
 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9292

MATLAB INTEGRATION INTO JAVA-BASED EXPERT SYSTEMS
FOR PHYSICAL PROCESSES MODELING

Dmitry Potapov1,2

1National Research Nuclear University “MEPHI”, Kashirskoe highway, Moscow, Russia
2The European Laboratory for Particle Research CERN, Route de Meyrin, Geneva, Switzerland

E-Mail: div-x15@yandex.ru

ABSTRACT

A technique for dynamic Matlab functions integration into Java is proposed; overcoming the constraints imposed
by languages involved, such as the need to recompile Java-project, the conversion of m-functions into Matlab scripts, and
passing Matlab array as a list of parameters into Java methods.

Keywords: matlab, Java integration, mathematical modeling, dynamic code integration, reflection.

1. INTRODUCTION
 The need for dynamic integration of Matlab code
into Java was faced by the author while developing an
expert system for the electrolyte solutions’ properties’
modeling and prediction (Potapov et al., 2011). The
system provides the following functionality:

a) storing and providing access to the tables of

experimental data, containing the values of
physicochemical properties (vapor pressure P, the
activity of the solvent a, osmotic coefficient φ, the

activity coefficient γ ±, solution density , the excess

volume V, Gibbs energy G, excess enthalpy H) at
various concentrations (molality m, molarity c,
molnodolnoy x, weight percent w) and fixed under the
experimental conditions (pressure P, temperature T);

b) access to the results of modeling - model’s fitness
characteristics and parameters’ estimates;

c) access to the models of the thermodynamic properties
containing model equations and data processing
software;

d) modeling of electrolyte solutions’ thermodynamic
properties;

e) plotting various correlations;

f) calculation of the solutions’ physicochemical
properties at concentrations for which no
experimental data exists.

 Considering the requirement for the system to be
cross-platform, Java was selected as the programming
language for the implementation of the basic modules of
the system and writing the GUI. We chose MySQL as

DBMS for experimental values’ and simulation results’
storage.

The main distinction of the described system
from existing analogues (Elliott, Lira, 1999; Koretsky,
2004; Kyle, 2005; Sandler, 2006) is the possibility of
adding new models into it. Thus, the system is not only
designed to simulate chemical processes with existing
models, but also to check the adequacy of new models.

Chemical solution simulation might be a very
time-consuming procedure, which often involves complex
mathematical operations, such as differentiation (not
necessarily numerical, but sometimes analytical),
integration, local and global multi-variable function
optimization, etc. (Rudakov et al., 2011) to perform such
operations requires sufficiently powerful mathematical
package with a built-in ability to integrate with Java for
cross-platform portability. Matlab complies with these
requirements, providing functions which allow for
arbitrary complexity of the mathematical models (Kotkin,
Cherkasskiy, 2001). Therefore, we chose it as the language
in which the model equations imported into the system are
written. In addition, the system is chemist-oriented, so the
user often has experience with Matlab but is unlikely to be
familiar with the multi-disciplinary programming
languages.

Despite the availability in the latest version of
Matlab of a tool to convert m-files containing Matlab
functions to Java classes, building a system with the
possibility of adding new models poses a number of
issues, which are further discussed in detail along with
suggested solutions.

2. MATERIALS AND METHODS

2.1. m-files to Java-files conversion in Matlab

In Matlab a tool called “deploytool” allows to
convert the functions contained in the m-files in the Java
classes. The original function is transformed into resulting
class’ method of the same name. Matlab compiler is used

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9293

for the conversion, which adds only those functions and
modules to the resulting Java project which are used in the
m-file being converted. However, information on the use
of a particular function is not always available at compile
time, because Matlab supports mechanisms for dynamic
function calls at runtime using the functions eval / evalin.
In the case of their use in deploytool user must explicitly
specify which other m-files can be called from the m-file
in question (Ksu, 2005). The conversion process is as
follows: first, the compiler finds all the functions called
from the converted file. After that it iterates through each
of them individually and looks for a deeper level functions
that are called from them. Thus, the compiler implements
the wave-algorithm, and the final project includes only
those functions that are necessary for it to run. However,
in the case of a system for new mathematical models
adequacy verification it is impossible to say at compile
time what functions will be called, because model for the
calculation is determined interactively. In this situation the
user enters the equations of the newly created model,
which does not exist at compile time. Therefore, a
technique to overcome these limitations is required.

2.2. Adding new model equations dynamically

We have described above the general algorithm
for converting m-files into Java classes. This section
discusses its inherent limitations and methods of
overcoming them.

2.2.1. The need to re-compile the project after adding
 new models

Since it is necessary to explicitly specify the
functions to be included into the project, if new m-files are
added after the compilation, a full re-compilation of all
Matlab code used in the system is required after which the
classes in the corresponding jar-archive should be
accordingly updated. This procedure significantly reduces
the flexibility of the application and, moreover, requires an
installed version of Matlab. Moreover, following all these
steps may be rather difficult for a user-chemist.

When using eval () function in Matlab code for
compilation it is not always required to explicitly specify
all functions called from it. If it is expected that a valid
Matlab statement will be passed to eval () as an argument,
containing only calls to the functions of the main Matlab
module (i.e., without references to additional packages of
instruments, such as the Image Toolbox, Database
Toolbox, etc.), eval () can be compiled without any
explicit indications of called functions. Inability to use
additional tools is not a big limitation since usually
equation models are mathematical functions with standard
operations, implemented in the main Matlab module
(including integration and differentiation). Thus, instead of
calling a new user-defined function, its whole body
(without signature) can be passed to eval ().

2.2.2. Matlab functions to Matlab scripts conversion
In the case of complex model equations, they are

often separated into several sub-functions contained in one
m-file. These sub-functions might be nested into the outer
ones. Passing the main function body with the inner
functions contained within it as an argument to eval()
leads to a runtime error. The argument to eval() should be
a valid Matlab statement, which is not the case for a string
that contains within itself a function (declared using the
word “function”). A Matlab statement is any sequence of
characters that can be successfully executed from Matlab
command line. It is not allowed to declare functions
(defined with the word “function”) from the command line
in Matlab. Thus, the initial objective is to convert the
function described in the m-file into Matlab statement
(Matlab script).

This problem can be solved using anonymous
functions supported in Matlab. They do not contain the
word “function” in their declaration, and can be declared
from the command line. This creates a function handle,
which can be subsequently used with the same syntax as
the functions defined in the m-file. The anonymous
function declaration is done as follows:

F = @(x1,x2,…) f(x1,x2,…)

where F is an arbitrary name of the variable, storing the
function handle, (x1,x2,…) – list of function arguments,
f(x1,x2,…) - required function.

Consider an arbitrary inner Matlab function,
contained in the same m-file which, in its turn does not
contain nested functions. We shall assume that it does not
contain loops and branching statements. This is based on
the assumption that the function in the developed system
represents the equation of a mathematical model written
using standard mathematical operations. In addition, we
assume that the values of the arguments and global
variables do not change during the function execution.
This somewhat limits the range of applicability of this
approach, but in the case of arbitrary m-file a general
conversion algorithm has not been found, moreover, this
restriction only concerns inner functions and does not
affect the main function. General view of the function has
a structure similar to the following:

function f = F(x1,x2,...)
 global b1, b2, ...
 %...
 tmp1 = f1(b1,b2,...,a1,a2,
...,x1,x2,...);
 tmp2 = f2(b1,b2,...,a1,a2,
...,x1,x2,...);
 %...
 tmpn = fn(b1,b2,...,a1,a2,
...,x1,x2,...);
 f = fn+1(tmp1,tmp2,...);
end

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9294

where xi - function arguments, bi - global variables, ai -
local variables. We will now transform this function into
anonymous. Using eval() for this transformation is not
allowed, as a nested call of eval () inside eval () causes
numerous problems. First, the function has to be rewritten
in the form where each local variable changes after
initialization not more than once. To achieve this,
variables that do not meet this condition need to be
replaced by new ones starting from the place at which they
change the second time. After that we shall consistently
reduce the number of variables used by specifying the
corresponding expressions inline. As a result, there will be
only one line, which is an explicit expression for the return
value, depending on the arguments and environment
variables (the latter are converted into ordinary function
arguments). Then, the variable representing the return
value is replaced with an anonymous function of the same
name. For example, the following line

F = f(in1,in2,...)
will be transformed into:

F = @(in1,in2,...) f(in1,in2,...)

The described procedure is applied for all inner
functions. In case of meeting the above-mentioned
requirements, no collisions or errors occur. After that, all
generated anonymous functions are placed in the body of
the main function immediately after the signature. Their
order must match the order of their appearance in the
generated script. The line in which the variable is assigned
the return value is also converted to an anonymous
function. In the resulting file the signature and the
reserved word “end” are deleted. Finally, the name of the
function handle in the resulting script is replaced by
“model_equation”. The purpose of this replacement will
be explained in section 2.4.

2.2.3. The case of initial presence of anonymous
 functions in the m-file

In case of initial presence of anonymous
functions in the m-file, the procedure described above
causes an error. Within the outer function, they have full
access to its arguments, but by removing the signature the
information about the arguments is lost. Adding removed
arguments into the parameter list cannot be done, since
often such functions represent integrands. Their single
parameter is the variable of integration, and in case of
multiple parameters an error is thrown. A possible solution
to this problem is to put the whole expression of the
anonymous function inline without allocating an
additional variable for it. Then, the arguments of the outer
function will be accessible within the scope of this inner
anonymous function without adding them to its arguments
list.

2.2.4. Passing an array as a list of function arguments
 in Java

After the final m-file conversion, its resulting
code can be stored in the mathematical models database.
The procedure for using stored equations is simple. A
java-class, generated by compilation of the following m-
file is included into the project:

function f = eval_equation(s,varargin)
eval(s);
f = model_equation(varargin{:});
end

A string s containing the equations of the model,
taken from the database is passed to this function as an
argument, along with the model parameters values
(number of which can be variable). Due to the fact that the
name of the model function stored in the database is
always “model_equation”, its specific implementation is
not important. Thus this code works for any model
retrieved from the database and calling it does not require
project re-compilation.

Here we face a problem of passing the parameters
to this function in Java. The parameter values are retrieved
from the database as an array, and the number of elements
in it can vary. However, to call the described function, one
must specify the required parameters sequentially,
separated by commas. There is no direct mechanism to
convert an array of arbitrary length into a list of function
arguments. One option would be to change eval_equation
() signature, making it accept an array as an argument, but
this approach is inconvenient for users of the developed
system, since using single array-variable instead of
parameters list does not allow assigning intuitive names to
the arguments, corresponding to their physical meaning
(those are parameters of a mathematical model describing
some physicochemical processes). In addition, often the
user-chemist does not have the experience of working with
arrays in Matlab. Given the above, the problem of passing
parameters in Java requires a different approach.

The issue was solved by using the mechanism of
reflection, whose methods are contained in
java.lang.reflect package. It has a function of dynamic
invocation of a class method, and it takes as an argument
an array of parameters of the method to be called. Thus,
the transformation of the array into the list of arguments is
not necessary. The function call using reflection looks as
follows in Java:

result = (Object[])
equationEvaluatorInstance.getClass().ge
tDeclaredMethod("eval_equation",
int.class,
Object[].class).invoke(equationEvaluato
rInstance, 1,params);

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9295

The equation Evaluator Instance object is an
instance of the class created from m-file function
eval_equation (). The class created by Matlab contains a
method whose name matches the original function name
(“eval_equation”). Using reflection, the method is found
by calling getDeclaredMethod (), after which it is invoked
by calling invoke (). invoke () takes as arguments the
instance of the class whose method is invoked
dynamically, the size of the output array of results and an
array of arguments (params). Without reflection one might
have used conditionals like:

if (params.length == 1) {
result = (Object[])
equationEvaluatorInstance.eval_equation
(1,params[0]);
}
else if (params.length == 2) {
result = (Object[])
equationEvaluatorInstance.eval_equation
(1,params[0],params[1]);
}
//etc.

However such structure is cumbersome and is
limited to small maximum number of parameters while
reflection supports an arbitrary number of them.

3. RESULTS

The technique described was implemented and
integrated into the water solution modeling system. It is
currently used to study a newly proposed cluster model of
hydration in electrolytes. In this section an example of m-
file conversion into Matlab script for storing it in the
database is provided.

3.1. Using the proposed technique of Matlab code
 dynamic integration into Java

Consider an m-file with the following source
code:

function f=model8_G(q1,q2,y,h1,r1)
global q
 q=q1+q2;
 f=exp(lng(q1,q2,y,h1,r1));
end

 function f2=lng(q1,q2,y,h1,r1)
 global q
 J=@(t)
(model8_FEE(t,h1,r1,h2,r2,As,B)-1-
fe_D(B,t))./(t);
f2= q1/q + q2/q + h1 + r1 +
quadv(J,0.0000001,y);
 end

quadv () is a built-in numeric integration function from the
main Matlab module.

The conversion starts with the inner function:

J=@(t) (sin(t+h1+r1)-1/t))./(t);
lng = @(q1,q2,q,h1,r1,y) q1/q + q2/q +
h1 + r1 + quadv(J,0.0000001,y);

Such code is not correct. To make it valid, we put
the integrand inline:

lng = @(q1,q2,q,h1,r1,y) q1/q + q2/q +
h1 + r1 + quadv(@(t)(sin(t+h1+r1)-
1/t))./(t),0.0000001,y);

At each step of the algorithm the code is
becoming more difficult to read, but since it is not
intended for viewing by a user but is stored in the database
for calculations, its readability is not important. It should
be noted that the original code is also stored in the system
so that the user may view and modify it if necessary.

After the processing of inner functions the main
function should be transformed:

function f=model8_G(q1,q2,y,h1,r1)
 lng = @(q1,q2,q,h1,r1,y) q1/q +
q2/q + h1 + r1 +
quadv(@(t)(sin(t+h1+r1)-
1/t))./(t),0.0000001,y);
 q = q1 + q2;
 f =@(q1,q2,y,h1,r1)
exp(lng(q1,q2,q,y,h1,r1));
end

The return variable is renamed into
“model_equation”, the signature of the function and the
word “end” are discarded, resulting in:

lng = @(q1,q2,q,h1,r1,y) q1/q + q2/q +
h1 + r1 + quadv(@(t) sin(t+h1+r1)-

 1/t))./(t),0.0000001,y);
q = q1 + q2;
model_equation = @(q1,q2,y,h1,r1)
exp(lng(q1,q2,q,y,h1,r1));

Finally all “carriage return” symbols are deleted
from the obtained script, since they are not allowed in
valid Matlab statements and the code is saved in the
database.

4. DISCUSSIONS

In this paper a technique for dynamic integration
of mathematical models equations implemented in Matlab

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9296

into Java is proposed. When using m-files directly with
Java in developing expert systems, a complete project
recompilation is required after adding a new model written
in Matlab, resulting in strong system usability limitations.
Converting the source code of models into Matlab scripts
using the described approach with their subsequent
passing to the Matlab eval () function as an argument
makes it possible to overcome this issue. The procedure in
question is based on consequential replacement of inner
functions by anonymous. The built-in Java mechanism of
reflection enables passing the retrieved Matlab array as a
list of parameters to the called function. The proposed
technique has been implemented in the water solution
modeling system and is currently used to study the newly
proposed cluster hydration model.

REFERENCES

Elliott J.R., Lira C.T. 1999. Introductory Chemical
Engineering Thermodynamics, Prentice-Hall. pp. 693-712.

Koretsky M.D. 2004. Engineering and Chemical
Thermodynamics, John Wiley and Sons. p. 553.

Kotkin G.L., Cherkasskiy V.S. 2001. Computer modeling
of physical processes using MATLAB-Novosibirsk:
Novosibirsk university. pp. 89-92.

Ksu D. 2005. Matlab interaction with ANSI C, Visual
C++, Visual BASIC and Java. - M.: Piter. pp. 292-312.

Kyle B.G. 2005. Chemical and Process Thermodynamics,
Prentice-Hall, Englewood Cliffs. pp. 746-751.

Potapov D.A., Modyaev A D., Rudakov A.M. 2011.
Computer modeling and prediction of electrolytes solution
properties. Information systems and technologies. № 6
(68): 57-66.

Rudakov A.M., Maikova N.S., Sergievskiy V.V. 2011. A
cluster-model-based study of solvation and association in
binary solutions. The problems of solvation and
complexing in solutions: Proceedings of XI international
conference - Ivanovo. p. 14.

Sandler S.I. 2006. Chemical, Biochemical, and
Engineering Thermodynamics, Wiley, 4th edition. p. 945.

