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ABSTRACT 

The level of pressure gradient needed to enable fluid to overcome the viscous forces and start flowing is referred 
to as the threshold pressure gradient, TPG, or minimum pressure gradient required for fluid flow.  While it has been 
observed that TPG has an important effect on the pseudorradial flow regime of a fractured vertical well, the early linear 
flow regime caused by the fracture is not impacted by TPG. In this work, TDS methodology is implemented for 
interpretation of pressure tests in uniform-flux fractured vertical wells of low permeability reservoirs affected by TPG. 
Two governing equations of the TPG effect on pressure response were developed, in addition to two correlations, which 
were all tested and validated in a synthetic case.    
 
Keywords: TDS technique, pressure transient analysis, vertical fractured wells, flow regimes. 

 
1. INTRODUCTION 

An additional pressure gradient is required in low 
permeability reservoir for the fluid to flow. The onset 
pressure gradient value for this to happen is known as the 
threshold pressure gradient. As expressed by the title, the 
TPG is important in low permeability reservoirs, let us say 
permeabilities lower than 10 or 20 md. 

Raymond and Philip (1963) observed the effect 
of TPG in flow of water through soils with high clay 
content. The impact of TPG on the fluid flow through 
porous materials and its role on the pressure and flow rate 
distributions were study by Pascal (1981). Yun, Yu, and 
Cai (2008) introduced a fractal model to capture the 
Bingham fluids flow in porous media under TPG 
conditions. The impact of the onset pressure gradient 
required to initiate fluid flow has been studied by several 
researchers. Prada and Civan (1999) formulated some 
empirical correlations for the determination of the 
minimum pressure gradient as a function of fluid mobility. 
Their study was based on a laboratory investigation on the 
effect of the onset pressure gradient on several low 
permeability rocks.  

Lu and Ghedan (2011) presented an analytical 
solution and conventional analysis of the pressure 
behavior of vertical wells in low permeability reservoirs 
under the influence of TPG. Lu (2012) included the effect 
of TPG on pressure tests in uniform-flux hydraulically 
fractured vertical wells. These two researches did not 
consider the effect of wellbore storage coefficient on the 
pseudorradial flow regime when TPG effects are included. 
As seen later in the present study, these effects are quite 
important. 

Owayed and Tiab (2008) presented an analytical 
solution and interpretation technique of the flow of a 
slightly compressible Bingham fluid.  Zhao et al. (2013) 
presented an analytical solution for the horizontal well 
transient pressure behavior of a naturally-fractured 
reservoir with the effect of TPG. They observed that the 
impact of TPG is only observed during pseudorradial flow 
regime. Escobar et al. (2014b) used the model presented 
by Zhao et al. (2013) to formulate an interpretation 
methodology based upon TDS technique, Tiab (1993). 

The studies of Zhao et al. (2013) and Escobar et 
al. (2013) show the effect of the threshold pressure 
gradient is easily observed by an upwards deviation of the 
pressure derivative during pseudorradial flow regime. A 
similar situation is observed in the present work where the 
impact is also seen on the pseudorradial flow regime. This 
situation is expected to take place since the pseudorradial 
flow in a horizontal well is the same as the radial flow in a 
vertical well.  

It is also necessary to clarify that all the former 
studies, even the present one, assume a porous medium 
filled with a Newtonian-type fluid. As seen in the recent 
works by Escobar, Martinez and Montealegre (2010) and 
Escobar et al. (2011) the pressure derivative during radial 
flow regime is affected by the flow behavior index, n, then 
this effect is excluded from the present work. 

It was also observed that as the wellbore storage 
coefficient increases so does the slope of the pressure 
derivative curve during radial/pseudorradial flow regime. 
Since fractured wells are normally tested under bottom-
hole shut-in conditions; then, wellbore storage was 
assumed to be negligible in the present study. 
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The main objective of this work is to introduce an 
interpretation technique based upon observations from the 
pressure and pressure derivative plot for developing 
analytic expressions and correlations to estimate the 
dimensionless threshold pressure gradient. Two defined 
tendencies were identified due to the influence of the TPG; 
then, governing equations for these were developed. The 
new expressions were successfully tested with a synthetic 
example. 
 
2. MATHEMATICAL FORMULATION 
 
2.1. Modeling  

The uniform-flux fractured vertical well model 
used in this work is an integration of the point-source 
function along the fracture, which is derived in the work 
presented by Zhao et al. (2013). 
  
2.2. Dimensionless quantities 

The dimensionless quantities considered in this 
study are given below.  
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2.2. Pressure, pressure derivative and second pressure  
       derivative behaviors 

Different pressure scenarios were obtained using 
the model adapted from the work of Zhao et al. (2012). 
Pressure and pressure derivative behavior for different 
dimensionless pressure gradient values (which represents 
different TPG values) expected to occur in field situations 
are shown in Figure-1. It is important to note that the early 
pressure data during the fracture-acting time period remain 

unaltered, as flow is dominated by fracture flow and there 
is no impact of TPG on flow in high permeability fracture 
However, pressure derivative during pseudorradial flow 
regime deviates upwards from the horizontal line (with 
TPG = 0) making it difficult to obtain permeability due to 
TPG masking the pseudorradial flow regime. As 
dimensionless pressure gradient increases from 0 to 0.1, 
there is greater deviation and masking of pseudorradial 
flow regime with more inclined line from horizontal. It is 
interesting to notice that at late pseudorradial flow regime 
time, both pressure and pressure derivative are present and 
half-slope line behavior similar to the linear flow regime is 
observed. 
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Figure-1. Dimensionless pressure vs. time for different 
dimensionless pressure gradient values of a vertical 
fractured well in an infinite homogeneous reservoir. 
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Figure-2. Dimensionless pressure derivative vs. time for 
different dimensionless pressure gradient values of a 

vertical fractured well in an infinite homogeneous 
reservoir. 

 
In order to observe more features of the effect of 

TPG, log-log plot of second (numerical) pressure 
derivative versus time is drawn in Figure-3. There is a 
clear minima and maxima observed on the plot with the 
half-slope behavior as well.  

Effect of wellbore storage on pressure response 
for a given dimensionless pressure gradient is shown in 
Figure-4. Clearly, wellbore storage impacts the pressure 
and pressure derivative behavior by shifting upward the 
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pressure derivative as dimensionless wellbore storage 
increases. In this study, the focus is on investigating and 
predicting effect of TPG in pressure response, hence 
wellbore storage is assumed to be zero. The combined 
effect of wellbore storage and TPG will be investigated in 
future work.    
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Figure-3. Dimensionless second pressure derivative vs. 
time for different dimensionless pressure gradient values 
of a vertical fractured well in an infinite homogeneous 

reservoir. 
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Figure-4. Effect of wellbore storage on the dimensionless 
pressure derivative vs. time for a constant dimensionless 

pressure gradient and skin factor. 
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Figure-5. Effect skin factor on the dimensionless pressure 
and pressure derivative vs. time for a constant dimensionless 

pressure gradient and zero wellbore storage coefficient. 
 

Figure-5 shows the effect of skin factor on 
pressure response under a fixed value of dimensionless 
pressure gradient. As expected, skin factor affects the 
dimensionless pressure but does not affect the pressure 
derivative since in the model the skin factor is time 
independent then its derivative will be zero. Fractured 
wells are expected to have small skin factor values (less 
than 10), which show no significant effect on the pressure 
derivative behavior.  
 
2.3. TDS technique 

The main objective of this paper is to provide a 
practical methodology following the TDS technique 
philosophy, Tiab (1993), for interpretation of well pressure 
data under the effect of threshold pressure gradient. Tiab 
(1993) demonstrated that permeability and skin factor can 
be obtained from data obtained during pseudorradial flow 
regime; 
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The above equations assume that the 

pseudorradial flow regime is easily identified with a 
horizontal line formed by the pressure derivative during 
pseudorradial flow regime, (t*P’)r, which is not the case 
for wells affected by TPG (see Figure-2). The solution of 
this study need to know the value of the pressure 
derivative during pseudorradial flow regime, (t*P’)r, 
meaning permeability has to be known from either a 
former pressure test or from other source. In any case, the 
pseudorradial flow regime pressure derivative can be 
solved from Equation (7): 
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If the typical horizontal line of the pressure 

derivative during pseudorradial flow is not observed in the 
test and permeability is also unknown, pressure derivative 
is then used to find reservoir permeability. As seen in 
Figure-3, once linear flow regime vanishes, the second 
pressure derivative will always displays a maximum point 
which has coordinates for zero dimensionless pressure 
gradient of: 
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If checking back again in the maximum point of 

Figure-3, notice that the second pressure derivative 
maximum is affected by the dimensionless pressure 
gradient but the maximum time remains unaltered. Then, 
after plugging the dimensionless time quantity given by 
Equation (1), permeability can be estimated if the half-
fracture length is known. 
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However, if the half-fracture length is unknown, 

one can use the maximum point of the second pressure 
derivative to find a correlation for permeability 
determination. Notice also that the maximum point is 
affected by the pressure gradient in a perfect linear 
proportion as indicated by Figure-6. Based on this 
observation, a correction for expression (9) is given by 
Equation (12) as: 
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Once the dimensionless quantities given by 

Equations (3) and (4) are replaced in Equation (13) an 
expression for estimating the formation permeability is 
obtained: 
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Notice that Equation (12) uses also the reading of 

the pressure derivative during linear flow regime at a time 
of 1 hr, (t*P’)L1, extrapolated if needed.  
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Figure-6. Relationship between the dimensionless pressure 
gradient and the maximum dimensionless second 

pressure derivative. 
 

Once permeability is known, the next step is to 
determine the dimensionless pressure gradient. For that 
purpose, the effect of this parameter is unified by 
multiplying the dimensionless time by the square of the 
dimensionless pressure gradient, with behavior shown in 
Figure-7. Two important features are seen during 
pseudorradial flow regime: (1) a quarter-slope (qs) straight 
line and (2) half-slope (hs) straight line which governing 
equations are, respectively, given by: 
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Solving for the dimensionless pressure gradient 

from the above equations leads to: 
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The above expressions use a value of the pressure 

derivative read at any arbitrary time during the given 
behavior. However, for best interpretation, it is 
recommended to read these values at a time of 1 hr so 
Equations (17) and (18) become: 
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If both half slope and quarter slope lines are 

observed, the dimensionless pressure gradient can be also 
found from intersection point of these two lines, tqs_hs_i, so: 
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Figure-7. Dimensionless pressure derivative vs. the 
product of dimensionless pressure gradient in 
second power with the dimensionless time. 

 
In case that neither line is observed due to either a 

short test or noise, then two key parameters of the second 
pressure derivative are used for the estimation of the 
pressure gradient: (a) the maximum point, and (b) the 
minimum points. Figure-8 expresses the existing 
relationship between the maximum second pressure 
derivative and pseudorradial pressure derivative value 
with the dimensionless pressure gradient. The following 
correlation is obtained: 
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After replacing Equations (3) and (4) in the above 

expression leads to: 
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Figure-8. Relationship between the ratio of the maximum 
second pressure derivative at the maximum point and the 
pressure derivative during pseudorradial flow regime with 

the dimensionless pressure gradient. 
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Figure-9. Relation between the minimum second pressure 
derivative and the dimensionless pressure gradient. 

 
The relationship between the minimum second 

pressure derivatives is given in Figure-9 from which the 
following correlation is derived: 
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Also, after replacing Equations (3) and (4) in the 

above expression leads to: 
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Finally, the half- fracture length determination by 

the TDS technique was presented by Tiab (1994): 
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Where (t*P’)L1 is the pressure derivative during 
the early time  linear flow regime read a time of 1 hr, 
extrapolated if necessary. Notice that  was original 
excluded in Tiab’s model since it was only presented for 
homogeneous formations.  was introduced by Escobar et 
al. (2014a). Then, when  = 1, Equation (26) accounts for 
homogeneous reservoirs. For the case of naturally-
fractured formations,  =  which is the dimensionless 
storativity coefficient. 
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Figure-10. Pressure and pressure derivative versus time 
for example. 
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Figure-11. Second pressure derivative versus time 
for example. 

 
3. DETAILED SYNTHETIC EXAMPLE 

Pressure data is given in Table-1. Also, the 
pressure drop and pressure derivative versus time log-log 
plot for a simulated drawdown is provided in Figure-10 
and the second pressure derivative versus time log-log plot 
for the same exercise is given in Figure-11. The input data 
for the simulation is given as follows: 
 
q = 35 BPD  B = 1.2 rb/STB 
 = 2.3 cp  ct = 1x10-5 psi-1   
h = 100 ft  k = 10 md 
 = 5 %   xf = 55 md 
PGD = 0.01  s = 0 
 

Solution: The following information was read 
from Figures-10 and 11, 
 
Pr = 72.2 psi  (t*P’)L1 = 12 psi 
(t*P’)qs1 = 2.3 psi (t*P’)hs1 =0.21 psi 
tqs_hs_i =10000 hr  tmax =0.399 hr 
(t2*P”)max = 1.38 psi (t2*P”)min = 0.5447 psi 
tr = 912.67 hr 
 
The procedure is outlined as follows: 
 

Step-1: Determine reservoir permeability using 
Equation (14): 
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Step-2: Find half-fracture length with Equation 
(26): 
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Step-3: Recalculate permeability with Equation 

(12): 
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Step-4: Since the two permeability values are 

around the target of 10 md, it is good to obtain the 
arithmetic average which is 9.67 md. 

Step-5: Find the pseudorradial pressure 
derivative corresponding to the permeability value found 
in step 4. 

70.6(35)(2.3)(1.2)
( * ’) 7.06 psi

(100)(9.67)rt P    

 
Step-6: Find the dimensionless pressure gradient 

with Equations (19), (20) and (21) (all from observed 
pressure response);  
 

2 3 5

3

100(2.3)58 9.67 (0.05)(1 10 )
0.0098

1088.8 (35)(1.2) 2.3DPG
  

  
 

 

 
5100(0.21)(58) 9.67(0.05)(1 10 )

0.0103
4.064(35)(1.2) 2.3DPG


   

 
5(0.05)(2.3)(1 10 )

57.53(58) 0.0109
9.67(10000)DPG


   
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Table-1. Pressure drop, pressure derivative and second 
pressure derivative versus time data. 

 

t, hr P, psi t*P’, psi t2*P”, psi 

0.00229 1.010 0.506 0.187 

0.00331 1.215 0.609 0.286 

0.00479 1.462 0.732 0.367 

0.00692 1.758 0.876 0.439 

0.01001 2.112 1.043 0.505 

0.01446 2.530 1.229 0.562 

0.02091 3.020 1.432 0.617 

0.03022 3.588 1.654 0.679 

0.04368 4.240 1.896 0.758 

0.06314 4.985 2.165 0.862 

0.09127 5.835 2.471 0.993 

0.13192 6.808 2.825 1.140 

0.1907 7.923 3.238 1.277 

0.2756 9.204 3.710 1.369 

0.3984 10.671 4.228 1.389 

0.5759 12.332 4.762 1.331 

0.8324 14.186 5.277 1.210 

1.2031 16.215 5.742 1.055 

1.7391 18.399 6.140 0.897 

2.5137 20.713 6.468 0.758 

3.6334 23.136 6.736 0.651 

5.25 25.650 6.961 0.581 

7.59 28.244 7.158 0.548 

10.97 30.911 7.344 0.549 

15.86 33.649 7.532 0.581 

22.93 36.461 7.735 0.643 

33.14 39.353 7.962 0.733 

47.90 42.337 8.225 0.854 

69.23 45.425 8.533 1.007 

100.07 48.636 8.897 1.197 

144.65 51.994 9.330 1.429 

209.08 55.527 9.848 1.711 

302.21 59.268 10.469 2.053 

436.83 63.259 11.212 2.465 

631.41 67.550 12.105 2.961 

912.67 72.203 13.177 3.558 

1319.21 77.288 14.465 4.276 

1906.83 82.895 16.014 5.140 

2756.21 89.127 17.874 6.180 

3983.94 96.113 20.111 7.315 

5758.55 104.003 22.800 8.997 

8323.64 112.981 26.032 10.839 

12031.31 122.997 29.169 12.947 

17390.54 135.279 34.910 15.430 

25136.98 148.874 40.207 18.536 

43683.06 173.842 50.597 24.687 

63141.24 194.162 59.499 29.636 

91266.86 218.141 70.437 35.547 

131920.74 246.365 83.262 42.750 

190683.49 279.854 98.773 51.376 

275621.50 319.573 117.374 61.779 

398394.28 366.817 139.734 74.283 

575854.93 423.104 166.610 89.309 

832363.62 490.281 198.941 107.381 

 
All the above equations give very close values to 

the actual dimensionless pressure gradient, which shows 
the validity of all of the above equations.  

Step-7: Use correlation given by Equation (23) to 
estimate the dimensionless pressure gradient. The ratio of 
the maximum second pressure derivative and the 
pseudorradial pressure derivative is 0.197, then: 
 

0.8658[0.197] 0.1663 0.0042DPG     

 
This value does not respond well to the actual 

value as it is based on a correlation.  
 
Step-8: Use correlation given by Equation (25) to estimate 
the dimensionless pressure gradient. The ratio of the 
minimum second pressure derivative and the pseudorradial 
pressure derivative is 0.0772, then: 
 

20.6447[0.0772]

0.0819(0.0772) 0.0007 0.0095
DPG  

 
 

 
4. COMMENTS ON THE RESULTS 

The agreement between the simulated and 
estimated results in the worked example show that the 
equations and corrections introduced in this study work 
very well with a slight exception of Equation (23) which is 
a correlation. However, four accepted values of the 
dimensionless pressure gradient were estimated from the 
simulated test. 
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5. CONCLUSIONS 
 
a) Extension of the TDS technique was given for the 

case of vertical wells with pressure gradient threshold. 
Two governing equations for the influence of this 
parameter during pseudorradial flow regime were 
developed and successfully tested by a simulated 
example.   

b) The higher the TPG the more deviated upwards the 
pressure derivative pseudorradial flow regime from its 
characteristic horizontal behavior. It was also found 
that the wellbore storage coefficient has a combined 
impact with the TPG during pseudorradial flow 
regime. Then, an analytical solution for unfractured 
wells should be developed. 

c) This work also includes the estimation of the 
formation permeability in spite of the absence of the 
horizontal behavior of the pressure derivative during 
pseudorradial flow regime. In this work, both the 
maximum point of the pressure derivative once linear 
flow vanishes and the reading of the fracture linear 
behavior read at a time of 1 hr is used for predicting 
reservoir permeability. 
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Nomenclature 
 

B Volumetric factor,  rb/Mscf 

ct System total compressibility, 1/psi 

k Permeability, md 

h Reservoir thickness, ft 

P Pressure, psi 

PG Threshold pressure gradient, psi/ft 

PGD Dimensionless threshold pressure gradient 

r Radius, ft 

s Skin factor 

t Time, hr 

tD Dimensionless time 

t*P’ Pressure derivative, psi 

t2*P” Second pressure derivative, psi 

tD*PD’ Dimensionless pressure derivative 

tD
2*PD” Dimensionless second pressure derivative, psi 

xf Half-fracture length, ft 

Greeks 
 

 Porosity, fraction 

 Viscosity, cp 

 
Suffices 
 

D Dimensionless 

Dxf 
Dimensionless based on half-fracture 
length 

ELL Elliptical 

f Fracture 

hs Half slope 

hs Half slope read at 1 hr 

L Linear 

L1 Linear at 1 hr 

max Maximum 

min Minimum 

qs Quarter slope 

qs1 Quarter slope read at 1 hr 

qs_hs_i 
Intercept between quarter slope and half 
slope lines 
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