
 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8765

AN OPTIMIZED ALGORITHM FOR SIMULTANEOUS ROUTING AND
BUFFER INSERTION IN MULTI-TERMINAL NETS

C. Uttraphan1 and N. Shaikh-Husin2

1 Embedded Computing System (EmbCoS) Research Focus Group, Department of Computer Engineering, Faculty of Electrical and
Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat, Malaysia

2Universiti Teknologi Malaysia, Johor Bahru, Malaysia
E-Mail: chessda@uthm.edu.my

ABSTRACT
 In today’s VLSI design, one of the most critical performance metric is the interconnect delay. As design
dimension shrinks, the interconnect delay becomes the dominant factor for overall signal delay. Buffer insertion is proven
to be an effective technique to minimize the interconnect delay. In conventional buffer insertion algorithms, the buffers are
inserted on the fixed routing paths. However, in a modern design, there are macro blocks that prohibit any buffer insertion
in their area. Many conventional buffer insertion algorithms do not consider these obstacles. This paper presents an
algorithm for simultaneous routing and buffer insertion using look-ahead optimization technique. Simulation results show
that the proposed algorithm can produce up to 47% better solution compared to the conventional algorithms. Although
research has shown that simultaneous routing and buffer insertion is NP-complete, however, with the aid of look-ahead
technique, the runtime of the algorithm can be reduced significantly.

Keywords: buffer insertion, VLSI routing, VLSI design automation, dynamic programming.

INTRODUCTION
 Interconnect is a wiring system that propagates
signals to the various functional blocks in VLSI circuits.
When VLSI technology is scaled down, gate delay and
interconnects delay change in opposite directions. Smaller
devices lead to less gate switching delay. In contrast,
thinner wire increases wire resistance and signal
propagation delay. As a result, interconnect delay has
become the dominating factor for VLSI circuit
performance (ITRS 2013; Alpert 3 2009). Among the
available techniques, buffer insertion has been proven to
be one of the best techniques to reduce the interconnect
delay for a long wire. The main challenge in interconnect
buffer insertion is how to determine the optimal number of
buffers and their placement in the given interconnect tree.
The most influential and systematic technique was
proposed by van Ginneken (van Ginneken 1990). Given
the possible buffer locations, this algorithm can find the
optimum buffering solution for the fixed signal routing
tree that will maximize timing slack at the source
according to Elmore delay model (Elmore 1948).
 Recently, many techniques to speed-up van
Ginneken algorithm and its extensions were proposed,
such as in (Shi and Li 2003; Shi and Li 2005; Li and Shi
2006b; Li and Shi 2006a; Li et al. 2012). However, van
Ginneken algorithm and its extensions can only operate on
a fixed routing tree. They will give optimal solution when
the best routing tree is given, but produce a poor solution
when a poor routing tree is provided, especially when
there are obstacles in the design. In today’s VLSI design,
some regions may be occupied by predesigned libraries
such as IP blocks and memory arrays. Some of these
regions do not allow buffer or wire to pass through and
some regions only allow wire to go through but are
restricted for any buffer insertion. Therefore, buffer
insertion has to be performed with consideration of this

buffer and wire obstacles (Alpert et al. 2009; Khalil-Hani
and Shaikh-Husin 2009). The best way to handle the
obstacles is to perform the routing and buffer insertion
simultaneously using a grid graph technique. However,
research has shown that simultaneous routing and buffer
insertion is NP-complete (Hu et al. 2009). The available
known techniques today are either using dynamic
programming to compute optimal solution in the worst-
case exponential time or design efficient heuristic without
performance guarantee.
 The dynamic programming algorithm such as
RMP (Recursive Merging and Pruning) algorithm can find
an optimal buffering solution for multi-terminal nets
(Cong and Yuan 2000), but it is not efficient when the
number of sinks and the number of possible buffer
locations are big as the search space is very large. Indeed,
Hu et al. show that the searching in RMP is NP-complete.
They also proposed a heuristic algorithm to solve multi-
terminal nets buffer insertion problem by constructing a
performance driven Steiner tree where an alternative
Steiner node is created if the original Steiner node is inside
the obstacle area (Hu et al. 2003). The algorithm is called
RIATA for Repeater Insertion with Adaptive Tree
Adjustment. RIATA is very fast because it operates on a
fixed tree. However, the quality of the solution may not be
good enough if many paths of the adjusted tree still
overlap with the buffer obstacles.
 Instead of fully constructing the routing path
simultaneously with buffer insertion like in RMP
algorithm, a simultaneous approach on the adjusted tree is
proposed. The algorithm is called HRTB-LA for Hybrid
Routing Tree and Buffer insertion with Look-Ahead.
HRTB-LA produces the best result compared to the
techniques that perform buffer insertion on the fixed
routing path like van Ginneken algorithm (and its
extensions) and RIATA. The runtime of HRTB-LA is

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8766

improved by adopting a technique called look-ahead
proposed by (Khalil-Hani and Shaikh-Husin 2009) to
solve the simultaneous routing and buffer insertion for
single-sink net problems.
 This paper is organized as follows: section 2
gives problem formulation, section 3 provides the
background of the study, section 4 describes the proposed
algorithm, section 5 presents the experimental results and
section 6 summarizes the conclusion.

PROBLEM FORMULATION

The simultaneous routing and buffer insertion
problem in VLSI layout design is essentially a buffered
routing path search problem. In this work, it is formulated
as a shortest-path problem in a weighted graph specified as
follows. Given a routing grid graph G = (V, E)
corresponding to VLSI layout where v  V and e  E is a
set of internal vertices and a set of internal edges
respectively, with a source vertex S0  V, n sink vertices
s1, s2, …, sn  V, n – 1 Steiner vertices m1, m2, …, mn-1 
V, a buffer library B and a wire parameter W. The goal is
to find a routing path simultaneously with buffer insertion
such that the delay at the source is minimized. A vertex vi

 V may belong to the set of buffer obstacle vertices,
denoted VOB or a set of wire obstacle vertices, denoted as
VOW. A buffer library B contains different types of buffer.
For each edge e = u  v, signal travels from u to v, where
u is the upstream vertex and v is the downstream vertex
and u, v  VoW. A uniform grid graph illustrating some of
the parameters for the problem formulation is shown in
Figure-1.

Figure-1. A uniform grid graph G = (V, E).

BACKGROUND

In simultaneous routing and buffer insertion
algorithm, the VLSI layout is represented by a uniform 2D
grid graph as shown in Figure-1. Each wire segment (each
edge of the graph e  E) is modeled as -model RC circuit
as shown in Figure-2a while the buffer model is shown in
Figure-2b. The label cw and rw are the capacitance and
resistance per wire segment respectively while rb, cb and db
are the output resistance, input capacitance and intrinsic
delay of the buffer respectively.

Figure-2. (a) Wire segment model (b) Buffer model.

 The goal of the algorithm is to determine the best
location of buffers on a given interconnect (at the vertex
between each segment) in order to optimize the Elmore
delay. The delay is calculated for each segment starting
from a sink vertex toward the source (this is called
upstream computation). The computation is characterized
by two parameters, which are downstream capacitance and
downstream delay. Each capacitance-delay (c, t) pair is
called a candidate solution. This candidate solution is
expanded toward the source by the following operations
(these operations are also known as path expansions):
(1) Wire expansion: Expand the candidate solution from
vertex v to u by inserting a wire segment between v and u
as shown in Figure-3. If (c, t) is the candidate solution at
vertex v, then the new candidate solution at vertex u is (c’,
t’) pair given by

wccc  and 






  c
c

rtt w
w 2

. (1)

Figure-3. Wire expansion from vertex v to vertex u for
upstream path expansion.

(2) Wire expansion terminated by buffer: Expand the
candidate solution from vertex v to u by inserting a wire
segment between v and u and insert the buffer at vertex v
as shown in Figure-4. If (c, t) is the candidate solution at
vertex v, then the new candidate solution (c’, t’) at vertex u
is given by

bw ccc ' and tcrdc
c

rt bbb
w

w 





 

2
' (2)

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8767

Figure-4. Wire expansion from vertex v to vertex u and
buffer insertion at v.

(3) Branch merging: If the solution reach a Steiner vertex,
the candidate solution from the left branch (c, t)left is
merged with the candidate solution from the right branch
(c, t)right. The merging solution (c’, t’) is given by.

leftright ccc ' and  leftright ttt ,max' . (3)

(4)When the candidate solution reaches the source vertex,
the delay at source is computed with consideration for the
source resistance, Rs as follows

.ssource cRtt  (4)

PROPOSED ALGORITHM

Design descriptions of the proposed algorithm
 HRTB-LA algorithm comprises of five main
stages as shown in Figure-5. The first stage is the graph
construction phase where the 2D grid graph is constructed
to represent the VLSI layout.

Figure-5. Main stages in HRTB-LA.

The tree modification is performed in stage two.
The tree adjustment in HRTB-LA is adopted from (Hu et
al. 2003) where the initial tree is adjusted according to the
obstacles before the path expansions are performed.
According to (Hu et al. 2003), the difficulty of buffer
obstacle problem occurs when a Steiner vertex lies in an
obstacle region, which eliminates opportunities for buffer
insertion at the vertex. The key idea of tree adjustment is

to consider an alternative Steiner vertex outside of the
obstacle without changing the original topology.
 The graph pruning in stage three is used to reduce
the search space of the algorithm. The idea is to remove
the redundant vertices from the graph before the search for
path expansion is performed. Stage 4 is the look-ahead
weight vector calculation, and stage 5 is the path
expansion stage. The maze search starts from each sink
towards the Steiner vertex where the branch merging
operations are performed to create a new solution set.
These solutions will be propagated toward the source and
the best solution is selected as a final solution. As they are
the most critical parts of the proposed algorithm, stages
four and five of the algorithm are explained in more detail
in the following sub-sections.

Look-ahead scheme
 The look-ahead concept is a mechanism to reduce
the search space of possible paths. The first idea was
introduced in the field of artificial intelligence (Lin 1965;
Newell and Ernst 1965). The idea is to limit the set of
possible paths by using information of the remaining sub-
paths toward the destination. The look-ahead concept was
then adopted in the QoS routing in (Mieghem and Kuipers
2004) where the look-ahead was proposed to further limit
the set of possible sub-paths when solving the MCP
(multi-constraint paths) problem. In VLSI routing and
buffer insertion problem, it was utilized by (Khalil-Hani
and Shaikh-Husin 2009) but it was only for two-terminal
nets. In this work, we extend this idea into the multi-
terminal nets optimization. The concept of look-ahead is to
maintain the lowest weight component wi  1 ≤ i ≤ m from
the source vertex to the destination vertex. This
information provides each vertex u with attainable lower
bound of wi(Pu  vdes) where vdes is the destination vertex.
We denote by LA(u)the lower bound weight vector for
vertex u, known as the look-ahead weight vector.
 In HRTB-LA, the look-ahead weight vectors are
used to guide the path expansion from one node to another
node, i.e. from sink node to Steiner node and so on. These
weights will be combined with the weights from normal
path expansion to form a so-called predicted end-to-end
delay. The look-ahead weight vectors are the resistance-
delay (r, t) pair from a node (we call this as a start node) to
the next downstream node (end node). In other words, the
look-ahead weight vectors are the candidate solutions for
the downstream path expansions. Hence, the computation
for look-ahead weight vectors are as follows;
(1) Look-ahead wire expansion: Expand the candidate
solution from vertex u to v by inserting a wire segment
between u and v as shown in Figure-6. If (r, t) is the
candidate solution at vertex u, then the new candidate
solution (r’, t’) at vertex v is given by.

rrr w ' and tc
r

rt w
w 





 

2
' . (5)

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8768

Figure-6. Wire expansion from vertex u to vertex v for
downstream path expansion.

(2) Look-ahead wire expansion terminated by buffer:
Expand the candidate solution from vertex u to v by
inserting a wire segment between u and v and insert the
buffer at vertex v as shown in Figure-7.

Figure-7. Wire expansion from vertex u to vertex v and
buffer insertion at v.

If (r, t) is the candidate solution at vertex u, then the new
candidate solution (r’, t’) at vertex v is given by

brr ' and tdc
c

rccrt bb
w

wbw 





 

2
)(' (6)

 To understand the concept of look-ahead, we now
explain the look-ahead scheme using the following
example. Figure-8 shows an interconnect tree with two
sinks.

Figure-8. A sample tree.

 The corresponding 2D grid graph for the area
between sink1 and Steiner node is shown in Figure-9. In
Figure-9, Steiner node and sink1 are located in vertices 39
and 14 respectively. Vertices 12, 13, 26 and 27 are wire
obstacle vertices VOW while vertices 40 and 41 are buffer
obstacle vertices VOB. The computations for this
illustration are performed using the following parameters;

Load capacitance CL = 0.022 pF, wire resistance rw = 37.5
Ω/segment, wire capacitance cw = 0.1026 pF/segment,
buffer input capacitance cb = 0.022 pF, buffer output
resistance rb = 104.2 Ω, buffer intrinsic delay db = 20 ps
and the source output resistance Rs = 104.2 Ω.

Figure-9. A 2D grid graph representing a tree in Figure-8
between STEINER node and sink1.

 At first, HRTB-LA transforms the 2D grid graph
into a 1D graph. The 1D graph vertices is based on the
shortest topological distance between Steiner vertex (start
node) and sink1 vertex (end node) ignoring buffer
obstacles VOB. For example, the shortest topological
distance between Steiner vertex and sink1 of Figure-9 is
five; therefore, the 1D graph to calculate the look-ahead
weight vectors has six vertices as shown in Figure-10,
where topological distance between vertex 1 and vertex 6
is five. The look-ahead weight vectors are then calculated
for each vertex in the 1D graph. Recall that the look-ahead
weight vectors are the downstream candidate solutions,
hence, they are computed using Equation. (5) and (6).

Figure-10. 1D grid graph.

 The look-ahead weight vectors for the graph in
Figure-9 are shown in Figure-11. In the 1D graph, vertex 6
corresponds to the sink1 vertex in the original 2D graph.
Vertex 5 in 1D graph corresponds to all the vertices in the
original 2D graph that are four grids away from the Steiner
node (vertices 28 and 56) while vertex 3 in 1D graph
corresponds to vertices two grids away from the Steiner
node (vertices 41 and 54), and so on. The vertex that
exceeds the topological start-to-end node distance will not
have any look-ahead vector. A special value, WeightMax
is assigned as the look-ahead weight for these vertices.
WeightMax is the minimum delay at the end node taking
into account the load capacitance CL and is given by

 node endat weight),(,min trtrCWeightMax L  (7)

The look-ahead weights will be combined with the
weights from normal path expansion to form a so-called
predicted end-to-end delay. The expansion is now guided
by using the predicted end-to-end delay instead of the

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8769

normal path expansion delay. This will reduce the number
of candidates significantly because the candidate that has a
predicted end-to-end delay greater than a known end-to-
end delay will not be expanded. For a vertex v, the
predicted end-to-end delay is given by

vLALAv crttlayEndToEndDe  (8)

 where tv and cv are the accumulated delay and
capacitance to vertex v from sink node respectively while
tLA and rLA are the look-ahead delay and resistance for
vertex v (i.e. the accumulated delay and resistance from
Steiner node to node v) respectively.

Path expansion

 Path expansion is the process of constructing the
path from sink nodes toward the source node. In HRTB-
LA, path expansion is implemented using priority queue.
The pseudo-code for the path expansion in HRTB-LA is
shown in Figure-12.
 In Figure-9, the path expansion begins from sink1
where the first (c, t) pair is (0.022, 0). At the beginning

node, the delay is used as the key in the priority queue
(line 1), hence the initial key value in the priority queue is
0. The first EXRTACT_MIN (extract the minimum key
value from the queue) will extract the candidate solution
from sink node for the next path expansion as there is only
one key value in the queue (lines 3 – 4). The algorithm
will check if the extracted candidate is the candidate from
the start node (in this case the Steiner node). The extracted
candidate is not from the start node, therefore, lines 6 – 7
are skipped.
 The path expansion is performed in lines 9 – 16.
For each allowable edge, wire expansion is performed in
lines 11 – 12 where the new (c’, t’) = (0.12, 2.75) is
computed using Equation. (1). This candidate is now
inserted into the solution list and the delay component of
the candidate is added into the queue by invoking the
function InsertCandidate. The function InsertCandidate is
shown in Figure-13. In this function, the (c’, t’) pair will
be checked for domination in lines 2 – 8.

Figure-11. Association of look-ahead weight vectors to input grid graph.

Figure-12. Pseudo-code for the path expansion in HRTB-
LA.

 In HRTB-LA, the candidate solution (c1, t1) is
said to be dominated by (c2, t2) if c1 > c2 and t1 > t2. The
predicted end-to-end delay is computed in lines 9 – 11 and
it is pushed into the queue in line 12.
 So far, the queue contains only the key associated
with the candidate solution for vertex 28. The next
EXTRACT_MIN will extract this candidate for the next
path expansion. The expansion is from vertex 28 to vertex
42 only because vertex 27 is located in the wire obstacle.
There are two types of expansion which are wire
expansion (lines 10 – 12 in Figure-12) and wire expansion
terminated by buffer (lines 13 – 16) because buffer
insertion is allowed at vertex 28. The path expansion is
repeated until the first solution reaches the Steiner node
(vertex 39).

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8770

Figure-13. Pseudo-code for the insert candidate in HRTB-
LA.

 In order to make look-ahead possible for a multi-
terminal problem, a buffer must be inserted at the Steiner
node such that end-to-end delay can be computed. By
doing this, the quality of the solution may not be as good
as the solution from the algorithm with normal path
expansion (no look-ahead). However, from experimental
results, the solution quality degradation is very small.
 The predicted end-to-end delay that reaches the
Steiner node (or source node) is recorded as a known
minimum end-to-end delay. For the other path expansions,
if their predicted end-to-end delay is greater than this
actual known minimum end-to-end delay, then the
dominated candidate will be removed. In this way, the
number of candidates at the vertices can be substantially
reduced, thus speeding up the routing path construction.

Time complexity of HRTB-LA
 The proposed algorithm uses the Fibonacci heap
data structure (Cormen et al. 2009) to implement the
priority queue required for its operations. The advantage
of Fibonacci heap over other heap algorithms such as
binary heap and binomial heap is that it has much faster
operations for the INSERT (used to add new key into the
queue) and DECREASE_KEY (used to remove a
redundant key from the queue) functions. These two
functions are implicitly called in function InsertCandidate
of HRTB-LA. In HRTB-LA algorithm, the most time
consuming part is the path expansion process. In the
function Path_Expansion, the number of EXTRACT_MIN
operations in the priority queue is upper bounded by the
total number of vertices |V|. Since Fibonacci heap is used
to implement the priority queue, therefore the amortized
time for EXTRACT_MIN operation takes O(|B||V|2 log
|V|) because the number of candidate solutions at each
vertex is at most |B||V| (Zhou et al. 2000). In Fibonacci
heap, each of the INSERT and DECREASE_KEY
operations in the queue takes O(1). Hence, a wire
expansion (lines 10 – 12 in Path_Expansion) takes
O(|B||V|) times because the pruning and the end-to-end

delay prediction operations are linear. Note that, the edge
connection operation is bounded by O(|E|) where |E| is the
total number of edges. Therefore the total computation
time for wire expansions is O(|B||V||E|). Meanwhile, the
second expansion (wire expansion terminated by buffer, in
lines 13 – 16) takes O(|B|2|V||E|). Therefore the total
running time for HRTB-LA algorithm is O(|M|(|B||V|2 log
|V| + |B||V||E| + |B|2|V||E|))  O(|M|(|B||V|2 log |V| +
|B||V|2|E|)) where |M| is the total number of sinks and
Steiner nodes. In practice, the number of |E| and |V| are
small due to look-ahead scheme and graph pruning. This is
proved by the experimental results presented in the
following section.

RESULTS AND DISCUSSION
 The proposed algorithm is implemented in C
running on a 2.4 GHz Intel Core i5 PC with 4 GB RAM.
Two set of experiments were performed. The first
experiment was performed to prove that the solution
quality of HRTB-LA (which applies the simultaneous
routing and buffer insertion on adjusted tree) is better than
algorithms which insert buffers on fixed routing tree. The
second experiment was performed to demonstrate the
effectiveness of the look-ahead scheme over the algorithm
that performs normal path expansion (no look-ahead). We
refer the algorithm with normal path expansion as HRTB
(Uttraphan and Shaikh-Husin 2013) for Hybrid Routing
Tree and Buffer insertion.

Experiment 1
 In this test, the solutions from HRTB-LA were
compared with the solutions from FBI (fast buffer
insertion) algorithm (Li et al. 2012) and RIATA (Hu et al.
2003). The code for FBI algorithm is available for
download at
http://dropzone.tamu.edu/~zhuoli/GSRC/fast_buffer_insert
ion.html. However, the code for RIATA is not available
for download. Therefore, we coded our version of RIATA
based on the descriptions in (Alpert et al. 2009) and (Hu et
al. 2003). HRTB-LA, FBI and RIATA were tested on 21
different nets and graphs. The number of sink nodes
ranges from 3 to 9 sinks. Graph sizes are from 30  30 to
80  50 and the wire and buffer obstacles were randomly
generated.
 The test results are tabulated in Table-1. The
table is organized as follows; columns 1 to 4 are the net
name, graph size, the number of sink nodes in the net and
the size of obstacle areas (wire/buffer) as compared to the
size of the graph respectively. The fifth column shows the
minimum delay after the net is optimized by FBI when
there is no obstacle on the graph. This column indicates
absolute minimum delay for the given net. These values
are used as a reference in this test. Columns 6 to 8 are the
delay at source obtained from FBI, RIATA and HRTB-LA
algorithms respectively. Columns 9 and 10 are the delay
improvement of HRTB_LA (in percentage) over FBI and
RIATA respectively. As an example, for net 3S1, the
graph size is a 30  30 grid (total vertices = 900). There
are three sink nodes in this net and the obstacle areas are

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8771

26.9% of the graph. When the obstacles are ignored (can
insert buffer anywhere on the net), the delay measured at
source is 1192.89 ps. Meanwhile, when the obstacles are
taken into account, the FBI algorithm returns delay at the
source of 2268.21 ps. RIATA returns 1201.08 ps and
HRTB-LA returns 1195.52 ps. This means that the delay
improvement of HRTB-LA over FBI and RIATA are
47.29% and 0.46% respectively.
 Clearly in all test cases, the solutions of HRTB-
LA are better than the solutions from FBI where the
highest delay improvement was recorded at net 3S1 which
is 47.29%. For the comparison with RIATA, HRTB-LA
improves the delay for most of the nets where the highest
delay improvement was recorded for net 7S2 at 24.83%.
However, the delays obtained from HRTB-LA are a bit
larger than the delays obtained from RIATA for nets 3S2
and 4S1. This is because the obstacle areas on these nets
are relatively small. Hence, the routing paths of HRTB-LA
and RIATA are the same. Recall that a buffer must be
inserted at each Steiner node in HRTB-LA and causes
HRTB_LA to return a slightly higher delay. However, the
solution degradations are relatively small which are 0.22%
and 1.1% for net 3S2 and 4S1 respectively. In fact, if the
obstacle areas are large (more than 18%), the solutions
from HRTB-LA are better than the solutions from RIATA.

Experiment 2
 In the second test, the solution quality, runtime
and the number of candidate solutions produced by FBI,
RIATA, HRTB and HRTB-LA algorithms are compared.
The algorithms are performed on a randomly generated net
with 25 sinks. The size of the grid is 100 x 100 which is
equivalent to 20 mm × 20 mm layout size. The wire and
buffer obstacles are 20% and 10% of the graph
respectively.
 The test results are summarized in Table 2 and
for better comparison, the plots of the results are also
provided. The delay at source, runtime, and the number of
candidate solutions for all algorithms were recorded.
There are six test cases where the first case is when there
is only one buffer type in the library. The second case is
when there are two buffer types in the library and so on.
As an example, on one buffer type, the FBI algorithm
returns delay at 18854 ps and the runtime is 0.37 s. The
number of candidate solutions is not given because FBI
code does not provide this information. The delay at
source obtained from RIATA is 18485 ps and the runtime
is 1.56 s. The delay at source obtained from HRTB and
HRTB-LA are 18073 ps and 18120 ps respectively while
the recorded runtime are 5.61 s and 5.38 s respectively.
When there are two or more types of buffer in the library
(cases 2 - 6), the solution quality for all algorithms are
improved.

Table-1. Delay at source comparison between FBI, RIATA and HRTB-LA.

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8772

Table-2. Solutions quality, runtime and number of candidate solutions for Experiment 2.

Figure-14. Plot of test results (a) delay (b) runtime (c)

number of candidate solutions.

 Figure-14 is the plot of the performance
comparisons from Table-2. All the performance metrics
are plotted against the size of the buffer library. For delay
comparison in all test cases, clearly HRTB and HRTB-LA
outperformed RIATA and FBI because HRTB and HRTB-
LA found the best path for each node by utilizing the
simultaneous routing and buffer insertion (maze search).

As expected, the solution quality of HRTB is slightly
better than HRTB-LA but only a small degradation is
observed (less than 1%). Again, this is due to buffer
insertion requirement at merging nodes for HRTB-LA to
facilitate look-ahead scheme. In terms of runtime, HRTB
seems to have an exponential relationship with the number
of buffers in the library as the number of candidate
solutions grow quickly because of the maze search in the
path expansions. The runtime of FBI is the fastest,
followed by the runtime of RIATA. This is because FBI
and RIATA only perform one direction path expansion.
Although HRTB-LA also uses maze search like HRTB, its
runtime is linear and comparable to FBI and RIATA. The
number of candidate solutions also proves that HRTB-LA
is very efficient. In fact, the number of candidate solutions
from HRTB-LA is lower than the number of candidate
solutions from RIATA. For HRTB-LA, the depth first
search in look-ahead scheme allows the algorithm to find
the destination as quickly as possible and eliminates
unnecessary path expansions later on.

CONCLUSIONS

 In this paper, the hybrid of the simultaneous and
post routing approach for multi-terminal nets is described.
By utilizing a given routing path, the proposed algorithm,
HRTB-LA adjusts the routing tree if the Steiner node lies
in the buffer obstacle. The rerouting process,
simultaneously with buffer insertion is performed later on.
The results show that the proposed algorithm can produce
a better solution compared to other algorithms. To speed
up the runtime of the algorithm, the novel look-ahead
which were proven to be successful in optimizing the two-
terminal nets (Khalil-Hani and Shaikh-Husin 2009) are
adopted in this work. Presented results demonstrate the
advantage of the path expansion with the aid of look-ahead
compared to the normal path expansion. The time
complexity of HRTB-LA is O(|M|(|B||V|2 log |V| +
|B||V|2|E|)). Although the O-notation shows that the
runtime of the algorithm can grow exponentially, however,
we do not observe this phenomenon in experiment. This is
because the number of |E| and |V| are small due to graph
pruning and look-ahead scheme.

ACKNOWLEDGEMENTS
 This work is supported by Higher Education
Department, Ministry of Education Malaysia and
Universiti Tun Hussein Onn Malaysia (UTHM). The

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8773

author would like to thank Zhuo Li et al. for providing the
FBI code.

REFERENCES

[1] Alpert C. J., Mehta D. P. and Sapatnekar S. S. 2009.

Handbook of algorithms for physical design
automation, Auerbach Publications.

[2] Cong J. and Yuan X. 2000. Routing tree construction
under fixed buffer locations. In Proc. 37th Annual
Design Automation Conference. ACM, pp. 379–384.

[3] Cormen T. H., Leiserson C. E. and Rivest R. L. 2009.
Introduction to Algorithms 3rd ed., Boston, MA:
McGraw-Hill.

[4] Elmore W. 1948. The transient response of damped
linear networks with particular regard to wideband
amplifiers. Journal of Applied Physics, Vol. 19, No. 1,
pp.55–63.

[5] Van Ginneken L. P. P. P. 1990. Buffer placement in
distributed RC-tree networks for minimal Elmore
delay. In Proc. Int. Symp. Circuits and Systems.
IEEE, pp. 865–868.

[6] Hu J. et al. 2003. Buffer insertion with adaptive
blockage avoidance. IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems, Vol. 22,
No. 4, pp.492–498.

[7] Hu S., Li Z. and Alpert C. J. 2009. A fully polynomial
time approximation scheme for timing driven
minimum cost buffer insertion. In Proceedings of the
46th Annual Design Automation Conference DAC
’09. New York, New York, USA: ACM Press, pp.
424–429.

[8] ITRS 2013. The international technology roadmap for
semiconductors: Interconnect.

[9] Khalil-Hani M. and Shaikh-Husin N. 2009. An
optimization algorithm based on grid-graphs for
minimizing interconnect delay in VLSI layout design.
Malaysian Journal of Computer Science, Vol. 22, No
1, pp.19–33.

[10] Li Z. and Shi W. 2006a. An O (bn2) time algorithm
for optimal buffer insertion with b buffer types. In
Proceedings on Design, Automation and Test in
Europe. IEEE, pp. 484 – 489.

[11] Li Z. and Shi W. 2006b. An O (mn) time algorithm
for optimal buffer insertion of nets with m sinks. In
Asia and South Pacific Conference on Design
Automation. IEEE, pp. 320–325.

[12] Li Z., Zhou Y. and Shi W. 2012. An O (mn) time
algorithm for optimal buffer insertion of nets with m
sinks. IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, Vol. 31, No. 3,
pp.437–441.

[13] Lin S. 1965. Computer Solutions of the Traveling
Salesman Problem. Bell System Technology, Vol. 44,
No. 10, pp.2245–2269.

[14] Mieghem P. van and Kuipers F. 2004. Concepts of
exact QoS routing algorithms. IEEE Trans.
Networking, Vol. 12, No. 5, pp.851–864.

[15] Newell, A. and Ernst, G. (1965). Search for
generality. In IFIP congress. pp. 17–24.

[16] Shi W. and Li Z. 2005. A fast algorithm for optimal
buffer insertion. IEEE Trans. Computer-Aided Design
of Integrated Circuits and Systems, Vol. 24, No. 6,
pp.879–891.

[17] Shi W. and Li Z. 2003. An O(nlogn) time algorithm
for optimal buffer insertion. Design Automation
Conference, IEEE, pp.580–585.

[18] Uttraphan C. and Shaikh-Husin N. 2013. Hybrid
Routing Tree with Buffer Insertion under Obstacle
Constraints. In IEEE Student Conference on Research
and Development.

[19] Zhou H. et al. 2000. Simultaneous routing and buffer
insertion with restrictions on buffer locations. IEEE
Trans. Computer-Aided Design of Integrated Circuits
and Systems, Vol. 19, No. 7, pp.819–824.

