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ABSTRACT 
 Combinatorial interaction testing is a practical approach aims to detect defects due to unwanted and faulty 
interactions. Here, a set of sampled test cases is generated based on t-way covering problem (where t indicates the 
interaction strength). Often, the generation process is based on a particular t-way strategy ensuring that each t-way 
interaction is covered at least once. Much useful progress has been achieved as plethora of t-way strategies have been 
developed in the literature in the last 30 years. Recently, in line with the upcoming field called Search based Software 
Engineering (SBSE), many newly strategies have been developed adopting specific optimization algorithm (e.g. Genetic 
Algorithm (GA), Ant Colony (AC), Simulated Annealling (SA), Particle Swarm Optimization, and Harmony Search 
Algorithm (HS)  as their basis in an effort to generate the most optimal solution. Although useful, strategies based on the 
aforementioned optimization algorithms are not without limitation. Specifically, these algorithms require extensive tuning 
before optimal solution can be obtained. In many cases, improper tuning of specific parameters undesirably yields sub-
optimal solution. Addressing this issue, this paper proposes the adoption of parameter free optimization algorithms as the 
basis of future t-way strategies. In doing so, this paper reviews two existing parameter free optimization algorithms 
involving Teaching Learning Based Optimization (TLBO) and Fruitfly Optimization Algorithm (FOA) in an effort to 
promote their adoption for CIT. 
 
Keywords: optimization algorithms, teaching learning based optimization, fruitfly algorithm. 
 
INTRODUCTION 
 Combinatorial optimization problem involves 
searching for the most optimal set of objects from a large 
pools of potential solution. As exhaustive search is not 
feasible, researchers often settle for approximate solution 
through the adoption of optimization algorithms (termed 
metaheuristics algorithms). In the effort to get the best 
solution (i.e. as close to the optimal solution as possible 
and with less computational efforts), continuous endeavors 
for new breed of optimization algorithms are still desirable 
and relevant.  
 Within the context of combinatorial interaction 
testing (CIT), many efforts are being carried out to adopt 
optimization algorithms as the backbone of the search 
strategies for generating the optimal t-way set of test cases 
(where t indicates the interaction strength. Complementing 
the upcoming field called Search based Software 
Engineering (SBSE), many newly strategies have been 
developed adopting specific optimization algorithms 
including Genetic Algorithm (GA), Particle Swarm 
Optimization (PSO), Ant Colony (AC), Simulated 
Annealing (SA), and Harmony Search Algorithm (HS). 
 At a glance, the adoption of the aforementioned 
algorithms has been effective for obtaining optimal 
solution. A closer look reveals otherwise. Specifically, 
these algorithms require extensive tuning before optimal 
solution can be obtained. In many cases, improper tuning 
of specific parameters undesirably yields sub-optimal 
solution. Addressing this issue, this paper advocates the 
adoption of parameter free optimization algorithms as the 
basis for t-way strategies in an effort to promote their 
adoption for CIT. 
 

PROBLEM DEFINITION MODEL 
  A configurable Fire Alarm System is used here 
(refer to Figure-1) to illustrate the combinatorial 
optimization problem involving CIT (Zamli & Alkazemi, 
2015). Here, the Fire Alarm system has 4 main features: 
Power Supply, Initiating Device, Notification Appliance 
and Control Panel. Each of the features takes at most two 
possibilities. As for constraints (or forbidden 
combinations), Initiating Device must either be Digital 
Sensor or Analog Sensor. Additionally, Power Supply 
must either be Primary (AC Source) or Secondary 
(Battery). Finally, Fire Bell requires Keypad. Using a 
feature model diagram as described by Kang et al. (Kang, 
S., Hess, Nowak, & Peterson, 1990), Figure-2 captures the 
required parameters, values and constraints for the Fire 
Alarm System. 
 The feature model is often adopted to express 
different configuration of a software product line. Here, a 
tree structure is used to capture the relationship among 
different features. Such relationship must hold “true” in 
order to create a valid product configuration. As depicted 
in Figure-2, there are four types of relationship, namely, 
optional, compulsory, alternative and or, as well as two 
composition rules called requires and excludes. 
Furthermore, a feature may include cross-tree constraints 
that are explicitly expressed by the user. 
 Referring to the tree structure, the semantic of 
optional implies that the given feature is optional whilst 
the semantic of compulsory dictates the necessary 
presence of the given feature.  Meanwhile, the semantic of 
optional is such that at least one or all combinations of the 
given features can be selected. As for the semantic of 
alternative (i.e. XOR), only one feature must be selected 
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from a combination of features. Finally, requires dictates 
the need of a particular feature to co-exist with the given 
feature of interest and excludes prescribes elimination of 
the combination of the given features. 
 Going back to the Feature Model for the Fire 
Alarm System shown in Figure-2, Table-1 highlights an 
alternative view of the representation for the Fire Alarm 
system as the base configuration value subjected to a list 
of constraints that must be observed. Here, constraints can 
be thought of as forbidden combinations. 

Exhaustive test selection for the Fire Alarm 
System requires 256 test cases (i.e. 1 × 2 × 2 × 2 × 2 × 2 × 
2 × 2 × 2). As exhaustive testing is practically impossible 
in many real systems with large parameters and value, it is 
often desirable to focus only on specific interactions.  

Here, the grand challenge is to find the most 
optimal subset of test cases from a large pools of potential 
values (based on the defined interaction) and to strictly 
observe the given constraints accordingly. One of the 
potential solutions for 2-way testing is depicted in Table 2. 
It can be observed all the required interactions are covered 
at least once and all constraints lists are observed 
accordingly. 

When the number of parameters is small and with 
small constraints, the test generation process based on 
interaction can be done manually. However, as the 
parameters increase along with large constraints, manual 
process is impossible. 
 

 

 
 

Figure-1. Fire alarm system. 
 

 
 

Figure-2. Fire alarm system model. 
 
RELATED WORK 

As highlighted in earlier sections, the generation 
of interaction test suite with optimal test size can be 
regarded many real systems with large parameters and 
value, it is often desirable to focus only on specific 
interactions.  

Here, the grand challenge is to find the most 
optimal subset of test cases from a large pools of potential 

values (based on the defined interaction) and to strictly 
observe the given constraints accordingly. One of the 
potential solutions for 2-way testing is depicted in Table-2. 
It can be observed all the required interactions are covered 
at least once and all constraints lists are observed 
accordingly. 

When the number of parameters is small and with 
small constraints, the test generation process based on 
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interaction can be done manually. However, as the 
parameters increase along with large constraints, manual 
process is impossible. 

 
RELATED WORK 
 As highlighted in earlier sections, the generation 
of interaction test suite with optimal test size can be 
regarded as combinatorial optimization problem (Floudas 
et al. 1999). Naturally, optimization algorithm based 
strategies excel in this respect.  
 Genetic Algorithm (GA) (Afzal, Torkar, & Feldt, 
2009; Bryce & Colbourn, 2007; Chen, Gu, Li, & Chen, 
2009; McCaffrey, 2010; Shiba, Tsuchiya, & Kikuno, 
2004; Sthamer, 1995) and Ant Colony Algorithm (ACA) 

(Afzal et al. 2009; Chen et al. 2009; Harman & Jones, 
2001; Shiba et al. 2004; Wang, Xu, & Nie, 2008) 
represent early works in adopting optimization algorithms 
for t-way test generation. The GA strategy mimics the 
natural selection process. GA begins with randomly 
created test cases, which are referred to as chromosomes. 
These chromosomes undergo a cycle of crossover and 
mutation processes until the predefined fitness function is 
met. In each cycle, the best chromosomes are selected and 
added to the final test suite. Up till now, existing strategies 
based on GA provide no support for constraints. 
 

 
Table-1. Base values and constraints for fire alarm system. 

 

 
 

 
 

Table-2. 2-way test selection for the fire alarm system with observed constraints. 
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Unlike GA, ACA (Afzal et al. 2009; Chen et al. 
2009; Harman & Jones, 2001; Shiba et al. 2004; Wang et 
al. 2008) mimics the behaviour of colonies of ants in 
search for food. Because colonies of ants travel from place 
to place (representing the parameter) to find food 
(representing the value selection of each parameter), the 
quality of the paths taken (representing the test case) is 
evaluated based on the generation. The GA strategy 
mimics the natural selection process. GA begins with 
randomly created test cases, which are referred to as 
chromosomes. These chromosomes undergo a cycle of 
crossover and mutation processes until the predefined 
fitness function is met. In each cycle, the best 
chromosomes are selected and added to the final test suite. 
Up till now, existing strategies based on GA provide no 
support for constraints. 
 Unlike GA, ACA (Afzal et al. 2009; Chen et al. 
2009; Harman & Jones, 2001; Shiba et al. 2004; Wang et 
al. 2008) mimics the behaviour of colonies of ants in 
search for food. Because colonies of ants travel from place 
to place (representing the parameter) to find food 
(representing the value selection of each parameter), the 
quality of the paths taken (representing the test case) is 
evaluated based on the amount of pheromones left behind 
(representing interaction coverage). The best path 
represents the best value of a test case to be added to the 
final test suite. Currently, no support is provided for 
constraints. 
 Simulated Annealing (SA) (Cohen, Colbourn, & 
Ling, 2008; Stardom, 2001) relies on a large random 
search space for generating the interaction test suite. Using 
probability-based transformation equations, SA adopts 
binary search algorithm to find the best test case per 
iteration to be added to the final test suite. A variant of SA 
has currently been developed, called CASA (Garvin, 
Cohen, & Dwyer, 2011), that addresses the support for 
constraints. CASA has been successfully adopted for 
software product lines testing. 
 PSTG (Ahmed & Zamli, 2010a, 2010b, 2011; 
Ahmed, Zamli, & Lim, 2012) is a strategy based on 
Particle Swarm Optimization which mimics the swarm 
behaviour of birds. Internally, PSTG iteratively performs 
local and global searches to find the candidate solution to 
be added to the final suite until all the interaction tuples 
are covered. No support is provided for constraints. 
 Complementary to PSTG, HSS (Alsewari & 
Zamli, 2012) is a novel strategy based on the Harmony 
Search Algorithm. Intuitively, HSS mimics the musician 
trying to compose good music from improvisation form 
the best tune from his memory or from random. In doing 
so, HSS iteratively exploits the Harmony memory to store 
the best found solution through a number of defined 
improvisations within its local and global search process. 
In each improvisation, one test case will be selected to the 
final test suite until all the required interaction tuples are 
covered. HSS supports the implementation of constraints. 
 Although much useful progress has been 
achieved, a subtle limitation still exists, that is, in terms of 
the need for extensive calibration and tuning for each 

algorithm parameters. Genetic Algorithm requires 
substantial tuning for population size, mutation and cross 
over rate. The improper tuning of algorithm specific 
parameters either increases the computational efforts or 
yields the local optimal solution. The same is the case of 
Particle Swarm Optimization algorithm which relies on 
population size, repetition, inertia weight, social and 
cognitive parameters as parameters. In similar manner, the 
Ant Colony algorithm requires tuning of population size, 
max iteration, exponent parameters, pheromone 
evaporation rate, and reward factor. As far as Simulated 
Annealing is concerned, the tuning focuses on iteration 
and annealing schedule. Finally, Harmony Search dictates 
the tuning its Harmony Memory size, max iteration as well 
as the two probabilistic variables Harmony Memory 
Considering Rate and Pitch Adjustment.  
 In the absence of proper tuning of the algorithms’ 
specific parameters, the computational efforts may be 
wasted and the obtained solution may not be optimal. In 
line with such a concern, this paper reviews two existing 
parameter free optimization algorithms involving 
Teaching Learning Based Optimization (TLBO and  
Fruitfly Optimization Algorithm (FOA) in an effort to 
promote their adoption as well highlights their strengths 
and limitations. 
 
ON PARAMETER FREE OPTIMIZATION 
ALGORITHMS 
  Parameter free optimization algorithms refer to 
the algorithms that depend only on population size and  
iterations for  addressing the optimization problem at 
hand.  As such, the tuning process of these algorithms may 
be downgraded to straightforward calibration of values 
(i.e. between population size and iteration).  In this 
manner, the results obtained reflect the actual algorithm’s 
optimal performance without the necessity of 
painstakingly difficult tuning process. 
 Owing to such attractive feature, a number of 
recent optimization algorithms have been developed 
advocating parameter free options. These algorithms 
include Teaching Learning based Optimization (TLBO) 
and Fruitfly Optimization Algorithm (FOA). The next 
section reviews these algorithms in details. 
 
Teaching learning based optimization (TLBO) 
 In a nut shell, Teaching Learning based 
Optimization (TLBO) (Rao, Savsani, & Vakharia, 2011) 
takes an analogy from teaching and learning process 
between teachers and students (see Figure-3). 
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Figure-3. Improving the competencies of the learners. 
 

Basically, teachers are trying to impart 
knowledge in a way that would enhance the knowledge of 
the students. Ideally, with knowledge gained from a 
particular teacher, the level of competencies of the 
students in a particular topic would be enhanced (i.e. 
resulting in improvement of the students’ respective marks 
in that topic). As teachers also have different competency 
levels, there could also be potential improvements if the 
students learned from other teachers either on the same or 
different topics. At the same time, students can also learn 
from other students yielding similar effects (i.e. improving 
their level of competencies). 
 Specifically, TLBO divides the searching process 
into two main phases. The first phase, called the teacher 
phase, involves improving the mean differences between 
updated value of the potential solution (i.e. the learners) 
against the best solution (i.e. teacher). Here, any value of 
the solution is represented in a vector Xj,k,i, where j means 
the jth design variable (i.e. subject taken by learners),  
k=1,2,…m; k represents the kth population member (i.e. 
learner), i=1,2…..n; and i represents the ith iteration, 
i=1,2,….. Gmax, where Gmax is  the maximum generations. 
Let Xk,j be the best solution at any iteration i for which the 
value of  f(Xk,i) is optimal (either minimum or maximum), 
the next step is to calculate the mean result Mj,i of the 
learners in a particular subject j. As highlighted earlier, a 
teacher tries to increase the overall mean results of the 
class. The increase in the existing mean result of each 
subject by the teacher for each subject is given by: 
 

Difference_Meanj,k,i = rj,i(Xj,kbest,i –TFMj,i)            

 

where Xj,kbest,i is the result of the best learner (i.e. 
as teacher) in the subject j, TF is the teaching factor which 
decides the  value of mean to be changed (capability of a 
teacher) and rj,i is the random number from [0,1]. Here, the 
value TF can either be 1 or 2 decided randomly with equal 
probability as follows: 
 
TF = round [1+rand(0,1){2-1}]                      
 

Based on the Difference_Meanj,k,i,the existing 
solution is updated in the teacher phase according to the 
following expression: 
 

X’j,k,i = Xj,k,i + Difference_Meanj,k,i 
 

where X’j,k,i  is the update value of Xj,k,i, X’j,k,i  is 
accepted if it gives better values than Xj,k,i and these values 
become input to the second phase, the learner’s phase. 

In the second phase, learners increase their 
knowledge by interaction among their peers. A learner 
learns iff and on if the other learners have more 
knowledge than he or she does. Considering a population 
size of n, the learning process of this phase is expressed as 
follows: 

At any iteration i, each learner is compared with 
other learners randomly. Here, two learners P and Q are 
selected such that X’P,i  ≠X’Q,i where (X’P,i  and X’Q,i are the 
updated values at the end of the teacher phase). 

 

X”j,P,i = X’j,P,i+rj,i (X’j,P,i – X’j,Q,i), if f(X’P,i)< f(X’Q,i ) 
X”j,P,i = X’j,P,i+rj,i (X’j,Q,i – X’j,P,i), if f(X’Q,i)< f(X’P,i ) 
 

In this case, accept  X”j,P,i  when the objective function 
f(X”j,P,i ) is better than that of  f(X’j,P,i ). 
 
Fruitfly optimization algorithm 

Fruit Fly Optomization algorithm (FOA) (Pan, 
2012) is modelled based on the foraging behavior of the 
fruit fly. Fruit flies are known to have strong sense of 
smell and perception. As for sense of smell, fruit flies rely 
on its osphresis organs that can sense food sources as far 
as 40 km away (Pan, 2012). Using its sensitive vision, fruit 
flies can also find food based on the collective intelligence 
of individual fruit flies. Here, the value of a food source 
depends on its proximity, concentration, and ease of 
extracting. Upon finding a good lead, the population of 
fruit flies will flock towards the source. 
 

 
 

Figure-4. Fruitfly foraging behavior model. 
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Similar to TLBO, FOA is a population based 
algorithm. Here, the solutions can be represented as 2 
vectors Xi and Yi where i means the ith design variables 
(see Figure 4). Initially, all fruit flies search is based on 
specific X_axis and Y_axis at some defined origin and in 
random direction and distance based on osphresis sensing 
organs. 
 

Xi = X_axis + random_value 
Yi = Y_axis  + random_value 
 

Since the actual food location is unknown, the 
distance to the origin is estimated first (Dist) as follows: 
 

Disti = √( Xi
2 + Yi

2) 
 

Upon finding a particular food source, each fruit 
fly evaluates its potential value. Here, the smell 
concentration judgement value (S) is calculated as the 
reciprocal of the distance. The actual smell judgment 
function (or the fitness function) Smelli of the individual 
location of the fruitfly is modeled as the function of the 
concentration judgment value (S). 
 

Si = 1/Disti 
Smelli = Function (Si) 
 

With Smelli, each fruit fly continuously compares 
with their peers on the best food source. 
 

[best smell index=i] = max (Smell) 
 

The fruit fly swarm fly toward the best smell and 
stays at the positions of the overall best food source while 
sending and receiving messages on other profitable 
location from their counter parts. 
 

Smellbest = bestSmell 
X_axis = X(bestindex) 
Y_axis = Y(bestindex) 
 

The same cycle continues for finding new food 
source until maximum number of generation. 
 
Reflection on TLBO and FOA 
 Within any optimization algorithms, there are 
number of features in common including the sense of 
purpose, the memory, tuning issue, the diversity 
consideration, and the intensification process. The 
following paragraphs debate the usefulness of these 
features as far as its applicability for CIT. 
 The sense of purpose defines what the algorithm 
of interests is looking for. This consideration normally 
translates on how the searching process is done 
Analogically, the sense of purpose(s) (in term of the 
objective function) for CIT is to get the most optimal 
solution. Collectively, this so-called sense of purpose can 
be converted to computer algorithms. It must be noted that 
for some applications, there may be multiple sense of 
purpose (i.e. multi-objectives). In the case of TLBO, the 
algorithm is to interact and impart knowledge both from 
teacher-learners as well as learners-peers. For FOA, the 
sense of purpose is to search for food. 

Apart from the sense of purpose(s), the memory 
consideration is also vital as buffers for best selection. 
Both TLBO and Fruitfly exploit their populations (i.e. 
population based) as a form of memory. It must be noted 
that both memory (i.e. population based) or memory-less 
(i.e. single solution based) are merely designed choices. 
There appears to be inconclusive evidence on the 
effectiveness of either approach. 
 In many optimization algorithms, tuning can be a 
difficult endeavor. Without proper tuning, the performance 
of any given optimization algorithm can be relatively poor. 
Unlike many existing algorithms, TLBO and FOA are two 
distinct algorithm that rely solely on randomization and do 
not rely of any specific parameter values for controlling 
their search process. For these reason, the obtained results 
from TLBO and FOA represent the actual performance of 
the algorithm with minimal calibration of iteration and 
population size. 
 Other than tuning, other important considerations 
for any optimization algorithm are on the diversification 
and intensification. Diversification (also termed 
exploration) relates to the mechanism embedded in the 
optimization to ensure sufficient exploration of the search 
space ensuring diverse solution. In the case of TLBO, the 
algorithm randomly selects peers for teaching and 
interaction and adjust the current values against some 
mean values of the overall population. As for fruitfly, the 
algorithm randomly does the random search and inform 
their peers of the most profitable food source.  Both 
mechanisms appear to be helpful for ensuring diverse 
solution and hence, avoid false solution (i.e. local maxima 
minima). 
 In many applications, lack of diversity is often 
counter-productive. Researchers in software testing coin 
the term pesticide paradox – implying that running the 
same tests on the same product for some time would not 
yield any new bugs. Here, borrowing terms from 
agriculture – bugs tend to build up tolerance to pesticides. 
With diversity, newly created tests can be appropriately 
selected so as to facilitate the process of locating bugs. 
 Intensification (also termed exploitation) 
involved exploiting or pertubating few selected variables 
during the search process and generate variants solutions 
from potentially good solutions (Yang, 2010), (Yang and 
Karamanoglu, 2013). In TLBO, the algorithm restricts 
interaction exchange for better amongst peers with the 
same knowledge level. FOA exchanges messages and 
share their profitable food location. In this manner, all fruit 
flies can focus their search within the perimeter of the 
profitable location.  
 Both components diversification and 
intensification are equally important. Diversification 
ensures high probability to gain optimal solution in the 
expense of slow convergence rate. Intensification ensures 
quick convergence but in the expense of optimal solution. 
It is the matter of balancing between these two 
components in order to ensure higher chance of diversified 
solutions and within acceptable time. 
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CONCLUSIONS 
 This paper has discussed the optimization 
problem poses by CIT.  Much work has been done in the 
literature as part of Search based Software Engineering 
(SBSE) research to address the problem adopting a 
number of optimization algorithms including Genetic 
Algorithm (GA), Particle Swarm Optimization (PSO), Ant 
Colony (AC), Simulated Annealing (SA), and Harmony 
Search Algorithm (HS).  
 Although useful, the aforementioned algorithms 
requires extensive tuning of its parameters values in order 
to obtain optimal solution. Enhancing these work, this 
paper advocates the adoption of newly developed 
parameter free algorithms. In fact, as part of our future 
work, we are proposing two strategies for CIT, called t-
FOA (t-way FOA) and t-TLBO (t-way TLBO). Our initial 
evaluation of both strategies have been promising as we 
are able to generate optimal results in many of the 
configurations considered. 
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