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ABSTRACT 

The homogenization method has been well established in multiscale engineering practise to determine the 
effective elastic constants of linear elasticity of heterogeneous materials by considering their microstructure. This method 
was developed to reflect the microscopic structure without looking at details of all of the material points of the body, 
whenever the mechanical behaviour of the macroscopic body is in question. Nevertheless, in the classical homogenization 
method, the microscopic characteristics were modelled in deterministic manner. To estimate the expectation and dispersion 
of macroscopic properties considering uncertainties in microstructure caused by distributing properties of constituent 
materials, variations in geometry and so on, expensive calculation should be repeated supposedly many times using Monte 
Carlo simulation. Therefore, this study aims to predict the macroscopic properties of two-phase materials considering 
uncertainties in microstructure by introducing the stochastic multiscale method. Stochastic finite element method using 
first-order perturbation-based was combined with homogenization theory to derive the formulation. By assuming the 
fluctuation arises in microscopic property is distributed in normal distribution, determination of macroscopic properties 
was formulated in stochastic treatment. Then, the proposed method was established by adding some demonstrative 
examples that commonly occurred in engineering materials. The numerical results suggest that the uncertainties in 
microstructure influenced the macroscopic properties of two-phase materials. It indicates the importance of presented 
stochastic multiscale analysis for microstructure design with considering the microscopic random variations. 
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INTRODUCTION 

Homogenization method has been widely used to 
predict the macroscopic (homogenized) of heterogeneous 
materials in multiscale engineering problem, especially 
when the microstructure was considered [1,2]. This 
approach enables the simplification of discretization 
process without looking into details of each point of 
microstructure and at the same time, the computational 
time can be reduced. 

However, in classical homogenization theory, the 
macroscopic response has been obtained in deterministic 
manner. Since the randomness exists in the microstructure, 
the multiscale analysis should be treated in stochastic 
nature. To consider random variations of microstructure 
caused by distributing properties of constituent materials, 
fluctuation of geometry and so on, the use of conventional 
approach of Monte Carlo simulation will require huge 
computational time. Only a few computational schemes 
are available for evaluation of random media in stochastic 
manner. Recently, stochastic FEM was combined with 
homogenization theory using perturbation-based [3,4] and 
spectral methods [5,6] to calculate the macroscopic 
response due to local behaviors in microstructure such as 
in trabecular bones [7,8] and cellular materials [9]. But 
these studies are only considered one random variable 
each time to estimate the stochastic response. 

Therefore, this paper proposed the formulation of 
stochastic homogenization method applied to two-phase 

materials to calculate the variation of macroscopic 
homogenized properties. First, the theoretical framework 
of stochastic homogenization using first order perturbation 
method was derived. Then, the applicability of the 
computational formulation was tested on demonstrative 
examples of two-phase materials; (1) fiber reinforced 
composite and (2) honeycomb microstructure. 
 
FRAMEWORK OF STOCHASTIC 
HOMOGENIZATION PERTURBATION-BASED  

Consider a unit cell representing an 
inhomogeneous solid with periodically arranged 
microstructure and containing various types of random 
microstructures such as fibers, particles, polycrystallite or 
porous materials as shown in Figure 1. If this unit cell has 
a periodic microstructure, the effective elastic properties 
or homogenized properties of represented structure can be 
obtained using classical homogenization theory. But 
because of the random nature in microstructure, the 

homogenized properties HD could be influenced by the 
uncertain parameters such as the morphology of 
microstructure A, material types M and volume fraction V, 
as variables of geometrical information X, and mechanical 
properties of constituents D. This relationship can be 
summarized as in eq. (1)  
 

  kkkk
H DAVMfD ,,,                                               (1) 
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where k is the number of constituent materials and f 

denotes the function of HD . 

 

 
 

Figure-1. Microstructure of heterogeneous materials. 
 

In this paper, however, we assumed only the 
mechanical (microscopic) properties of constituent D have 
a small random fluctuation. Then, the microscopic 
property is written as a sum of deterministic term D0 and 
stochastic one that denotes by α. 
 

 kkk αDD  10
                                                              (2) 

 
Next, by taking into account this fluctuation, the 

homogenized property is formulated as a function of α. If 
this function is approximated in expansion form, then the 
approximation of homogenized property is written as,  
 

   
m

mmH
k

H
k

H
k DαDD 

                                      (3)

 

 
where ϕ is a fluctuation with m-th order. Based on 
perturbation theory, ϕ in above equation is equal to α. 
Then, the homogenized property is written in perturbation 
form as eq. (4). 
 

       2210
k

H
kk

H
k

H
k

H
k αDαDDD                       (4) 

 
Considering the fluctuation of α was 

characterized by probability density function f (α), an 
expectation of the homogenized elastic tensor can be 
calculated as follows. 
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              (5)

 

Applying the first-order perturbation method to 
this calculation and assuming the stochastic variable α is 
distributed in normal distribution, the expected value and 
variance of the homogenized property is computed in 
equation (6) and (7), respectively. 
 

   0xp H
k

H DD                                                             (6) 
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Next, zero-th and first order of the stochastic homogenized 
property should be derived in order to solve equation (6) 
and (7). 
 
DISCRETIZATION OF STOCHASTIC FINITE 
ELEMENT AND HOMOGENIZATION 
PROCEDURE 

Based on deterministic homogenization theory, 
the geometrical information X in eq. (1) is replaced by the 
characteristic displacement χ, and written as, 

    







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where |Y | is the volume of the unit cell Y. Then, this 
equation is discretized by finite element methods as, 

 
Y Y

kykk
H
k dYBD

Y
dYD

Y
D 11

  (9) 

 
χ in eq. (9) is the solution of microscopic equation in the 
following linear algebraic equation form. 
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Since the random fluctuation arises in 

microscopic property D, then the stiffness matrix K and 
vector F are approximated using first-order perturbation 
[10]. 
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The order of ’0’ shows the deterministic term, 

whilst ’1’ corresponds to the first-order differential for 
stochastic variation αk at αk = 0. When the random 
quantities are inserted in K and F of equation (10), the 
linear algebraic equation should be rewritten. Hence, χ is 
also expressed in an approximation form. 
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Substitute equations (11-13) into linear algebraic 

equation will give the following equation. 
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By equating the order of α in equation (14), the 

solution of zero-th and first-order of χ is calculated as, 
 

     0100 pq
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and 
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Finally, the zero-th and first-order of stochastic 

variation of the homogenized properties can be calculated 
by equating the order of α, as written in equation (18) and 
(19) respectively. 
 

   
Y Y

y
H
k dYχBD

Y
dYD

Y
D kkk

0000 11
                        (18) 

 

     
Y Y

kykkykk
H
k dYχBDχBD

Y
dYD

Y
D 011011 11

      (19) 

 
NUMERICAL ANALYSES OF TWO-PHASE 
MATERIALS 

Two sets of numerical simulations are presented 
to illustrate the applicability of the present stochastic 
homogenization method for the analysis of dispersion of 

homogenized properties in two-phase heterogeneous 
materials. All numerical analyses in this section are 
performed using 3D voxel elements. 
 
Fiber-reinforced composite 

Figure-2 shows the finite element model of unit 
cell for fiber reinforced composite as a periodic 
microstructure. Volume fraction of fiber in this example is 
0.25. Microscopic properties of the constituents are listed 
in Table-1. In this example, the fluctuation of microscopic 
property (D) that has been derived in the previous chapter 
is assumed arise in Young’s modulus, E. Considering the 
random variation in Young’s modulus, hence the 
stochastic approximation of E can be written as follows. 
 

 kkk αEE  10                                                              (20) 

 
By assuming the fluctuation of random variable is 

distributed in Gaussian normal distribution and referring to 
the input value in Table-1, the Young’s modulus of E-
glass fiber was set as 72.4 GPa with standard deviation of 
3.982 GPa, whilst epoxy resin (matrix) was set as 2.75 
GPa with standard deviation of 0.0413 GPa. Noted here 
that the stochastic variables value have been set-up based 
on recommendation in literature with small coefficient of 
variance [4]. Poison’s ratios for both constituents were set 
as deterministic variable.  
 

 
 

Figure-2. Unit cell of fiber reinforced composite (FRC). 
 

Table-1. Microscopic properties of constituents of FRC. 
 

 
E-Glass 
(fiber) 

Epoxy 
(matrix) 

Young’s modulus, E (GPa) 72.4 2.75 

Poison’s ratio, ν 0.2 0.35 

Standard deviation of stohastic 
variable, σα 

0.055 0.015 

 
Honeycomb microstructure 

In the second example, the same problem set-up 
as in the first example was used to determine the 
stochastic homogenized properties of two-phase 
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honeycomb microstructure. Figure-3 shows the finite 
element model of honeycomb that consists of 5052 
aluminum and adhesive materials. Considering the 
honeycomb as periodic microstructure, the unit cell is 
selected to represents the homogenized properties. Table-2 
listed the microscopic properties of the constituent 
materials. Young’s modulus for aluminum in this example 
is 70 GPa with standard deviation of 3.85 GPa, whilst for 
adhesive is set as 2.2 GPa with standard deviation 0.033 
GPa. 
 
RESULTS AND DISCUSSIONS 

The calculated expected value of homogenized 
properties for fiber reinforced composite is written in the 
matrix form as follows. 
 

 
 

Obviously, the result shown that the 
homogenized properties were transverse-isotropic with the 
highest stiffness was found at axis-1. Since the present 
formulation using first order perturbation, the expected 
value for both cases (fiber and matrix variations) was 
same. Considering the fluctuation of Young’s modulus in 
fiber, the variance of homogenized properties is obtained 
as follows. 
 

 

 
 

Figure-3. Periodic microstructure of honeycomb (dimension in mm). 
 

Table-2. Microscopic properties of constituents of 
honeycomb sandwich plate. 

 

 5052 
aluminium 

Adhesiv
e epoxy 

Young’s modulus, E (GPa) 70 2.2 

Poison’s ratio, ν 0.3 0.35 

Standard deviation of stohastic 
variable, σα 

0.055 0.015 

 
Whereas the variance of homogenized properties 

due to matrix variation is written as follows. 
 

 

The results suggest that the fiber variation in 
microscopic property gives the highest variance of 
homogenized properties in axis-1, whereas the matrix 
variation produces the highest variance of homogenized 
properties in axes-2 and 3. Hence, the fluctuation of 
microscopic property in fiber reinforced composite 
influenced to the variation behavior of homogenized 
properties but the material characteristic as transverse-
isotropic is still remain. Next, the expected value of 
homogenized properties for honeycomb microstructure 
was obtained below. 
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Similar to the first example, the highest stiffness 
was found in axis-3. It proves that highest stiffness is 
always in the elongated direction of periodic 
microstructure. The variance of homogenized properties 
for both aluminum and adhesive variations are shown in 
the following. 
 

 
 

 
 

The highest variance for aluminum variation was 
found at axis-3, whilst the highest variance due to 
adhesive variation was obtained at axis-1. These results 
showed that other than microscopic property, the geometry 
also contribute to the variation of homogenized properties. 
Hence, the present study has successfully predicted the 
homogenized properties of two-phase materials in 
stochastic manner and proves the significance of 
considering random variation in microstructure in order to 
estimate accurate stochastic homogenized properties 
especially for microstructure design and fabrication 
purpose. 
 
CONCLUSIONS 

In the present study, random variations in 
microscopic property for two-phase materials was 
considered in the mathematic model to obtain the expected 
value and variance of homogenized properties using a 
stochastic homogenization method based on first-order 
perturbation approach. The numerical results showed the 
small fluctuation that arise in microscopic property have a 
significance effect to the stochastic homogenized 
properties of fiber reinforced composite and honeycomb 
microstructure. This finding indicates the importance of 
stochastic multiscale analysis for design and fabrication of 
two-phase materials in order to obtain a precise 
macroscopic property variation. 
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