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ABSTRACT 

Path planning is one of the most vital aspects in robotics. Since the last few decades, it importance has been 

increasing due to the growing effort on the development of autonomous robots. Cell decomposition (CD), voronoi diagram 

(VD), probability roadmap (PRM) and visibility graph (VG) are among the earliest, most established and most popular 

methods in path planning. They have been used in many robotics path planning applications especially for autonomous 

systems. Before designing a path planning method, the three criteria i.e, path length, computational complexity and 

completeness have to be taken into account. This paper compares the performance of the above-mentioned path planning 

methods in terms of computation time and path length. For the sake of fair and conclusive finding, simulation is performed 

in three type of environments i.e., slightly cluttered, normally cluttered and highly cluttered. The finding shows that the 

visibility graph consistently produces relatively the shortest path while the voronoi diagram the longest. Shortest path is 

favorable for robots as the robots will consume less power/fuel and have an increased life cycle. However, the visibility 

graph is computationally intractable as in runs in polynomial time with respect to the number of obstacles. In contrast, 

PRM consumes the least time in planning a collision-free path. The finding of this paper could be used as a guideline about 

the performance in terms of path length and computation time for those who are interested in path planning using these 

four methods. 
 

Keywords: path planning, cell decomposition, voronoi diagram, probability roadmap, visibility graph. 

 

INTRODUCTION 

From a technical perspective, path planning is a 

problem of determining a path for a robot in a properly 

defined environment from an initial point pinit to an end 

point pend such that the robot is free from collisions with 

surrounding obstacles and its planned motion satisfies the 

robot’s physical/kinematic constraints (Hasircioglu et al., 

2008) 

Typically, path planning of a robot A consists of 

two phases. The first phase is called the pre-processing 

phase in which nodes and edges (lines) are built within an 

environment/workspace W with A and obstacles O. In this 

phase, it is common to apply the concept of a 

configuration space (C-space) to represent A and O in W 

(Lozano- Perez, 1979), (Giesbrecht, 2004). In C-space, the 

robot’s size is reduced to a point, and the obstacles’ sizes 
are enlarged according to the size of A. Next, 

representation techniques are used to generate maps of 

graphs. Each technique differs in the way the nodes and 

edges are defined.  

The second phase is termed the query phase in 

which a search for a path from pinit to pend is performed 

using (graph) search algorithms. In this paper, Dijkstra’s 
algorithm is applied as it guarantees that the planned path 

is the shortest. Dijkstra’s algorithm measures the distance 
of a node n (g(n)) with respect to the pend. The cost at the 

node is non-negative and has the cost of 

 � = �                                                                     (1) 

 

f(n) is also called the backward cost or cost-to-come. As 

the cost is non-negative, it is monotonically increased. 

Path planning is closely related to autonomy as it 

may increase the capability of a robot to make its own 

decision based on the information presently available 

captured by sensors, and potentially covers the whole 

range of the vehicle’s operations with minimal human 
intervention (Frampton, 2008). Autonomy increases 

system efficiency because all decisions are executed 

onboard except for critical decisions that have to be made 

by humans (Mitch et al., 2007).  

Additionally, as introduced in (Eric, 2007), there 

are ten autonomy levels (applied to Unmanned Aerial 

Vehicle (UAV)) known as Autonomous Control Level 

(ACL). The concept of ACL as a metric to describe the 

autonomy in UAVs is widely accepted. Readers are 

referred to (Eric, 2007) for a detailed description of ACL. 

The most recent effort to address the issue of autonomy of 

UAVs is done by (Tanzi et al., 2014). 

Path planning related problems have been 

extensively investigated and solved by many researchers 

(Nilsson, 1969), (Tokuta, 1998), (Yu et al., 2015). The 

important criteria for path planning that are commonly 

taken into account are computational time, path length and 

completeness. A path planning algorithm with less 

computational time is vital in real time application, which 

is desirable in dynamic environments. The generated 

optimal path in terms of path length by a path planning 

technique will minimise the mission time and hence 

prolongs the robot’s endurance and life cycle, minimises 
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fuel/energy consumption and reduces exposure to possible 

risks. On the other hand, if a path planning method could 

find a path (if the path exists), it means that the method 

satisfies the completeness criterion.  

However, sometimes, there are trade-offs 

between such criteria. For example, in order to increase 

the computational efficiency, a path planning method has 

to disregard the optimality criterion. It means that finding 

a slightly longer path with less computational time may be 

preferable. On the other hand, higher computational 

complexity is necessary if an optimal path is required. In 

this paper, the performance of the cell decomposition 

(CD), voronoi diagram (VD), probability roadmap (PRM) 

and visibility graph (VG) will be investigated and 

compared with each other. The result may be useful for 

those who are looking for those methods for path 

planning. 

 

ASSUMPTIONS 
This paper considers path planning problem for a 

robot in a two-dimensional (2D or ℝ ) environment 

through stationary polygonal obstacles, � = {� ,… , ��} ⊂ℝ , from a designated initial point pinit to the end point pend 

using CD, VD, PRM and VG methods. It is assumed that 

the environments are well-built urban areas and � are 

hard, rectangle-shaped obstacles (buildings). It is also 

assumed that the knowledge of the entire environment 

such as the geometries, dimensions and locations of � are 

known a-priori either from surveillance, satellite data or 

other means. The resultant path has to be collision-free. 

 

OVERVIEW OF PATH PLANNING METHODS 

CD are among the most popular methods to 

represent the environment especially for outdoor scenarios 

as it is the most straightforward technique (Zhu et al., 

1995), (Dudek et al., 2000). This is due to the fact that the 

cells can represent anything such as free space or obstacles 

(Giesbrecht, 2004).  

The first step in CD is to divide the C-space into 

simple, connected regions termed cells (Russell et. al., 

2003). The cells are regions that might be square, 

rectangular or polygonal in shape. They are discrete, non-

overlapping but adjacent to each other. If the cell contains 

obstacle (or part of obstacle), it is marked as occupied, 

otherwise it is marked as obstacle free. A connectivity 

graph is then constructed and a graph search algorithm is 

used to find a path throughout the cells from the initial 

point to the end point. In order to increase the quality of 

the path, the size of the cells has to be made smaller, 

which in turn increases the grid’s resolution, and hence 
computational time. An example of path planning using 

CD is shown in Figure-1. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure-1. Path planning using CD. 
 

Note that the obstacles (black rectangles) and the 

regions shaded by black lines are the occupied ones while 

the region shaded by yellow lines are obstacle-free. The 

red, linear piece-wise segments are the resulting path.  

Many researches have used VD for path planning 

(Xiao et al., 2006), (Bhattacharya et al., 2007), (Shao et. 

al., 2010). VD defines nodes as points that are equidistant 

from all the points’ surrounding obstacles. The paths 
generated from a graph by VD are relatively highly safe 

due to the fact that the edges of the paths are positioned as 

far as possible from the obstacles. However, the paths are 

inefficient and not optimal in terms of path length. Figure 

2 shows an example of path planning using VD. The 

dashed black lines are the resulting path. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-2. Path planning using VD. 

 

On the other hand, PRM is a popular method for 

path planning as it is easy to apply (Kavraki et al., 1996), 

(Song et al., 2003), (Belghith et al., 2006). It is a learning 

approach, attempts to make planning in large or high-

dimensional spaces tractable. It provides a good 

approximation of the connectivity of the configuration 

space area. This method consists of two phases i.e. 
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learning phase and query phase. Learning phase constructs 

and stores the PRM. Learning phase constructs a graph G 

whose nodes are on the free area and edges connect the 

nodes without intersecting any obstacle. On the other 

hand, query phase connects pinit and pend to G. A search 

algorithm is then used to find a path from pinit to pend. 

Figure 3 shows an example of PRM used in path planning, 

in which the dashed cyan lines form a connectivity graph 

that connect sample points to their nearby neighbours 

points while the resulting path is represented by the dashed 

green lines.  

 

 
Figure-3: Path planning using PRM. 

 

The length of the PRM planned path, as shown in 

Figure 3, can be shortened by pruning the initial path as 

illustrated in Figure 4. The pruned path is shown by the 

dashed blue lines. The length for the normal PRM path is 

1042.9 units while the pruned one is 1036.8. 

 

 
Figure-4. Path planning using PRM with pruning. 

 

On the other hand, VG uses the vertices of the 

obstacles including the starting and target points in the C-

space as the nodes. A VG network is then formed by 

connecting pairs of mutually-visible nodes by a set of 

edges E. A pair of mutually-visible nodes means that those 

nodes can be linked by a line/edge ∈ � that does not 

intersect with any edge of obstacles in the C-space. 

Additionally, there is a cost associated with each E, 

possibly in terms of Euclidean distance. VG has been used 

by many researchers for path planning purpose including 

(Oommen et al., 1987), (Rao, 1989), (Tokuta, 1998). 

Figure 5 shows the path planned by VG in a random 

scenario. Note that the edges are represented by the cyan 

lines while the resulting path is in magenta. 

 

 

 

 

 

 

 

 

Figure-5. Path planning using VG. 

 

SIMULATION SETUP 

Simulation was performed in scenarios, in which 

the number of obstacles were set to 25 (less-cluttered), 50 

(normally-cluttered) and 75 (highly-cluttered). Example of 

these scenarios are illustrated in Figures 6(a) – 6(c). Note 

that the blue triangle is pinit while the magenta square is  

pend. 

To get a fair and conclusive result, for each 

method, 100 simulations were performed using 100 

random scenarios for each number of obstacles. A desktop 

computer equipped with an Intel i5 3360M, 2.40 GHz 

processor and 2GB RAM was used for such purpose.  

 
Figure-6(a). A random scenario with 25 obstacles. 
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Figure-6(b). A random scenario with 50 obstacles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-6(c). A random scenario with 75 obstacles. 

 

RESULTS AND DISCUSSIONS 

The simulation result in terms of computation 

time for 100 random scenarios with 25 obstacles is shown 

in Figure-7. The minimum, average and maximum 

computation time for each method is shown in Table-1. It 

is concluded that, from the table, PRM methods had the 

shortest computation time with an average of 0.07 seconds 

and a maximum of 0.12. 

On the other hand, CD had the highest average 

and maximum computation time, i.e. 1.89 and 2.37 

seconds, respectively. This is due to the fact that creating 

the cell consumed a considerable time which leads to the 

higher computation time. Table-1 also shows that VD had 

a faster average computation time, i.e. 0.14 seconds 

compared to VG, which used 0.41 seconds in average. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-7. Computation time in environment with 25 

obstacles. 

 

Table 1. Computation time in environments with 25 

obstacles. 

 

 Computation time (s) 

Method Min Ave Max 

CD 1.77 1.89 2.37 

PRM 0.07 0.07 0.12 

PRM-Pruned 0.07 0.07 0.13 

VD 0.10 0.14 0.26 

VG 0.35 0.41 0.57 

 

As the number of obstacles increased to 50, the 

computation time of VD and VG in finding collision-free 

paths were also increased as illustrated by Figure 8. Table 

2 lists the minimum, average and maximum time for each 

method in 100 random scenarios with 50 obstacles.  

From Table-2, it is found that the average 

computation time of VD and VG were 0.62 and 1.87 

seconds, respectively. This shows that the increment in the 

obstacles number has significantly increased the 

computation time of VD and VG. However, the simulation 

with 50 obstacles shows that the computation time of CD 

and both PRM methods have increased slightly as 

compared to the one with 25 obstacles. 

With a further increment of obstacles number to 

75, the computation time of each method in highly-

cluttered environment is as depicted by Figure-9. The 

minimum, average and maximum computation time for 

each method in 100 scenarios with 75 obstacles is listed in 

Table 3, which shows that the computation time of VG is 

significantly increased to an average of 4.50 seconds. 

The average computation time of VD is also increased to 

1.59 seconds, but not as abrupt as that of VG. It is also 

observed that both PRMs had a slight increase in the 
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computation time when the obstacles number was raised 

from 50 to 75.  However, the computation time of CD is 

almost identical with those in the scenarios with 50 

obstacles. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-8. Computation time in environment with 50 

obstacles. 

 

Table-2. Computation time in environments with 50 

obstacles. 

 

 Computation time (s) 

Method Min Ave Max 

CD 1.73 1.87 2.39 

PRM 0.15 0.17 0.25 

PRM-Pruned 0.15 0.17 0.25 

VD 0.40 0.62 1.24 

VG 1.58 1.87 2.35 

 

 

 

 

 

 

 

 

 

 

 

Figure-9. Computation time in environment with 75 

obstacles. 

 

Table-3. Computation time in environments with 75 

obstacles. 

 Computation time (s) 

Method Min Ave Max 

CD 1.73 1.87 2.39 

PRM 0.27 0.30 0.40 

PRM-Pruned 0.27 0.30 0.41 

VD 0.90 1.59 4.53 

VG 3.91 4.50 5.25 

 

As for the path length, it is found that VG 

produced the shortest path among the methods as 

illustrated in Figures 10 to 12. This is due to the fact that 

the waypoints of VG’s path pass through the nodes of 
certain obstacles. As listed in Tables 4 to 6, it is observed 

that the average path length for each method did not 

change significantly with the increase of obstacles 

numbers. 

Comparing the average path lengths of PRM and 

PRM-pruned from Tables 4 to 6, it is found that the latter 

produced a slightly shorter path although consumed a bit 

longer computation time than the former. This advantage, 

although small, is particularly useful for a robot in saving 

its energy/fuel and having a longer life cycle.  

 

 

  

Figure-10. Path length in environment with 25 obstacles. 

 

Table-4. Lengths of the planned path in environments 

with 25 obstacles. 
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Method Min Ave Max 

CD 1131.82 1142.28 1170.55 
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PRM-Pruned 1131.37 1142.71 1205.76 

VD 1145.25 1374.53 1666.17 

VG 1131.37 1131.70 1132.79 

                

Table-5. Lengths of the planned paths in environments 

with 50 obstacles. 

 

 Path length (unit) 

Method Min Ave Max 

CD 1131.82 1153.41 1180.24 

PRM 1136.66 1160.77 1201.46 

PRM-Pruned 1131.37 1150.11 1194.78 

VD 1181.10 1382.62 1615.57 

VG 1131.37 1132.30 1134.66 

 

Table-6. Lengths of the planned paths in environments 

with 75 obstacles. 

 

 Path length (unit) 

Method Min Ave Max 

CD 1131.82 1160.48 1189.92 

PRM 1137.04 1169.82 1263.05 

PRM-Pruned 1131.37 1161.56 1245.46 

VD 1219.89 1364.60 1672.81 

VG 1131.37 1132.87 1138.07 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-11. Path length in environment with 50 obstacles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure-12. Path length in environment with 75 obstacles. 

 

CONCLUSIONS 

The paper has demonstrated the performance of a 

number of established and popular methods used in path 

planning i.e., cell decomposition (CD), voronoi diagram 

(VD), probabilistic roadmaps (PRMs) and visibility graph 

(VG). It was found that VG produced shortest path 

consistently. However, the computation time of VG was 

exponentially increased with respect to the number of 

obstacles. With the above-mentioned advantage, it is 

worth researching on VG to improve its computation time. 

On the other hand, VD had a consistent increment in 

computation time as the number of obstacles was 

increased. As for CD and both PRMs, the computation 

time were almost identical in slightly-, normally- and 

highly-cluttered environments. All four methods showed a 

minimal increase in path length as the number of obstacles 

increased. 
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