recorded for net 7S2 at 24.83%. 
However, the delays obtained from HRTB-LA are a bit 
larger than the delays obtained from RIATA for nets 3S2 
and 4S1. This is because the obstacle areas on these nets 
are relatively small. Hence, the routing paths of HRTB-LA 
and RIATA are the same. Recall that a buffer must be 
inserted at each Steiner node in HRTB-LA and causes 
HRTB_LA to return a slightly higher delay. However, the 
solution degradations are relatively small which are 0.22% 
and 1.1% for net 3S2 and 4S1 respectively. In fact, if the 
obstacle areas are large (more than 18%), the solutions 
from HRTB-LA are better than the solutions from RIATA. 
 
 
 

Experiment 2 
 In the second test, the solution quality, runtime 
and the number of candidate solutions produced by FBI, 
RIATA, HRTB and HRTB-LA algorithms are compared. 
The algorithms are performed on a randomly generated net 
with 25 sinks. The size of the grid is 100 x 100 which is 
equivalent to 20 mm × 20 mm layout size. The wire and 
buffer obstacles are 20% and 10% of the graph 
respectively. 
 The test results are summarized in Table 2 and 
for better comparison, the plots of the results are also 
provided. The delay at source, runtime, and the number of 
candidate solutions for all algorithms were recorded. 
There are six test cases where the first case is when there 
is only one buffer type in the library. The second case is 
when there are two buffer types in the library and so on. 
As an example, on one buffer type, the FBI algorithm 
returns delay at 18854 ps and the runtime is 0.37 s. The 
number of candidate solutions is not given because FBI 
code does not provide this information. The delay at 
source obtained from RIATA is 18485 ps and the runtime 
is 1.56 s. The delay at source obtained from HRTB and 
HRTB-LA are 18073 ps and 18120 ps respectively while 
the recorded runtime are 5.61 s and 5.38 s respectively. 
When there are two or more types of buffer in the library 
(cases 2 - 6), the solution quality for all algorithms are 
improved. 
 

Table-1. Delay at source comparison between FBI, RIATA and HRTB-LA. 
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Table-2. Solutions quality, runtime and number of candidate solutions for Experiment 2. 
 

 
 

 
Figure-14. Plot of test results (a) delay (b) runtime (c) 

number of candidate solutions. 
 
 Figure-14 is the plot of the performance 
comparisons from Table-2. All the performance metrics 
are plotted against the size of the buffer library. For delay 
comparison in all test cases, clearly HRTB and HRTB-LA 
outperformed RIATA and FBI because HRTB and HRTB-
LA found the best path for each node by utilizing the 
simultaneous routing and buffer insertion (maze search). 

As expected, the solution quality of HRTB is slightly 
better than HRTB-LA but only a small degradation is 
observed (less than 1%). Again, this is due to buffer 
insertion requirement at merging nodes for HRTB-LA to 
facilitate look-ahead scheme. In terms of runtime, HRTB 
seems to have an exponential relationship with the number 
of buffers in the library as the number of candidate 
solutions grow quickly because of the maze search in the 
path expansions. The runtime of FBI is the fastest, 
followed by the runtime of RIATA. This is because FBI 
and RIATA only perform one direction path expansion. 
Although HRTB-LA also uses maze search like HRTB, its 
runtime is linear and comparable to FBI and RIATA. The 
number of candidate solutions also proves that HRTB-LA 
is very efficient. In fact, the number of candidate solutions 
from HRTB-LA is lower than the number of candidate 
solutions from RIATA. For HRTB-LA, the depth first 
search in look-ahead scheme allows the algorithm to find 
the destination as quickly as possible and eliminates 
unnecessary path expansions later on. 
 
CONCLUSIONS 

 In this paper, the hybrid of the simultaneous and 
post routing approach for multi-terminal nets is described. 
By utilizing a given routing path, the proposed algorithm, 
HRTB-LA adjusts the routing tree if the Steiner node lies 
in the buffer obstacle. The rerouting process, 
simultaneously with buffer insertion is performed later on. 
The results show that the proposed algorithm can produce 
a better solution compared to other algorithms.  To speed 
up the runtime of the algorithm, the novel look-ahead 
which were proven to be successful in optimizing the two-
terminal nets (Khalil-Hani and Shaikh-Husin 2009) are 
adopted in this work. Presented results demonstrate the 
advantage of the path expansion with the aid of look-ahead 
compared to the normal path expansion. The time 
complexity of HRTB-LA is O(|M|(|B||V|2 log |V| + 
|B||V|2|E|)). Although the O-notation shows that the 
runtime of the algorithm can grow exponentially, however, 
we do not observe this phenomenon in experiment. This is 
because the number of |E| and |V| are small due to graph 
pruning and look-ahead scheme. 
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