
 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9382

CODE GENERATION FOR SEMANTIC EVOLUTION OF
EMBEDDED SYSTEMS

Smt. J. Sasi Bhanu1, A. Vinaya Babu2 and P. Trimurthy3

1Department of Computer Science Engineering, KL University, Vaddeswaram, Guntur District, India
2Department of Computer Science and Engineering, JNTU Hyderabad, India

3Department of Computer Science and Engineering, ANU Guntur, India
E-Mail: sasibhanu@kluniversity.in

ABSTRACT
 Monitoring and controlling a safety or a mission critical system (Production system) is normally undertaken
through interfacing with an embedded system (Target System). The embedded system which is meant for monitoring and
controlling of either mission critical or safety critical system cannot be shut-down for want of making changes to ES
software either to fix existing bugs, enhance performance, add fault tolerance or add more functionality due to the reasons
that it is quite expensive to shut-down and restart either the production system or the Target system. Changes to the ES
software, thus have to be carried while the ES system is up and running. The process of making changes while the ES
system is up and running is called dynamic semantic evolution. Many methods have been proposed in the literature using
which the dynamic semantic evolution can be carried. One of the methods is related to generation of code, which is stored
starting from a memory location and creation of a task out of the code stored and make it to run waiting for an event to take
place. In literature it has been mentioned that dynamic semantic evolution can be undertaken through a module generation
process but the implementation of the same has not been presented. In this paper, an algorithm and the process of
implementation of the same has been presented. The same has been experimented on a prototype application that monitors
and controls temperatures within a nuclear reactor system.

Keywords: dynamic semantic evolution, embedded system, code generation, safety & mission critical systems, ES architectures.

1. INTRODUCTION

A Target system which is interfaced with a
production system cannot be shut-down for want of
making changes to the embedded software as bringing
down and bringing up the production system is a very
expensive proposition and sometimes such types of
systems cannot be shutdown at all. The software changes
to the ES software are required to fix an existing bug,
increase the performance and implement fault tolerant
systems. Some times more of the control functions are to
be added. Thus the ES software must evolve dynamically
as the ES system is up and running.

Many architectures have been presented in the
literature using which the dynamic semantic evolution can
be carried. Each of the architecture presented in the
literature dealt with a different method with which
dynamic semantic evolution of loaded systems can be
carried. Very few architectural methods have been
presented that are related to embedded systems. Each
architecture presented in the literature deal with only one
type of semantic evolution. It is necessary to consider all
the evolution methods and provide a unified architecture
and the kind of dynamic evolution to be adapted should be
decided at run-time. The comprehensive architecture that
caters for all types of dynamic evolutions of embedded
systems is shown in the Figure-1.

Dynamic semantic evolution of the embedded
system can be achieved through Data Approach (Invoking

and deleting the existing Tasks as per the desired
functionality), Rule based Approach (Invoking the task
execution as per the rules for which a repository can be
maintained), Module generation and invoking approach
(Generating new modules based on HOST sent
specification), Module copy approach (Creation of the
new modules as per the code sent from the remote HOST),
Module update approach (Creation of update module and
swapping the old module with the Update module),
Module update with attached criticality assessment
Approach (Create update modules and subject the module
for criticality assessment).

The overall architecture shown in Figure-1
includes all the above mentioned methods and therefore
can be considered as comprehensive and efficient. The
type of evolution that must be taken up can be dictated
from the HOST through transmission of appropriate
commands. Semantic Evolution block can implement the
kind of semantic evolution that needs to be implemented
as per the request initiated from the HOST.

In literature many architectural models have been
presented narrating all the theoretical foundations which
are used in building those architectures, but the way those
architectures have been implemented have not been
presented except for the implementation of the dynamic
evolution of a single JAVA, C++ or C program. No
architecture as such has been presented that is suitable for
dynamic semantic evolution of ES software. In this paper
an algorithmic approach and the process used for

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9383

implementing semantic evolution of ES software using
module / Code generation approach has been presented.

2. PROBLEM DEFINITION

Many methods have been proposed in the
literature for implementing dynamic semantic evolution of
loaded systems and some methods related to semantic
evolution of embedded systems, the implementation of
which however have not be presented except dynamic
evolution of a single program which are written in JAVA,
C++ and C. The components included into architectural
presentations needs to be implemented to prove the
concepts that have been described for achieving dynamic
semantic evolution of embedded systems.

Many dynamic semantic evolution methods have
been proposed in literature which includes among many,
the method that generates the code online and make the
code converted as a task which is scheduled and make the
task work in defined real time environment. In this paper
the implementation process, algorithm has been presented.
The specification related to code generation is transmitted
from the HOST and the specification is used for
generating code, copying the same to the designated area
in the memory, creating a Task under an RTOS and
scheduling the task waiting for an event to take place. The
algorithm has been applied to generate code required to
construct ES software related to a system that monitors
and controls the temperatures within a nuclear reactor
system.

Figure-1. Overall semantic evolution architecture.

3. LITERATURE SURVEY

Two code generation frameworks are necessary
for generating the code in respect of Embedded
Hardware and software. Code is required in respect of
the Hardware to facilitate selection, integration and
displaying the layout and also code generation is
required in respect of Embedded Software. Many
frameworks have been presented in the past to generate
code relating to presentation of foot print. Sastry et al.,
[1] have presented a method to generate the code meant
for modelling the Hardware for facilitating the
selection, integration and displaying the layout of the
Hardware interfacing.

Clean room software engineering (CRSE)
methodology included the use of standard structures
like if-then-else but no formal framework has been
presented for generation of the code. Code is required
for two purposes. Code is required for designing
hardware that includes selection, integration and
display. The internal functioning of each of the
hardware component can also be represented in terms
of the code.

When it comes to ES software, CRSE
advocated that code be generated using state model.
The state model includes both Hardware and Software
states. When a system is in a hardware state other than

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9384

the Micro Controller state, no code is executed. Some
electronic function is being processed in that case. Most
of the code is executed when the embedded system is in
software state at which time code is executed within the
microcontroller. The hardware states are not that
important for generating the code related to embedded
software.

Dionision de Niz et al., [2] have presented a
model based code generation framework for embedded
real time system considering multiple operating
systems, communication mechanisms, different
hardware sizes and dynamic structures of the software.
A number of design and code generation approaches
have been presented by Gang Zhou et al., [3] for
development of embedded software that require
implementation of concurrency. W. Thies et al., [4]
have presented Framework called Stream IT which is
based on data flow formalism. Real time workshop
(RTW) from math work [5] considered code generation
based control system modelling and time has been
considered as integral part of the model development.
E. Kohler et al., [6] N. D. Jones et al., [7] have
proposed partial evolution methods that help
automating the designing and code generation process.

Chen Xi Lu et al., [8] have used partial
evaluation methods for optimized code generation by
transforming a generalized actor based model to a target
code while preserving the models semantics Gang Zhou
et al., [3] have generated C Code based on the Models.
The issues related to co-existence of hardware and
software has not been considered. Chen Xi Lu et al., [8]
have proposed a method of generating SystemCTLM
Model from UML specification. Using the
SustemCTLM Model, System CRTL Model embedded
software is generated. The System CRTL model is
synthesized to generate FPGA RTL code in the VHDL
language and a ASIC netlist is generated. Chen Xi Lu et
al., [9] have proposed a method to generate embedded
software from state diagrams. Prior to the generation of
the code the state charts are validated for correctness
related to unused states, one initial state, states with
outgoing links, reachability of every state from initial
state, existence of at least one final state, availability of
at-least one path that reaches the final state even if a
loop is inexistence at any of the state.

Matteo Bordin et al., [10] have investigated the
fitness criteria for a programming language that can be
used to generate the Embedded Software from model
based specifications. They have checked the fitness of
Java language from the point of object oriented
semantics and the ability to support the issues related to
concurrency. Marko Hannikainen, Jarno Knuutila et al.,
[11] have used SDL (Specification Description
Language) for modelling complex real-time embedded
system. SDL is a Graphic and formal language. User
can interact with SDL and build embedded software
from the scratch. Kjeld H. Mortensen [12] has proposed

building a system not necessarily the embedded
software using the Coloured Petri net models (CPN).
The model is debugged and verified for its exactness
suiting to the application.

Kathy Dang Nguyen, Zhenxin Sun [13] have
explained that an embedded system can be developed in
terms of UML Artefacts. They have proposed that
System C code can be generated by way of establishing
the System C equivalents to UML notations. They have
added some standard extensions to UML so that the
UML notations can be mapped to System constructs.
Luis Gomes and Aniko Costa et al., [14] have
recommended a method to generate code given a set of
hierarchical state Charts. They have also explained the
way the hierarchical or concurrent processing state
charts can be developed.

Code generation methods proposed in the
literature have not considered the perspective of
dynamic semantic evolution of the embedded software.
The state models however can be effectively used for
generation of ES software through use of Dynamic
semantic evolution process.

4. INVESTIGATIONS AND FINDINGS

Runtime module generation is a very powerful
technique that allows new modules to be generated at run
time to enable the system to be adapted at run time.
Generation of new modules is a complex process. Code
generation is a time taking process and also it is difficult to
generate efficient code based on the inputs fed from a
remote HOST about the changed situation. Huge
repository has to be built within the embedded system
which is required for generating the code

Figure-2 shows the architecture for runtime
Module generation technique. The details required for
code generation are transmitted from the HOST and the
same is maintained within the embedded system. Two
processes are to be included into the architecture one for
maintaining code generation repository and the other for
generating code. The memory module will make available
the address space required for storing the code that is
generated. After creating the code a task is created along
with the event for which the task must be waiting. The
tasks that are related to repository building, code
generation and memory management are invoked by the
semantic evolution modules triggering their related events.

Repository building

Repository building requires that data is obtained
from the HOST and different Tables are maintained.
Table-1 to Table-9 shows the repository required for code
generation. The data about these tables is sent using
command and the tables or maintained by the repository
builder. The required arguments to refer to the kind of
table into which the data has to be entered is also sent
along with the command.

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9385

Algorithm for generating the code
The freely available memory pools are obtained

by making a function call to the RTOS and the memory
pools are used to write the code generated. The following
algorithm is run and the code is generated and the same is
written to the memory area. The algorithm is a 8 step
algorithm which is detailed below

Step 1: Construct a library of the code segments

A code segment is a unit of execution that is
required quite frequently. The code units that are related
to communicating with the hardware devices and the
code units that are used in non-member functions are
recognized and identified as the code segments. Every
code segment will clearly recognize variables, their
types and location where the variables must have been
declared including the details of locations which
include, Global, instance, local, functional arguments
and return variables. This way of categorizing the
variables will clearly help in mapping and constructing
code functions and the class modules in which the code
segments are placed.

The code segments are pre-identified and
developed as a library over a period of time. The library
is maintained and more number of code segments is
added to the library as when needed especially when a
ES application is analysed and designed. A code
segment may include many other code segments or may
even call code functions.

A repository of code segments can be
maintained which will be used latter for resolving and
placing the variables in appropriate locations. The
details of the repository constructed for locating and
maintaining the standard code structures that help
generating the code for TMCNRS is shown in the
Table-1. Example standard code structure for writing
data to an LCD is shown below:

LCD Command write segment (LCD-COMMAND-

WRITE)
Instance Variables
Local Variables
Global Variables
Functional Variables
Int d;

includes busycheck ()
Code Begin
Rs = reset;
P2=comm.;
en =set;
includes delay (d);
en =reset;
includes delay (d)
includes busycheck ();
Code End

Figure-2. Semantic evolution based on code generation.

Step 2: Construct a library of non-member functions

Code functions may be member functions or
non-member functions. The functions that are mapped
to the classes shall be the member functions and the
remaining functions shall be non-member functions but

shall be declared as friend functions with the classes
wherever needed. When non-member functions are
mapped to the classes, the same will be defined as
friend functions.

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9386

A library of standard non-member functions
are identified and maintained as shown in the Table-2.
The Mapping of the code segments to the Non-Member
functions is also shown in the Table-2. When code
segments are included into a function, the variable
declarations as instance, global local, and return or
functional shall be automatically get projected and
maintained.

Step 3: Construct a library of hardware related code

functions
Some of the code functions are member

functions of the class’s that are related to hardware
devices. A library of standard member functions that
are related to hardware are identified and maintained as
shown in the Table-3. The mapping of the code
segments to the member functions of the hardware
classes is also shown in the Table-3. When code
segments are included into a function, the variable
declarations as instance, global local, and return or
functional shall automatically get projected and
maintained.

Step 4: Map the non-member functions to the classes

The non-member functions are mapped to
various classes as friend functions as necessary. The
mapping of the non-member functions to the classes has
been shown in the Table-4. When non-member
functions are mapped to the classes, the global variables
and instant variables will be located at global
declarations or instance declarations as the case may be.
When functions are mapped, the variable declarations
shown in the function definition will be automatically
located either as Global or instance variables

Step 5: Map the hardware dependent functions to

the classes that are related to the hardware
The hardware dependent functions are mapped

to the classes that implement the interface to the
hardware devices. The data repository showing the
mapping is shown in the Table-5. When functions are
mapped, the variable declarations shown in the function
definition will automatically get located either as global
or instance variables.

Step 6: Map the hardware dependent variables to

the classes that are related to the hardware
Some of the classes that are related to the

hardware just have variables that are defined to map to
the PINS and ports of the Micro controller to which the
hardware devices are connected. Signals are asserted on
the PINS of the micro controller by way of setting the
memory variables with appropriate values. Data
variables which are mapped to the PINS are inserted
into the classes based on the connectivity details. The

mapping of hardware dependent variables to the classes
are shown in the Table-6.

Step 7: Maps the support oriented functions to the

supporting classes
Some of the functions are supporting functions

that are necessary for undertaking specialized activities.
Such functions are mapped to the classes that provide
supporting services to other classes. The mapping of
supporting functions to the supporting classes is shown
at the Table-7. When supporting functions are mapped,
the variable declarations shown in the function
definition automatically get located either as global or
instance variables.

Step 8: Maps Task oriented functions to the classes

that are self-looped
Some of the functions are Task oriented

functions that are necessary for undertaking Task
oriented activities. Such functions are mapped to the
classes that provide task execution services to other
classes. The mapping of task oriented functions to the
task oriented classes is shown at the Table-8. When task
oriented functions are mapped, the variable declarations
shown in the function definition will be automatically
located either as global or instance variables.

Step 9: Maps the class functions as the entry

procedures of system states
A system enters into a state due to transition

from the previous state as a consequence of occurrence
of an event while the system is in previous state. When
a system enters into a state or exiting from a state, some
procedures are executed. Some procedures can also be
executed while the system is within the state. In the
previous steps, a process which flushes the classes with
the methods and attributes and also that establishes the
global behaviour of the embedded system has been
explained. The mapping of the class methods to entry
procedure of system states will define the state boxes
comprehensively. The system is built using several
objects and each of the objects be in different states and
execute procedures when the system enters into a
particular state. Table-9 shows various objects and
states into which the objects undergo transitions and the
kind of procedures executed for realizing a user
requirement.

Step 10: Generate main control of execution
The following procedure helps building the main
function in which central control logic is situated.

a) Capture state transition details as per the details

shown at Table-9
b) The procedures that are mapped to the superstates

which are self-looping states shall be recognized as

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9387

the task that must be scheduled within the real time
operating system.

c) Create a buffer of such schedulable tasks. For each
of the task create a stack as a character array of a
default length of 3000 bytes

d) For each of the non-schedulable super-state, find
sub-state from the Table-9.

e) Find all the state flows from table-9 by following
Right to left and top to bottom rule

f) For each of the sub-state flow find all the entry
procedures and include the in the main function.

g) If any of the sub-state is self- looping in nature,
include infinite while loop and enclose the code
within the scope of the while loop or create a finite
looping through a for-statement or while-statement
using the finiteness as the controlling parameter.

h) If a class is associated with the function/procedure
to be executed as a part of entry procedure for the
first time, an instance of the class is included before
the method is called

i) Include code to start the operating system
j) Consider each of the self-looping super states and

for each of the self-looping super state, create
objects that are related to the entry procedures of
the self-looping superstate

k) Include an RTOS statement for creating a task
representing the entry procedure of self-looping
super state, under the control of RTOS including
the reference to stack buffer that is created earlier

l) Include statements to start RTOS

Step 11: Generate total code

The generation of total code thus involves the following
steps
a) Construct library of standard code segments duly

identifying various types of variables
b) Construct library of the standard non-m ember

functions through code segments and while doing
so, consolidate types of variables especially the
global and instance variable. The local, return and
functional variables are absorbed with in the
functions

c) Construct library of the standard hardware related
functions through code segments and while doing
so consolidate types of variables especially the
global and instance variable. The local, return and
functional variables are absorbed within the
functions

d) Create hardware dependent variable in the classes
related to hardware devices duly mapping the
PINS of micro controller to the memory address
variables

e) Construct library of the standard Member

functions through code segments and while doing
so consolidate types of variables especially the
global and instance variable. The local, return and
functional variables are absorbed within the
functions

f) Map the Non-member functions to the respective
classes

g) Map hardware dependent functions to hardware
processing classes

h) Map support functions to the support classes
i) Map the task oriented function to task oriented

classes
j) Include into entry procedures of each state the

functions related to various types of classes.
k) Build a main method by tracing the super state

sub state entries in table-9.

 The semantic evolution of ES software is
achieved through tasks which include repository building
task and code generation task

Repository builder task

This task will be waiting for an event triggered by
the Semantic Evolution Task. As and when the event is
triggered the task commences it execution. This task
maintains several look up tables the data for which is
obtained from the remote host. The tables are temporarily
maintained and the data in the tables is deleted after the
code is generated out of the specification stored in the
lookup tables. After the lookup tables are created, the task
assigns itself to the event for which it has been waiting.

Code generation task

This task will be waiting for an event triggered by
the Semantic Evolution Task. As and when the event is
triggered the task commences it execution. This task
Obtains a free memory pool by calling a RTOS function
which returns the start address at which the Task can be
created. Code is generated using the lookup tables shown
in Tables 1 to 9, and the code is stored starting from the
memory location returned by the RTOS. An entry is made
into the Task lookup table which is also stored with the
name of the event with which the task should be triggered.
Memory lookup table is also updated with the pool
identified with the task to which the memory is assigned.
A task is created under the RTOS so that same is invoked
and will be waiting for its related event to occur.

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9388

Table-1. Repository of standard code structures.

Serial
number

Coding structure name
Local variables Global variables

Instance
variables

Argument
variables

Return variables

Name Type Name Type Name Type Name Type Name Type

1 LCD-BUSSY-CHK()

busy int Set =01 int

 Reset=00 int

 rs=P2^5 sbit

 rw=P2^4 sbit

 en=P2^3 sbit

 busy=P2^7 sbit

2 LCD-COMMAND-WRITE() d int

3 LCD-DATA-WRITE()

 Set =01 int

 Reset=00 int

 rs=P2^5 sbit

 rw=P2^4 sbit

 en=P2^3 sbit

 busy=P2^7 sbit

4 LCD-NDATA-WRITE()

 Set=01 int Data[20] char

 Reset=00 int

 rs=P2^5 sbit

 rw=P2^4 sbit

 en=P2^3 sbit

 busy=P2^7 sbit

5 RS232C-RECV() Include.h dat Uchar

6 RS232C-SEND() dat Uchar

7 I2C-READ()
 SDAt=P1^5 sbit i Ucar

 SCLt=P1^4 sbit dat char

8 PROCESS-DELAY() i long

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9389

Table-2. Repository of standard non-member functions.

Serial
number

Standard code
function

Coding structure
name

Local variables Global variables
Instance
variables

Argument
variables

Return variables

Name Type Name Type Name Type Name Type Name Type

1 I2C_read-Temp() I2C-READ
i Char SDAt=P1^5 sbit i Ucar

dat char SCLt=P1^4 sbit dat char

2 Dealy()
PROCESS-
DELAY

 i long

3 I2C_write_Temp() I2C-WRITE
i Char SDAt=P1^5 sbit i uchar

dat char SCLt=P1^4 sbit dat char

4 I2c_start-temp() I2C-START

 SDAt=P1^5 sbit

 SCLt=P1^4 sbit

 HIGH=1 Int

 LOW=1 int

5 I2c_stop_Temp() I2C-STOP

 SDAt=P1^5 sbit

 SCLt=P1^4 sbit

 HIGH=1 int

 LOW=1 int

6 asciiToHex() ASCII-TO-HEX

 Digit0 Char value char dat unsigned

 Digit1 Char

 Ascii0 Char

 Ascii1 Char

 Ref1 Int

 Ref2 int

7 HexToAscii() HEX-TO-ASCII

temp
usgine

d
Digit0 Char value char

 Digit1 Char

 value char dat usigned

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9390

Table-3. Repository of standard hardware related member-functions.

Serial
number

Standard
function name

Coding structure
name/ function

name

Local variables Global variables
Instance
variables

Argument
variables

Return
variables

Name Type Name Type Name Type Name Type Name Type

1 readkey()

I2C_strat-temp()

I2c_write_Temp(0x70)

I2c_write_Temp(0xFE)

I2c_stop_Temp()

I2c_start_temp

I2c_write_temp(0x71)

I2c_read-temp()

2 write_Command()
LCD-COMMAND-

WRITE

 Set =01 int d int

 Reset=00 int

 rs=P2^5 sbit

 rw=P2^4 sbit

 en=P2^3 sbit

 busy=P2^7 sbit

3 Busy()
LCD-DATA-

WRITE

 Set=01 int

 Reset=00 int

 rs=P2^5 sbit

 rw=P2^4 sbit

 en=P2^3 sbit

 busy=P2^7 sbit

4 Recv() RS232C-RECV Include.h dat Uchar

5 Data_write()
LCD-DATA-

WRITE

 Set =01 int

 Reset=00 int

 rs=P2^5 sbit

 rw=P2^4 sbit

 en=P2^3 sbit

 busy=P2^7 sbit

6 Send() RS232C-SEND dat Uchar

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9391

Table-4. Mapping non-member functions to the classes.

Serial
number

Name of the class Delay() I2c-read I2c-write I2c-start I2c-stop Hex-Ascii
ASCII-
HEX

Get-
Reference

1 Initialization process √ √

2 Process key √ √ √ √ √

3 Temp1Task √ √ √ √ √ √ √

4 CompareTemp1Task √

5 Temp2Task √ √ √ √ √ √ √

6 CompareTemp2Task √

7
ProcessTemp1Temp2

Task
√ √

Table-5. Mapping member functions to the hardware classes.

Serial number Name of the class Readkey ()
Command

-write()
Data-
write()

Busycheck () Send () Receive ()

1 Process Key √

2 Process LCD √ √ √

3 Process HOST √ √

Table-6. Mapping supporting functions to the supporting classes.

Serial number Name of the class Compare Passwd CompareTemp1withRef CompareTemp1withRef

1 Validate Passwd √

2 CompareTask1 √

3 CompareTeask2 √

Table-7. Mapping task functions to execution task classes.

Serial
number

Name of the class
Display

Init
Message

Display enter
passwd
message

Read Ref
Temp

Convert
reference

digits

Temp1Pro
cessing
Task

Temp2
process

Task

compare
Temp1
Temp2
Task

1 Initialisation process √ √ √ √

2 Temp1Task √

3 Temp2Task √

4 ProcessTemp1Temp2Task √

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9392

Table-8. Function mapping to the classes.

Name of the
sequence

Name of the object Type of the object Name of the state Entry procedures

Display
InitMessages based
on the reset button

Operator Human Operator -

Micro Controller Hardware Micro Controller -

Initialization process Software InitMessages

InitialisationProcess.initMessages()
{

ProcessLCD.Command_Write()ProcessLCD
. Data_write()

}
InitialisationProcess.

displaypasswdMessaage()
{

ProcessLCD.Command_Write()ProcessLCD
. Data_write()}

Process LCD Software LCDProcess
ProcessLCD.Command_Write()ProcessLCD

. Data_write()

LCD Hardware LCD -

Read password
through keystrokes

Name of the object Type of the Object Name of the State Entry Procedures

KeyBoard Hardware Keyboard -

ATOD Converter Hardware ATOD Converter

Micro Controller Hardware Micro Controller -

Initialisation Process Software Process Key Process Key. Readkey ()

Process LCD Software LCD Process
Process LCD. command_write ()

ProcessLCD. data_write ()

LCD Hardware LCD -

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9393

Table-9. State transition details.

Serial number
of the state

From state To state
Whether self-

looping
Whether

starting state

1. Keyboard ATOD Converter

2. ATOD Converter Micro Controller

3. Reset Micro Controller Yes

4. Micro Controller Initialization and Main Control

5. Micro Controller Init Messages

6. Micro Controller Process Key

7. Init Messages Process Key Yes

8. Process Key Validate Password

9. Validate Password Init Reference

10. Init Reference Init Reference-1

11. Init Reference-1 Init Reference-2

12. Init Reference-1 Process Host

13. Process Host Micro Controller

14. Init Messages LCD Process

15. Process Key LCD Process

16. Validate password LCD Process

17. Init Reference LCD Process

18. Reference-1 LCD Process

19. Reference-2 LCD Process

20. LCD Process LCD

21. Initialization and Main Control Temp1 YES

22. Initialization and Main Control Temp2 YES

23. Temp1 Compare Temp1 with Remp2 YES

24. Temp2 Compare Temp1 with Remp2 YES

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9394

5. CONCLUSIONS

The ES software stored within an embedded

system which is used for monitoring and controlling the
operations within a safety critical or mission critical
system must be evolved dynamically while the system is
running. Many methods have been proposed for dynamic
evolution of the ES software. One of the methods
recommended is online code generation based on the code
specification sent from the HOST that is predominantly
cantered around the object model.

The code generated needs to be located at the
memory locations returned by an RTOS and task must be
created, schedule under the RTOS and made to wait for
the occurrence of an event which completely fits into the
event model around which dynamic evolution of
embedded software is supported.

REFERENCES

[1] Sastry JKR, V. Chandra Prakash, Bala Krishna

Kamesh, S. Venkateswarlu. 2011. Code Generation
for Hardware Modeling through Clear Box Structures.
International Journal of Communication Engineering
Applications-IJCEA. 2(3).

[2] Dionision de Niz, Raj Rajkumar. 2004. Glue Code
generation: Closing the Loop Hole in Model Based
Development. IEEE Real-Time and Embedded
Technology and Application Symposium
(RTAS2004).

[3] Gang Zhou, Man-Kit Leung and Edward A. Lee.
2007. A Code Generation Framework for Actor-
Oriented models with Partial Evaluation.
ICESS2007, Springer-Verlag Berlin Heidelberg.
pp. 786-799.

[4] W. Thies, M. Karczmarek and S. Amarasinghe,
Stream It. 2002. A Language for Streaming
Applications. Proceedings of the 2002 International
Conference on Compiler Construction. Springer-
Verlag LNCS, Grenoble, France.

[5] http://www.mathworks.com/product/simulink.

[6] E. Kohler, R. Morris and B. Chen. 2002.
Programming language optimizations for modular
router configurations. Proceedings of the

Architectural Support for Programming Languages
and Operating Systems (ASPLOS).

[7] N. D. Jones, C. K. Gomard, and P. Sestoft. 1993.
Partial Evaluation and Automatic Program
Generation Prentice-Hall.

[8] Chen Xi Lu Jian Hua Zhou Zu Cheng and Shang
Yao Hui. 2005. Modeling System C Design in
UML and Automatic Code Generation. ASP-DAC.

[9] Felix Lindlar and Armin Zimmermann. 2008. A
codegeneration tool for embedded automotive
systems based on finite state machines. IEEE
international Conference on Industrial Informatics
(INDIN2008), Korea.

[10] Matteo Bordin and Tullio Vardanega. 2007. Real-
TimeJava from an automated code generation
perspective. JTRES'07, Vienna, Austria.

[11] Marko Hannikainen, Jarno Knuutila, Antti Takko,
Timo Hamalainen and Jukka Saarinen. 2000.
Automatic C-Code generation from SDL for a
wireless MACPROTOCOL. IEEE International
Symposium on Intelligent Signal Processing and
Communication System (ISPACS 2000) Honolulu.
1: 533-538.

[12] Kjeld H. Mortensen. 1999. Automatic Code
Generation from Colored Petri Nets for an Access
Control System. Proceedings of 2nd workshop on
practical use of Colored Petri nets and Design
CPN1999.

[13] [Kathy Dang Nguyen, Zhenxin Sun, P.S.
Thiagarajan and Weng -Fai Wong. 2004. Model-
driven SoC Designvia Executable UML to System
C, Real-Time Systems Symposium. Proceedings
25th IEEE International. 5-8 December. pp. 459-
468.

[14] Luis Gomes and Aniko Costa. 2003. From Use
cases to system implementation: State chart Based
Co-Design. Proceedings of the first ACM and IEEE
International Conference on Formal Methods and
Models for Co-Design (MEMOCODE'03).

