
 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8948

TUNING OF CUCKOO SEARCH BASED STRATEGY FOR

T-WAY TESTING

Abdullah B. Nasser, Abdul Rahman A. Alsewari and Kamal Z. Zamli

Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Kuantan, Pahang, Malaysia

E-Mail: pcc14003@stdmail.ump.edu.my

ABSTRACT

 Cuckoo Search Strategy (CSS) is the newly developed strategy based on the Cuckoo Search Algorithm. In order

to achieve best performance, a number of parameters in the Cuckoo Search Algorithm needs to be tuned namely the nest

size, the elitism probability, and the repetition. This paper describes the tuning process for Cuckoo Search Algorithm

involving t-way testing, that is, by taking the standard covering array involving CA (N, 2, 46). Our initial experiment

results using obtained range of parameter values of CSS demonstration that CSS able to give sufficiently competitive

results compared to existing work.

Keywords: problem T-way testing, cuckoo search algorithm, combinatorial problem, tuning, parameters.

INTRODUCTION
 Optimization problem (OP) relates to search of

optimal solution for a large search space. OP have been

utilized in many various domains and become such

Software Engineering, optimal design in electronic,

chemical mechanical, and civil. Meta-heuristics excel in

this respect. In the last 40 years, many useful meta-

heuristic algorithms have been developed in the literature

(e.g. Tabu Search (Nurmela, 2004), Simulated Annealing

(Stardom, 2001), Genetic algorithm(Stardom, 2001), Ant

Colony Algorithm (ACA) , Particle Swarm Optimization

(Ahmed, Zamli et al. 2012), Harmony Search (Alsewari

and Zamli, 2012) and Late Acceptance Hill Climbing

(Nasser, Alsariera et al. 2014), to name a few). Meta-

heuristica are part of stochastic algorithms that efficiently

explore the search space by trial and error. Unlike

conventional algorithms, most of metaheuristic algorithms

consider as population-based algorithms whereas finding a

solution starts from many positions of solution space.

Therefore, each member of population is a candidate to be

the best solution.

 Concerning t-way testing, much efforts have been

focused on adopting the meta-heuristics algorithms as the

basis for the generation strategy. In the literature, many

meta-heuristic-based strategies have been developed

including that strategies based on Tabu Search, strategies

based on SA, strategies based on GA, strategies based on

ACA, strategies based on PSO, and strategies based on HS

, to name a few (Nurmela, 2004),(Stardom, 2001),(Ahmed,

Zamli et al. 2012),(Alsewari and Zamli, 2012).

 The performance of these a fore mentioned

algorithm is subjected to their tuning. For example, PSO

requires the tuning of cognitive parameters (C1 and C2),

intertial weight (w) as well as population size and

interation. GA requires tuning mutation rate, Crossover

rate and Population size while HS require population size,

harmony memory size, improvisation, pitch adjustment

rate and harmony memory consideration rate. SA require

initial temperature, cooling rate, epoch length (or the

number of state transitions under each temperature), and

and stopping condition. The main challenge of these

algorithms is the user choices for initial parameter values.

For instance, an algorithm with good parameter values

may achieve better solution than the algorithm with poor

parameter values.

 Cuckoo Search (CS) is one of the recent meta-

heuristic algorithms. CS requires the tuning of elitism

probability, repetition and nest size (Yang and Deb, 2009).

In CS, the user choices can affect the performance of

algorithm because these choices use for generating new

solution and affect the way in which how the algorithm

distribute the execution time effort globally by explores

the search space and, locally, how exploits the most

promising regions (Yang, Deb et al. 2013).

 Complementing the existing work, we opt to

adopt the Cuckoo Search algorithm as part of our research

work to generate t-way test suite. This paper describes the

tuning of cuckoo search for t-way testing. The rest of this

paper is organized as follows. Section 2 gives an overview

of t-way testing strategies. Section 3 introduces our

proposed strategy. Section 4 present the CSS parameter

tuning process. Section 5 highlights the experimental

results and discussion. Lastly, section 6 gives the

conclusion and future work.

CUCKOO SEARCH

 In 2009, Xin-She Yang developed a new

metaheuristic algorithm for solving global optimization

problems, called cuckoo search (CS). Cuckoo search

inspire from brood parasitic behaviour for some birds such

as the Ani and Guira cuckoos (Yang and Deb, 2009).

Based on a comparative study, the authors show that CS is

a promising algorithm and it is better than the most

efficient algorithm in optimization problems such as GA,

PSO (Yang and Deb, 2014), (Yang and Press, 2010).

Cuckoo behaviour

 Cuckoo is fascinating and interesting species of

bird. Besides the fact that cuckoo is beautiful bird, cuckoo

also has aggressive reproduction strategy, which made

them one of the most attractive and fascinating birds.

Some species of the cuckoo, such as the Ani and Guira

http://www.arpnjournals.com/
mailto:PCC14003@stdmail.ump.edu.my

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8949

cuckoos, cannot complete their life cycle without obligate

parasitism. The breeding parasite behavior of the cuckoo

appears by lay their eggs in the nests of other host birds. If

the properties of cuckoo eggs have developed well

enough, then the eggs will have a great opportunity to

survive. In order to increase the hatching probability of

their own eggs, they remover the eggs of the host bird,

also, they can mimic the external color of host eggs (see

Figure-1). Furthermore, the cuckoo eggs often hatch

earlier than the host eggs, because the cuckoo chooses the

nest where the host eggs recently are laid, this lead to the

first cuckoo chicks instinctively will evict the host eggs

out of the nest to increase their share of food.

Figure-1. Cuckoo breeding parasite behavior.

Cuckoo search algorithm

Cuckoo Search algorithm works as follows. At

the start, the algorithm generates randomly initial nests.

Each egg in a nest represents a solution. In each generation

of the algorithm, there are two operations are performed.

First, generate a new nest by performing a Levy flight

from the current nest, and then the new nest is evaluated.

The new nest will be chosen as a current nest if the new

nest is better than current nest. The second part of the

Cuckoo Search algorithm discovers and removes the

worse nests with probability pa. For simplification

purpose, Cuckoo Search relies upon three idealized rules:

 Each cuckoo chooses a nest randomly to lays eggs.

 The number of available host nests is fixed, and

nests with high quality of eggs will carry over to the

next generations.

 The number of available host nests is fixed, and the

egg laid by a cuckoo is discovered by the host bird

with a probability pa ∈ [0, 1]. In this case, the host

bird can either get rid of the egg, or simply abandon

the nest and build a completely new nest.

Based on these aforementioned three rules, Cuckoo

Search algorithm can be summarized as shown in

Algorithm 1.

The main advantage of Cuckoo Search algorithm

is the fact that it is a straightforward algorithms to

implement and depends only on a few numbers of

parameters. Often, the CS algorithm needs a small

population size to achieve good results. The core part of

the CS algorithm is generating new solution using levy

Equation 1, where each position of the cuckoo is updated.

 (1)

Here, α>0 is the step size which should be related

to the problem of interest and Lévy∼u=t
–λ

. Equation (1) is

considered as a generic equation to update cuckoo's

position using Lévy flights. The Lévy flight essentially is a

random walk where the next step is based on the current

location, and step lengths have a certain probability

distribution that is heavy-tailed (Lévy distribution) (Yang,

2010).

Figure-2. Cuckoo search algorithm.

 As with other meta-heuristics algorithms, Cuckoo

Search algorithm provides two search capabilities: global

search, which allows the algorithm to jump out of local

optimum, and local search by intensify search around the

current best, are controlled by pa probability. If pa = 0.25,

the local search takes about 25% and global search takes

about 75% of the total search time(Yang and Deb, 2014).

Local search and global search capabilities combined with

search using levy flight make CS explore the search space

more efficiently. Currently, researches on cuckoo search is

very active and its applications have been proven

successful in many areas such as machine learning area

(Vázquez, 2011), the field of truss optimization problems

(Gandomi, Talatahari et al. 2013), clustering of web

results (Cobos, Muñoz-Collazos et al. 2014), nurse

scheduling problems (Tein and Ramli, 2010), generating

test data generation (Perumal, Ungati et al. 2011),

generating independent paths for software testing

(Srivastava, Khandelwal et al. 2012). In this paper, we

investigate the use of CS algorithm for t-way test suite

generation.

T-WAY TESTING AND COVERING ARRAY

 In this section, we give a brief definition of t-way

testing and covering array. T-way testing is a very

efficient technique to generate minimum test cases that

can be used for interaction fault detection. The motivation

http://www.arpnjournals.com/

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8950

behind the use of t-way testing is that not every parameter

contributes to every fault.

 To illustrate the concept of t-way testing in test

suite reduction, consider a simple application on several

software and hardware configurations. This application

has three components: operating system, processor, and

RAM. Each component have their associated values as

shown in Table-1. To test the system exhaustively, there is

a need to consider 12 tests. Here, adding the number of

parameters exponentially increases the size of combination

space exponentially. Thus, testing all interactions of

parameters values is generally impractical owing to the

large combination space and resource constraints.

Therefore, a sampling strategy is needed to select a subset

of the combination space for overall testing.

 T-way testing samples the large combination

space by generate test cases such that the required

interaction strength t is covered at least once (where t

indicates to the strength of coverage) (Williams and

Probert, 2002),(Burnstein, 2003),(Bell, 2006),(Bell and

Vouk, 2005). By using two-way testing, in our example as

shown in Table 2, only 6 test cases can cover all pair of

input parameter values at least one time. Here, the

reduction is from 12 to 6 (50%).

Table-1. Software application options.

Table-2. The minimal test suite generate using Tow-way.

Concerning Covering Array (CA), there are many

mathematical notations and symbols have been developed

to express t-way combinatorial testing. CA is one of the

common structures that describe and formulate interaction

testing. CA has been utilized in different research areas,

such as material design (Cawse, 2003), medicine and

agriculture (Hedayat, Sloane et al. 1999), and industrial

processes (Shasha, Kouranov et al. 2001), however CA

has been used significantly in the area of software testing

with major application (Burr and Young, 1998; Shasha,

Kouranov et al. 2001).

 Basically, CA has four variables N, t, v, and P,

where N refers to optimal test cases, p refers to system’s
components or parameters, v refers to number of

components’ value, and t refers to interaction strength. For
example, covering array of CA (6; 2, 24) consist 6 rows,

represent the size of test cases, and 4 columns, represents

the parameters, each parameter has 2 values. If the number

of values is not equal and each parameter has different

number of values, then test suite is called uniform Mixed

Coverage Array MCA(N, t, v1 p1 v2 p2 v3 p3vj pj).

For example MCA (12, 3, 23 31) consisting three

parameters have 2 values and one parameter has 3 values.

T-WAY AS OPTIMIZATION PROBLEM

 From optimization perspective, the t-way

problem can be expressed mathematically as follows:

 (2)

 (3)

 where, f(x) is an objective function capturing the

weight of the test case in terms of the number of covered

interactions; x is the set of each decision variable x_(i) ;

x_(i) is the set of possible range of values for each

decision variable, that is, x_(i)={x_i (1),x_i (2),...,x_i

(K)} for discrete decision variables (x_i (1)< x_i (2)<...<

x_i (K)); N is the number of decision parameters; and K is

the number of possible values for the discrete variables.

PARAMETER TUNING

 While the number of parameters in CS is fewer

than GA and PSO (Yang, 2010), the behaviour of Cuckoo

Search Strategy is still largely determined by population

size nest size, elitism factor pa, and iteration number N.

Tuning of these parameters is important in order to ensure

the best performance.

 In our case, we opt to adopt a well-known

covering arrays CA (N; 2, 46) as our case study. The

reason for adopting this configuration stemmed from the

fact that the same covering array has been used for tuning

in many other related works. To achieve statistical

significance, CCS is executed twenty times with every

parameter value, and the average is taken from the reading

results. we have tried different values for pa (0.01, 0.05,

0.1, 0.15, 0.2, 0.25, 0.3, 0.4, and 0.5). Table 3 shows the

average values and the best values of the test suite size

after 20 executions.

 Referring to Table 3, it is observed that using a

higher probability pa can result in better solution. For pa <

0.2, the proposed strategy gives poor results. However, for

pa => 0.25, the proposed strategy obtains good results.

From our simulations, the best test suite size obtained

when the probability between 0.25 and 0.4 and after 0.4.

In term of nest size and repetition, results have shown that

there is a positive correlation between the sizes of

population (or nest) and the size of test suite. By

increasing the number of nests from 1 to 30, the

performance of CSS strategy is improved. Also, when the

http://www.arpnjournals.com/

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8951

repetition value increases, the best size is also improved.

The best test suite size obtained is when the repetition

value varies from 100 to 300.

 In summary, the CSS obtains the optimal test

suite when probability pa = 0.25, nest size between the

range of (30 and 100), and repetition between the range of

(100 and 500).

COMPARATIVE EXPERIMENTS

 To investigate the performance of the tuned CSS,

we opt to undertake the experiments as discussed in

(Nurmela, 2004),(Stardom, 2001),(Ahmed, Zamli et al.

2012),(Alsewari and Zamli, 2012). Here, we segregate the

strategies into pure computational based strategies and

meta-heuristics based strategies in order to ensure

meaningful comparison. Based on our tuning, we have

adopted pa=0.25, iteration = 300, and nest size = 30. The

complete results are depicted in Table-3.

Table-3. Best and Average Test Suite for CA (N; 2, 4
6
) with variation of values for pa, Nest size (nest_size)

and Repetition (N).

N
Nest

size

pa

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5

Avg Best Avg Best Avg Best Avg Avg Avg Best Avg Best Avg Best Avg Best Avg Best

10

5 32.8 29 28.85 27 28.3 26 26.95 25 26.6 25 26.4 25 26.55 25 25.55 24 25.85 24

10 27.65 26 26.95 24 26.65 25 25.8 24 25.55 24 25.35 24 25.05 24 24.6 23 24.75 23

20 26.55 25 25.65 24 25.4 24 25.1 24 24.6 23 24.45 23 24.5 23 24.55 23 24.05 23

30 25.7 24 25.3 24 24.85 23 24.8 23 24.4 22 24.55 23 24.05 23 24.2 23 23.95 23

50 25.1 23 24.85 23 24.7 23 24.05 23 24.15 22 24.2 22 23.85 22 24.65 22 23.9 22

100 24.25 23 24.3 23 23.85 21 24.25 22 24.45 22 23.9 22 24.15 23 23.85 23 23.35 22

200 24.00 23 23.75 22 23.95 22 23.9 23 23.9 22 23.7 22 23.6 22 24.05 22 23.55 22

300 23.85 23 23.6 22 23.75 22 23.55 22 23.95 23 23.95 22 23.5 22 23.55 22 23.55 22

20

5 30.1 27 26.55 23 26.4 25 25.4 24 25.0 24 25.15 23 24.2 23 24.45 23 24.8 23

10 26.8 25 25.55 24 25.15 24 24.6 23 24.4 23 24.9 24 24.05 23 24.0 22 24.3 23

20 24.9 24 24.75 24 24.5 23 24.05 23 23.85 23 23.55 22 24.3 22 23.9 22 23.7 22

30 24.8 23 24.15 23 24.35 23 23.65 22 23.9 23 24.05 23 23.8 23 23.95 22 23.6 23

50 24.45 23 24.0 23 23.65 22 23.8 22 24.0 23 23.5 22 23.9 23 23.45 22 23.8 22

100 24.0 23 24.0 23 23.95 22 24.05 23 23.4 22 24.0 23 23.8 22 24.05 22 23.6 21

200 23.75 22 24.05 22 23.8 22 23.65 22 23.45 22 23.95 23 23.3 22 23.9 23 23.75 22

300 23.65 22 23.6 22 23.35 22 23.55 22 23.9 22 23.5 22 23.65 22 23.75 22 23.35 22

50

5 29.85 23 24.9 22 25.05 24 24.1 23 24.05 22 23.75 22 23.85 22 24.15 22 24.25 22

10 24.8 23 24.75 23 24.05 23 24.05 23 24.05 23 23.7 22 23.6 22 23.9 22 23.45 22

20 24.05 23 23.8 22 23.85 23 23.5 22 23.8 22 23.45 22 23.3 22 23.35 23 23.55 22

30 24.05 23 23.65 22 23.8 23 23.7 23 23.75 22 24.1 23 23.65 22 23.9 22 23.9 23

50 24.1 22 23.8 22 23.75 22 23.65 22 23.85 21 23.65 23 23.75 22 24.1 23 23.8 22

100 23.85 23 24.0 23 23.75 22 23.2 22 23.75 22 23.85 22 23.65 22 23.7 22 23.65 23

200 23.4 22 23.4 22 23.7 22 23.6 22 23.75 22 23.4 22 23.4 22 23.75 22 23.85 22

300 23.3 22 23.7 22 23.4 22 23.75 22 23.6 22 24.05 22 24.05 22 23.7 21 23.45 22

100

5 28.0 24 24.0 22 24.25 23 23.65 22 23.8 23 23.8 22 23.75 22 23.7 22 23.7 22

10 24.2 23 24.0 22 24.1 23 24.0 22 23.85 23 23.7 23 23.8 23 23.95 23 23.75 22

20 23.75 22 23.45 21 23.6 23 23.7 22 23.95 22 23.8 23 23.6 22 23.95 23 23.8 22

30 23.8 22 23.95 22 23.5 22 23.3 22 23.7 22 24.45 22 23.85 22 23.65 22 23.8 23

50 24.0 22 23.5 21 23.4 22 23.9 22 23.95 23 23.75 22 23.45 21 23.45 22 23.6 22

100 23.3 22 23.55 22 23.4 22 24.1 23 23.95 23 23.9 22 23.9 22 23.55 22 23.65 23

200 24.0 23 23.65 22 23.9 22 23.8 22 23.55 21 23.75 22 23.75 22 23.3 22 23.6 22

300 23.75 22 23.5 21 23.45 22 24.0 22 23.8 22 23.95 22 24.15 22 23.7 22 23.6 22

200

5 27.25 23 23.9 22 23.7 22 23.75 22 23.65 22 23.55 22 23.75 23 23.6 22 23.35 22

10 23.8 22 23.75 22 23.75 22 23.95 23 23.85 22 24.1 23 23.65 22 23.8 23 23.8 22

20 23.7 22 24.0 22 23.4 22 23.6 22 23.55 22 23.9 23 24.15 23 23.85 23 24.15 23

30 23.6 22 23.7 23 23.7 22 23.55 22 23.45 21 23.4 22 23.85 22 23.15 22 23.7 22

50 23.35 22 23.7 22 23.7 22 23.45 23 23.95 23 23.65 22 24.2 22 23.3 22 23.45 22

100 23.95 22 23.8 22 24.1 22 23.5 21 23.9 22 23.1 22 23.75 22 23.85 22 23.65 22

200 23.9 22 23.25 22 23.8 22 23.6 22 23.75 22 23.95 23 23.9 22 23.95 22 23.55 22

300 23.3 22 23.75 22 23.6 22 23.7 22 23.8 22 23.7 22 23.8 22 23.8 22 23.75 22

300

5 27.75 24 23.85 22 23.95 23 24.3 23 23.85 22 23.95 22 23.45 22 23.7 22 24.0 22

10 23.85 22 23.65 22 23.65 22 23.7 22 23.75 21 23.55 22 24.1 22 23.8 21 24.0 22

20 23.6 22 23.75 22 23.55 22 23.7 22 23.35 22 23.6 22 23.6 22 23.95 23 23.65 21

30 23.6 22 23.35 22 23.65 22 23.6 22 23.65 22 23.7 22 23.75 22 23.6 23 23.85 22

50 23.7 22 23.75 22 23.75 23 23.45 22 23.9 22 23.8 23 23.9 22 23.5 22 23.5 22

100 23.45 22 23.7 23 23.7 22 23.9 22 23.45 21 23.85 22 24.1 22 23.7 22 23.75 22

http://www.arpnjournals.com/

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8952

200 23.35 22 23.6 22 23.95 22 23.8 22 23.65 22 23.95 22 23.7 23 23.6 22 23.05 23

300 23.55 21 23.75 22 23.8 22 23.6 22 23.8 22 23.8 22 23.55 22 23.6 22 23.55 22

In order to measure performance of CSS against

existing t-way strategies. Table 4 shows a comparison

between CSS and existing strategies. From Table 4,CSS

outperforms existing strategy in a number of the

configurations (as marked with *). Even when CSS is not

the best, the obtained results are still sufficiently

competitive.

CONCLUDING REMARKS

In this paper, we have introduced a new t - way

testing based on cuckoo search, called cuckoo search

strategy (CSS) and demonstrate its tuning. Our initial

experiment has been encouraging as we manage to

outperform existing strategies in a number of

configurations. For future work, we plan to adopt cuckoo

search for highly configurable systems with constraints.

We are also currently improving CSS to support both

sequence and sequence-less t-way testing.

Table-4. Benchmarking CSS with existing strategies.

ACKNOWLEDGEMENTS
The work reported in this paper is funded by the

generous Science Fund – “Constraints T-Way Testing

Strategy with Modified Condition Decision Coverage”
from the MOSTI, Malaysia. Abdullah B. Nasser is the

recipient of the Graduate Research Scheme (GRS) from

Universiti Malaysia Pahang

REFERENCES

[1] Ahmed B. S., Zamli K. Z. and Lim C. P. 2012.

Constructing a t-way interaction test suite using the

particle swarm optimization approach. International

Journal of Innovative Computing, Information and

Control, Vol. 8, No. 1, pp. 431-452.

[2] Alsewari A. R. A. and Zamli K. Z. 2012. Design and

implementation of a harmony-search-based variable-

strength t-way testing strategy with constraints

support. Information and Software Technology, Vol.

54, No. 6, pp. 553-568.

[3] Bell K. Z. 2006. Optimizing effectiveness and

efficiency of software testing: A hybrid approach.

PhD Dissertation, North Carolina State University.

[4] Bell K. Z. and Vouk M. A. 2005. On effectiveness of

pairwise methodology for testing network-centric

software. Paper presented at the Information and

Communications Technology. Enabling Technologies

for the New Knowledge Society: ITI 3
rd

 International

Conference on.

[5] Burnstein I. 2003. Practical software testing: a

process-oriented approach: Springer.

[6] Burr K. and Young W. 1998. Combinatorial test

techniques: Table-based automation, test generation

http://www.arpnjournals.com/

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8953

and code coverage. Paper presented at the Proc. of the

Intl. Conf. on Software Testing Analysis & Review.

[7] Cawse J. N. 2003. Experimental design for

combinatorial and high throughput materials

development: Wiley-Interscience New York.

[8] Cobos C., Muñoz-Collazos H., Urbano-Muñoz R.,

Mendoza M., León E. and Herrera-Viedma E. 2014.

Clustering of Web Search Results based on the

Cuckoo Search Algorithm and Balanced Bayesian

Information Criterion. Information Sciences.

[9] Gandomi A. H., Talatahari S., Yang X. S. and Deb S.

2013. Design optimization of truss structures using

cuckoo search algorithm. The Structural Design of

Tall and Special Buildings, Vol. 22, No. 17, pp. 1330-

1349.

[10] Hedayat A. S., Sloane N. J. A. and Stufken J. 1999.

Orthogonal arrays: theory and applications: Springer.

[11] Nasser A. B., Alsariera Y. A. and Zamlifll K. Z. 2014.
Late Acceptance Hill Climbing Based Strategy for

Addressing Constraints Within Combinatorial Test

Data Generation.

[12] Nurmela K. J. 2004. Upper bounds for covering

arrays by tabu search. Discrete applied mathematics,

Vol. 138, No. 1, pp.143-152.

[13] Perumal K., Ungati J. M., Kumar G., Jain N., Gaurav

R. and Srivastava P. R. 2011. Test data generation: a

hybrid approach using cuckoo and tabu Search

Swarm, Evolutionary, and Memetic Computing, pp.

46-54.

[14] Shasha D. E., Kouranov A. Y., Lejay L. V., Chou M.

F. and Coruzzi G. M. 2001. Using combinatorial

design to study regulation by multiple input signals. A

tool for parsimony in the post-genomics era. Plant

Physiology, Vol. 127, No. 4, pp.1590-1594.

[15] Srivastava P. R., Khandelwal R., Khandelwal S.,

Kumar S. and Santebennur Ranganatha S. 2012.

Automated test data generation using cuckoo search

and tabu search (csts) algorithm.

[16] Stardom J. 2001. Metaheuristics and the search for

covering and packing arrays. Trent University.

[17] Tein L. H. and Ramli R. 2010. Recent advancements

of nurse scheduling models and a potential path.

Paper presented at the Proceedings of 6
th

 IMT-GT

[18] Conference on Mathematics, Statistics and its

Applications.

[19] Vázquez R. A. 2011. Training spiking neural models

using cuckoo search algorithm. IEEE Congress on

Evolutionary Computation (CEC).

[20] Williams A. W. and Probert R. L. 2002. Software

Components Interaction Testing: Coverage

Measurement and Generation of Configurations:

University of Ottawa.

[21] Yang X. S. 2010. Nature-inspired metaheuristic

algorithms: Luniver press.

[22] Yang X. S. and Deb S. 2009. Cuckoo search via Lévy

flights. World Congress on the Nature & Biologically

Inspired Computing, NaBIC 2009.

[23] Yang X. S. and Deb S. 2014. Cuckoo search: recent

advances and applications. Neural Computing and

Applications, Vol. 24, No. 1, pp.169-174.

[24] Yang X. S. and Press L. 2010. Nature-Inspired

Metaheuristic Algorithms, Second Edition.

[25] Yang X. S., Deb S. and Fong S. 2013. Metaheuristic

algorithms: optimal balance of intensification and

diversification.

http://www.arpnjournals.com/

	Cuckoo search algorithm
	CONCLUDING REMARKS
	ACKNOWLEDGEMENTS
	REFERENCES

