
 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8987

ON ADOPTING PARAMETER FREE OPTIMIZATION ALGORITHMS FOR
COMBINATORIAL INTERACTION TESTING

Kamal Z. Zamli, Yazan A. Alsariera, Abdullah B Nasser and Abdulrahman Alsewari

Faculty of Computer Systems and Software Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Pahang, Malaysia
E-Mail: kamalz@ump.edu.my

ABSTRACT
 Combinatorial interaction testing is a practical approach aims to detect defects due to unwanted and faulty
interactions. Here, a set of sampled test cases is generated based on t-way covering problem (where t indicates the
interaction strength). Often, the generation process is based on a particular t-way strategy ensuring that each t-way
interaction is covered at least once. Much useful progress has been achieved as plethora of t-way strategies have been
developed in the literature in the last 30 years. Recently, in line with the upcoming field called Search based Software
Engineering (SBSE), many newly strategies have been developed adopting specific optimization algorithm (e.g. Genetic
Algorithm (GA), Ant Colony (AC), Simulated Annealling (SA), Particle Swarm Optimization, and Harmony Search
Algorithm (HS) as their basis in an effort to generate the most optimal solution. Although useful, strategies based on the
aforementioned optimization algorithms are not without limitation. Specifically, these algorithms require extensive tuning
before optimal solution can be obtained. In many cases, improper tuning of specific parameters undesirably yields sub-
optimal solution. Addressing this issue, this paper proposes the adoption of parameter free optimization algorithms as the
basis of future t-way strategies. In doing so, this paper reviews two existing parameter free optimization algorithms
involving Teaching Learning Based Optimization (TLBO) and Fruitfly Optimization Algorithm (FOA) in an effort to
promote their adoption for CIT.

Keywords: optimization algorithms, teaching learning based optimization, fruitfly algorithm.

INTRODUCTION
 Combinatorial optimization problem involves
searching for the most optimal set of objects from a large
pools of potential solution. As exhaustive search is not
feasible, researchers often settle for approximate solution
through the adoption of optimization algorithms (termed
metaheuristics algorithms). In the effort to get the best
solution (i.e. as close to the optimal solution as possible
and with less computational efforts), continuous endeavors
for new breed of optimization algorithms are still desirable
and relevant.
 Within the context of combinatorial interaction
testing (CIT), many efforts are being carried out to adopt
optimization algorithms as the backbone of the search
strategies for generating the optimal t-way set of test cases
(where t indicates the interaction strength. Complementing
the upcoming field called Search based Software
Engineering (SBSE), many newly strategies have been
developed adopting specific optimization algorithms
including Genetic Algorithm (GA), Particle Swarm
Optimization (PSO), Ant Colony (AC), Simulated
Annealing (SA), and Harmony Search Algorithm (HS).
 At a glance, the adoption of the aforementioned
algorithms has been effective for obtaining optimal
solution. A closer look reveals otherwise. Specifically,
these algorithms require extensive tuning before optimal
solution can be obtained. In many cases, improper tuning
of specific parameters undesirably yields sub-optimal
solution. Addressing this issue, this paper advocates the
adoption of parameter free optimization algorithms as the
basis for t-way strategies in an effort to promote their
adoption for CIT.

PROBLEM DEFINITION MODEL
 A configurable Fire Alarm System is used here
(refer to Figure-1) to illustrate the combinatorial
optimization problem involving CIT (Zamli & Alkazemi,
2015). Here, the Fire Alarm system has 4 main features:
Power Supply, Initiating Device, Notification Appliance
and Control Panel. Each of the features takes at most two
possibilities. As for constraints (or forbidden
combinations), Initiating Device must either be Digital
Sensor or Analog Sensor. Additionally, Power Supply
must either be Primary (AC Source) or Secondary
(Battery). Finally, Fire Bell requires Keypad. Using a
feature model diagram as described by Kang et al. (Kang,
S., Hess, Nowak, & Peterson, 1990), Figure-2 captures the
required parameters, values and constraints for the Fire
Alarm System.
 The feature model is often adopted to express
different configuration of a software product line. Here, a
tree structure is used to capture the relationship among
different features. Such relationship must hold “true” in
order to create a valid product configuration. As depicted
in Figure-2, there are four types of relationship, namely,
optional, compulsory, alternative and or, as well as two
composition rules called requires and excludes.
Furthermore, a feature may include cross-tree constraints
that are explicitly expressed by the user.
 Referring to the tree structure, the semantic of
optional implies that the given feature is optional whilst
the semantic of compulsory dictates the necessary
presence of the given feature. Meanwhile, the semantic of
optional is such that at least one or all combinations of the
given features can be selected. As for the semantic of
alternative (i.e. XOR), only one feature must be selected

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8988

from a combination of features. Finally, requires dictates
the need of a particular feature to co-exist with the given
feature of interest and excludes prescribes elimination of
the combination of the given features.
 Going back to the Feature Model for the Fire
Alarm System shown in Figure-2, Table-1 highlights an
alternative view of the representation for the Fire Alarm
system as the base configuration value subjected to a list
of constraints that must be observed. Here, constraints can
be thought of as forbidden combinations.

Exhaustive test selection for the Fire Alarm
System requires 256 test cases (i.e. 1 × 2 × 2 × 2 × 2 × 2 ×
2 × 2 × 2). As exhaustive testing is practically impossible
in many real systems with large parameters and value, it is
often desirable to focus only on specific interactions.

Here, the grand challenge is to find the most
optimal subset of test cases from a large pools of potential
values (based on the defined interaction) and to strictly
observe the given constraints accordingly. One of the
potential solutions for 2-way testing is depicted in Table 2.
It can be observed all the required interactions are covered
at least once and all constraints lists are observed
accordingly.

When the number of parameters is small and with
small constraints, the test generation process based on
interaction can be done manually. However, as the
parameters increase along with large constraints, manual
process is impossible.

Figure-1. Fire alarm system.

Figure-2. Fire alarm system model.

RELATED WORK

As highlighted in earlier sections, the generation
of interaction test suite with optimal test size can be
regarded many real systems with large parameters and
value, it is often desirable to focus only on specific
interactions.

Here, the grand challenge is to find the most
optimal subset of test cases from a large pools of potential

values (based on the defined interaction) and to strictly
observe the given constraints accordingly. One of the
potential solutions for 2-way testing is depicted in Table-2.
It can be observed all the required interactions are covered
at least once and all constraints lists are observed
accordingly.

When the number of parameters is small and with
small constraints, the test generation process based on

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8989

interaction can be done manually. However, as the
parameters increase along with large constraints, manual
process is impossible.

RELATED WORK
 As highlighted in earlier sections, the generation
of interaction test suite with optimal test size can be
regarded as combinatorial optimization problem (Floudas
et al. 1999). Naturally, optimization algorithm based
strategies excel in this respect.
 Genetic Algorithm (GA) (Afzal, Torkar, & Feldt,
2009; Bryce & Colbourn, 2007; Chen, Gu, Li, & Chen,
2009; McCaffrey, 2010; Shiba, Tsuchiya, & Kikuno,
2004; Sthamer, 1995) and Ant Colony Algorithm (ACA)

(Afzal et al. 2009; Chen et al. 2009; Harman & Jones,
2001; Shiba et al. 2004; Wang, Xu, & Nie, 2008)
represent early works in adopting optimization algorithms
for t-way test generation. The GA strategy mimics the
natural selection process. GA begins with randomly
created test cases, which are referred to as chromosomes.
These chromosomes undergo a cycle of crossover and
mutation processes until the predefined fitness function is
met. In each cycle, the best chromosomes are selected and
added to the final test suite. Up till now, existing strategies
based on GA provide no support for constraints.

Table-1. Base values and constraints for fire alarm system.

Table-2. 2-way test selection for the fire alarm system with observed constraints.

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8990

Unlike GA, ACA (Afzal et al. 2009; Chen et al.
2009; Harman & Jones, 2001; Shiba et al. 2004; Wang et
al. 2008) mimics the behaviour of colonies of ants in
search for food. Because colonies of ants travel from place
to place (representing the parameter) to find food
(representing the value selection of each parameter), the
quality of the paths taken (representing the test case) is
evaluated based on the generation. The GA strategy
mimics the natural selection process. GA begins with
randomly created test cases, which are referred to as
chromosomes. These chromosomes undergo a cycle of
crossover and mutation processes until the predefined
fitness function is met. In each cycle, the best
chromosomes are selected and added to the final test suite.
Up till now, existing strategies based on GA provide no
support for constraints.
 Unlike GA, ACA (Afzal et al. 2009; Chen et al.
2009; Harman & Jones, 2001; Shiba et al. 2004; Wang et
al. 2008) mimics the behaviour of colonies of ants in
search for food. Because colonies of ants travel from place
to place (representing the parameter) to find food
(representing the value selection of each parameter), the
quality of the paths taken (representing the test case) is
evaluated based on the amount of pheromones left behind
(representing interaction coverage). The best path
represents the best value of a test case to be added to the
final test suite. Currently, no support is provided for
constraints.
 Simulated Annealing (SA) (Cohen, Colbourn, &
Ling, 2008; Stardom, 2001) relies on a large random
search space for generating the interaction test suite. Using
probability-based transformation equations, SA adopts
binary search algorithm to find the best test case per
iteration to be added to the final test suite. A variant of SA
has currently been developed, called CASA (Garvin,
Cohen, & Dwyer, 2011), that addresses the support for
constraints. CASA has been successfully adopted for
software product lines testing.
 PSTG (Ahmed & Zamli, 2010a, 2010b, 2011;
Ahmed, Zamli, & Lim, 2012) is a strategy based on
Particle Swarm Optimization which mimics the swarm
behaviour of birds. Internally, PSTG iteratively performs
local and global searches to find the candidate solution to
be added to the final suite until all the interaction tuples
are covered. No support is provided for constraints.
 Complementary to PSTG, HSS (Alsewari &
Zamli, 2012) is a novel strategy based on the Harmony
Search Algorithm. Intuitively, HSS mimics the musician
trying to compose good music from improvisation form
the best tune from his memory or from random. In doing
so, HSS iteratively exploits the Harmony memory to store
the best found solution through a number of defined
improvisations within its local and global search process.
In each improvisation, one test case will be selected to the
final test suite until all the required interaction tuples are
covered. HSS supports the implementation of constraints.
 Although much useful progress has been
achieved, a subtle limitation still exists, that is, in terms of
the need for extensive calibration and tuning for each

algorithm parameters. Genetic Algorithm requires
substantial tuning for population size, mutation and cross
over rate. The improper tuning of algorithm specific
parameters either increases the computational efforts or
yields the local optimal solution. The same is the case of
Particle Swarm Optimization algorithm which relies on
population size, repetition, inertia weight, social and
cognitive parameters as parameters. In similar manner, the
Ant Colony algorithm requires tuning of population size,
max iteration, exponent parameters, pheromone
evaporation rate, and reward factor. As far as Simulated
Annealing is concerned, the tuning focuses on iteration
and annealing schedule. Finally, Harmony Search dictates
the tuning its Harmony Memory size, max iteration as well
as the two probabilistic variables Harmony Memory
Considering Rate and Pitch Adjustment.
 In the absence of proper tuning of the algorithms’
specific parameters, the computational efforts may be
wasted and the obtained solution may not be optimal. In
line with such a concern, this paper reviews two existing
parameter free optimization algorithms involving
Teaching Learning Based Optimization (TLBO and
Fruitfly Optimization Algorithm (FOA) in an effort to
promote their adoption as well highlights their strengths
and limitations.

ON PARAMETER FREE OPTIMIZATION
ALGORITHMS
 Parameter free optimization algorithms refer to
the algorithms that depend only on population size and
iterations for addressing the optimization problem at
hand. As such, the tuning process of these algorithms may
be downgraded to straightforward calibration of values
(i.e. between population size and iteration). In this
manner, the results obtained reflect the actual algorithm’s
optimal performance without the necessity of
painstakingly difficult tuning process.
 Owing to such attractive feature, a number of
recent optimization algorithms have been developed
advocating parameter free options. These algorithms
include Teaching Learning based Optimization (TLBO)
and Fruitfly Optimization Algorithm (FOA). The next
section reviews these algorithms in details.

Teaching learning based optimization (TLBO)
 In a nut shell, Teaching Learning based
Optimization (TLBO) (Rao, Savsani, & Vakharia, 2011)
takes an analogy from teaching and learning process
between teachers and students (see Figure-3).

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8991

Figure-3. Improving the competencies of the learners.

Basically, teachers are trying to impart
knowledge in a way that would enhance the knowledge of
the students. Ideally, with knowledge gained from a
particular teacher, the level of competencies of the
students in a particular topic would be enhanced (i.e.
resulting in improvement of the students’ respective marks
in that topic). As teachers also have different competency
levels, there could also be potential improvements if the
students learned from other teachers either on the same or
different topics. At the same time, students can also learn
from other students yielding similar effects (i.e. improving
their level of competencies).
 Specifically, TLBO divides the searching process
into two main phases. The first phase, called the teacher
phase, involves improving the mean differences between
updated value of the potential solution (i.e. the learners)
against the best solution (i.e. teacher). Here, any value of
the solution is represented in a vector Xj,k,i, where j means
the jth design variable (i.e. subject taken by learners),
k=1,2,…m; k represents the kth population member (i.e.
learner), i=1,2…..n; and i represents the ith iteration,
i=1,2,….. Gmax, where Gmax is the maximum generations.
Let Xk,j be the best solution at any iteration i for which the
value of f(Xk,i) is optimal (either minimum or maximum),
the next step is to calculate the mean result Mj,i of the
learners in a particular subject j. As highlighted earlier, a
teacher tries to increase the overall mean results of the
class. The increase in the existing mean result of each
subject by the teacher for each subject is given by:

Difference_Meanj,k,i = rj,i(Xj,kbest,i –TFMj,i)

where Xj,kbest,i is the result of the best learner (i.e.
as teacher) in the subject j, TF is the teaching factor which
decides the value of mean to be changed (capability of a
teacher) and rj,i is the random number from [0,1]. Here, the
value TF can either be 1 or 2 decided randomly with equal
probability as follows:

TF = round [1+rand(0,1){2-1}]

Based on the Difference_Meanj,k,i,the existing
solution is updated in the teacher phase according to the
following expression:

X’j,k,i = Xj,k,i + Difference_Meanj,k,i

where X’j,k,i is the update value of Xj,k,i, X’j,k,i is
accepted if it gives better values than Xj,k,i and these values
become input to the second phase, the learner’s phase.

In the second phase, learners increase their
knowledge by interaction among their peers. A learner
learns iff and on if the other learners have more
knowledge than he or she does. Considering a population
size of n, the learning process of this phase is expressed as
follows:

At any iteration i, each learner is compared with
other learners randomly. Here, two learners P and Q are
selected such that X’P,i ≠X’Q,i where (X’P,i and X’Q,i are the
updated values at the end of the teacher phase).

X”j,P,i = X’j,P,i+rj,i (X’j,P,i – X’j,Q,i), if f(X’P,i)< f(X’Q,i)
X”j,P,i = X’j,P,i+rj,i (X’j,Q,i – X’j,P,i), if f(X’Q,i)< f(X’P,i)

In this case, accept X”j,P,i when the objective function
f(X”j,P,i) is better than that of f(X’j,P,i).

Fruitfly optimization algorithm

Fruit Fly Optomization algorithm (FOA) (Pan,
2012) is modelled based on the foraging behavior of the
fruit fly. Fruit flies are known to have strong sense of
smell and perception. As for sense of smell, fruit flies rely
on its osphresis organs that can sense food sources as far
as 40 km away (Pan, 2012). Using its sensitive vision, fruit
flies can also find food based on the collective intelligence
of individual fruit flies. Here, the value of a food source
depends on its proximity, concentration, and ease of
extracting. Upon finding a good lead, the population of
fruit flies will flock towards the source.

Figure-4. Fruitfly foraging behavior model.

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8992

Similar to TLBO, FOA is a population based
algorithm. Here, the solutions can be represented as 2
vectors Xi and Yi where i means the ith design variables
(see Figure 4). Initially, all fruit flies search is based on
specific X_axis and Y_axis at some defined origin and in
random direction and distance based on osphresis sensing
organs.

Xi = X_axis + random_value
Yi = Y_axis + random_value

Since the actual food location is unknown, the
distance to the origin is estimated first (Dist) as follows:

Disti = √(Xi
2 + Yi

2)

Upon finding a particular food source, each fruit
fly evaluates its potential value. Here, the smell
concentration judgement value (S) is calculated as the
reciprocal of the distance. The actual smell judgment
function (or the fitness function) Smelli of the individual
location of the fruitfly is modeled as the function of the
concentration judgment value (S).

Si = 1/Disti
Smelli = Function (Si)

With Smelli, each fruit fly continuously compares
with their peers on the best food source.

[best smell index=i] = max (Smell)

The fruit fly swarm fly toward the best smell and
stays at the positions of the overall best food source while
sending and receiving messages on other profitable
location from their counter parts.

Smellbest = bestSmell
X_axis = X(bestindex)
Y_axis = Y(bestindex)

The same cycle continues for finding new food
source until maximum number of generation.

Reflection on TLBO and FOA
 Within any optimization algorithms, there are
number of features in common including the sense of
purpose, the memory, tuning issue, the diversity
consideration, and the intensification process. The
following paragraphs debate the usefulness of these
features as far as its applicability for CIT.
 The sense of purpose defines what the algorithm
of interests is looking for. This consideration normally
translates on how the searching process is done
Analogically, the sense of purpose(s) (in term of the
objective function) for CIT is to get the most optimal
solution. Collectively, this so-called sense of purpose can
be converted to computer algorithms. It must be noted that
for some applications, there may be multiple sense of
purpose (i.e. multi-objectives). In the case of TLBO, the
algorithm is to interact and impart knowledge both from
teacher-learners as well as learners-peers. For FOA, the
sense of purpose is to search for food.

Apart from the sense of purpose(s), the memory
consideration is also vital as buffers for best selection.
Both TLBO and Fruitfly exploit their populations (i.e.
population based) as a form of memory. It must be noted
that both memory (i.e. population based) or memory-less
(i.e. single solution based) are merely designed choices.
There appears to be inconclusive evidence on the
effectiveness of either approach.
 In many optimization algorithms, tuning can be a
difficult endeavor. Without proper tuning, the performance
of any given optimization algorithm can be relatively poor.
Unlike many existing algorithms, TLBO and FOA are two
distinct algorithm that rely solely on randomization and do
not rely of any specific parameter values for controlling
their search process. For these reason, the obtained results
from TLBO and FOA represent the actual performance of
the algorithm with minimal calibration of iteration and
population size.
 Other than tuning, other important considerations
for any optimization algorithm are on the diversification
and intensification. Diversification (also termed
exploration) relates to the mechanism embedded in the
optimization to ensure sufficient exploration of the search
space ensuring diverse solution. In the case of TLBO, the
algorithm randomly selects peers for teaching and
interaction and adjust the current values against some
mean values of the overall population. As for fruitfly, the
algorithm randomly does the random search and inform
their peers of the most profitable food source. Both
mechanisms appear to be helpful for ensuring diverse
solution and hence, avoid false solution (i.e. local maxima
minima).
 In many applications, lack of diversity is often
counter-productive. Researchers in software testing coin
the term pesticide paradox – implying that running the
same tests on the same product for some time would not
yield any new bugs. Here, borrowing terms from
agriculture – bugs tend to build up tolerance to pesticides.
With diversity, newly created tests can be appropriately
selected so as to facilitate the process of locating bugs.
 Intensification (also termed exploitation)
involved exploiting or pertubating few selected variables
during the search process and generate variants solutions
from potentially good solutions (Yang, 2010), (Yang and
Karamanoglu, 2013). In TLBO, the algorithm restricts
interaction exchange for better amongst peers with the
same knowledge level. FOA exchanges messages and
share their profitable food location. In this manner, all fruit
flies can focus their search within the perimeter of the
profitable location.
 Both components diversification and
intensification are equally important. Diversification
ensures high probability to gain optimal solution in the
expense of slow convergence rate. Intensification ensures
quick convergence but in the expense of optimal solution.
It is the matter of balancing between these two
components in order to ensure higher chance of diversified
solutions and within acceptable time.

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8993

CONCLUSIONS
 This paper has discussed the optimization
problem poses by CIT. Much work has been done in the
literature as part of Search based Software Engineering
(SBSE) research to address the problem adopting a
number of optimization algorithms including Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Ant
Colony (AC), Simulated Annealing (SA), and Harmony
Search Algorithm (HS).
 Although useful, the aforementioned algorithms
requires extensive tuning of its parameters values in order
to obtain optimal solution. Enhancing these work, this
paper advocates the adoption of newly developed
parameter free algorithms. In fact, as part of our future
work, we are proposing two strategies for CIT, called t-
FOA (t-way FOA) and t-TLBO (t-way TLBO). Our initial
evaluation of both strategies have been promising as we
are able to generate optimal results in many of the
configurations considered.

ACKNOWLEDGEMENT
 The work reported here results from many
generous grants from MOSTI, Malaysia particularly
involving the grant entitled: “Constraints T-Way Testing
Strategy with Modified Condition Decision Coverage”.
We thank MOSTI for the support.

REFERENCES

[1] Afzal W., Torkar R. and Feldt R. 2009. A systematic

review of search-based testing for non-functional
system properties. Information and Software
Technology, Vol. 51, No. 6, pp. 957-976. doi:
10.1016/j.infsof.2008.12.005

[2] Ahmed B. S. and Zamli K. Z. 2010a. Pstg: A t-way
strategy adopting particle swarm optimization.
Proceedings of the 4th Asia International Conference
on Mathematical /Analytical Modelling and Computer
Simulation.

[3] Ahmed B. SS. and Zamli K. Z. 2010b. T-way test data
generation strategy based on particle swarm
optimization. The Proceedings of the 2nd International
Conference on Computer Research and Development.

[4] Ahmed B. S. and Zamli K. Z. 2011. The development
of a particle swarm based optimization strategy for
pairwise testing. Journal of Artificial Intelligence,
Vol. 4, No. 2, pp. 156-165.

[5] Ahmed B. S., Zamli K. Z. and Lim C. P. 2012.
Constructing a t-way interaction test suite using the
particle swarm optimization approach. International
Journal of Innovative Computing, Information and
Control, Vol. 8, No. 1, pp. 431-452.

[6] Alsewari A. R. A. and Zamli K. Z. 2012. Design and
implementation of a harmony-search-based variable-

strength t-way testing strategy with constraints
support. Information and Software Technology, Vol.
54, pp. 553-568.

[7] Bryce R. and Colbourn C. 2007. One-test-at-a-time
heuristic search for interaction test suites. Proceedings
of the 9th Annual Conference on Genetic and
Evolutionary Computation, London, England.

[8] Chen X., Gu Q., Li A. and Chen D. 2009. Variable
strength interaction testing with an ant colony system
approach. Proceedings of the 16th Asia-Pacific
Software Engineering Conference.

[9] Cohen M. B., Colbourn C. J. and Ling A. C. H. 2008.
Constructing strength three covering arrays with
augmented annealing. Discrete Mathematics, Vol..
308, No. 13, pp. 2709-2722.

[10] Floudas C. A., Pardalos P. M., Adjiman C. S.,
Esposito, W. R. Gümüs Z. H., Harding S. T.,
Schweiger C. A. 1999. Handbook of test problems in
local and global optimization, Vol. 33, Kluwer
Academic Publishers Dordrecht.

[11] Garvin B. J., Cohen M. B. and Dwyer M. B. 2011.
Evaluating improvements to a meta-heuristic search
for constrained interaction testing. Empirical Software
Engineering, No. 16, pp. 61-102.

[12] Harman M. and Jones B. F. 2001. Search-based
software engineering. Information and Software
Technology, Vol. 43, No. 14, pp. 833-839.

[13] Kang K. S. C., Hess J., Nowak W. and Peterson S.
1990. feature-oriented domain analysis (foda)
feasibility study: Software Engineering Institute,
Carnegie Mellon University.

[14] McCaffrey J. 2010. An empirical study of pairwise
test set generation using a genetic algorithm.
Proceedings of the 7th International Conference on
Information Technology.

[15] Pan W.-T. 2012. A new fruit fly optimization
algorithm: Taking the financial distress model as an
example. Knowledge Based Systems, Vol. 26, pp. 69-
74.

[16] Rao R. V., Savsani V. J. and Vakharia D. P. 2011.
Teaching-learning-based optimization: A novel
method for constrained mechanical design
optimization problems. Computer Aided Design, Vol.
43, pp. 303-313.

[17] Shiba T., Tsuchiya T. and Kikuno T. 2004. Using
artificial life techniques to generate test cases for
combinatorial testing. Proceedings of the 28th Annual

 VOL. 10, NO. 19, OCTOBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

8994

International Computer Software and Applications
Conference.

[18] Stardom J. 2001. Metaheuristics and the search for
covering and packing array (Master of Science thesis),
Simon Fraser University, Canada.

[19] Sthamer H. 1995. The automatic generation of
software test data using genetic algorithms. (PhD
thesis), Universityof Glamorgan, Pontyprid, Wales.

[20] Wang Z. Y., Xu B. W. and Nie C. H. 2008. Greedy
heuristic algorithms to generate variable strength
combinatorial test suite. Proceedings of the 8th
International Conference on Quality Software.

[21] Zamli K. Z. and Alkazemi B. Y. 2015. Combinatorial
testing: UMP Publisher.

