
 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9573

AN INTRICATE STRINGENT CHUNKING (ISC) DE-DUPLICATION FOR
SPACE OPTIMIZATION IN PRIVATE CLOUD STORAGE BACKUP

M. Shyamala Devi1, Yella Sravya2 and Mounika Yarasi3

1R. M. D Engineering College, Computer Science and Engineering, Chennai, India
2System Engineer Trainee, Infosys, Mysore, India

3Advanced Java Trainee, NIIT, Tirupati, India
E-Mail: shyamalapmr@gmail.com

ABSTRACT

Cloud Computing has evolved as a service as well as deployment model over the decade in catering data storage
and data access technology. Many private data owners prefer utilizing cloud storage service model due to flexibility in
maintaining infrastructure, cost and ability to access data over internet. The cost of cloud utilization is determined by the
amount of data stored on the cloud environment. It is imperative that optimization of cloud storage for effective data usage
enables saving cost, space and effective data utilization. Recent advancements have established digital data in storage
medium are redundant and data compression is effective in eliminating data redundancy. Deduplication techniques have
been devised to identify and eliminate identical data in cloud. As private cloud storage has limited hardware resources and
infrastructure, it is essential to optimally utilize the storage space to be able to hold maximum data. In this paper, we
discuss the limitations of the existing de-duplication methods and propose a new scheme for Data De-Duplication. The
proposed method of Intricate Stringent Chunking (ISC) De-duplication which is the enhanced File level de-duplication
provides dynamic space optimization in private cloud storage backup as well as increases the throughput and enhances the
efficiency of deduplication.

Keyword: cloud computing, private storage cloud, cloud backup, data de-duplication, chunking, redundancy.

1. INTRODUCTION

Cloud Computing has emerged as a delivery
model in providing internet based applications, web
services and IT infrastructure using utility pricing model.
Public clouds are administered by third party service
providers and applications from different data owners are
managed together on the cloud servers, storage systems,
and networks. Private clouds are designed for the limited
use of one client and and managed by the individual
organization’s own administrator. Hybrid clouds are the
combination of both public and private cloud models.

A. Cloud storage

Cloud storage is a service model that stores data
from data owners. The cloud storage is managed and
backed up remotely thus made available to users over a
network administered by the data owners. Cloud storage
facilitates users with storage space and responds data users
to handle user friendly and data requests on the acquired
data which is the underlying principle of all kinds of cloud
applications [3]. Public cloud storage such as Amazon's
Simple Storage Service (S3) provides a multi-tenant
storage environment [19]. Private cloud storage services
provide a dedicated infrastructure protected behind an
organization’s firewall. Private clouds are suitable for data
owners who require customization and sophisticated
control over their data as shown in Figure-1. Hybrid cloud
storage is the combination of at least one private cloud and
one public cloud service model. Cloud storage backup [3]

is the service model to back up data that involves
responding to data requests offsite to a managed service
provider for protection.

Figure-1. Private cloud storage.

B. Overview of De-duplication

Data Deduplication is the technique that identifies
duplicate data to eliminate redundancy in the stored data
and increases the capacity of data transferred and stored on
the storage medium. De-duplication is also called as
"intelligent compression" or "single-instance storage" to
mean that it eliminates redundant data thus reducing the

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9574

space required or data storage [10]. For example, if an
organization’s email management data contains 100
instances of a same file attachment. If the email platform
is backed up or archived, all 100 instances are saved,
requiring all of the same attachment is stored in the
storage medium as 100 files. With the advent of data de-
duplication techniques, only one instance of the file
attachment can actually be stored. Each subsequent
instance would be marked to reference back to the one
saved file.

 C. De-duplication techniques

Several optimization techniques are in place to
handle de-duplication of the stored data. The optimization
of backup storage is shown in figure 2. The Data de-
duplication can be handled at the whole file, block, and bit
level [1, 2, 5]. Whole file de-duplication identifies the
hash value for the entire file which is the file index. If the
new file being added to the cloud storage matches with the
file index, then it is considered as duplicate and a pointer
is added to reference to the existing file index. If the new
file does not match the file index then it is added to the
cloud storage as a new file index.

Figure-2. De-duplication methods.

Block De-duplication [4, 5] is a method that
divides the files into fixed-size block or variable-size
blocks. In Fixed-size chunking, a file is partitioned into
fixed size chunks to occupy certain bytes of space. In
Variable size chunking, a file is partitioned into chunks of
different size. Both the fixed and variable size chunking
creates unique identifier for each block using a hash
algorithm such as MD5 or SHA-1 or MD5. The unique
identifier is then compared with a central index. If the
identifier exists, then it would be deciphered as data block
has been processed and stored earlier. Hence, the method
will just need to save a pointer to the already stored data.
If the identifier is new, it means the block is unique. A

unique identifier is added to the index and the unique
chunk is stored. Block de-duplication and Bit de-
duplication searches within a file and saves unique
iterations of each block or bit.

The rest of the paper is organized as follows. In
Section II, we analyze the existing methods of de-
duplication with its advantages and disadvantages. In
Section III, we discuss about our proposed system and its
functions. In Section IV, we conclude our design of
Intricate Stringent Chunking and prove that our scheme
greatly increases the de-duplication efficiency. We show
our implementation analysis in Section V.

2. ANALYSIS OF EXISTING METHODS

A. Advantages of existing methods

i) The indexes for whole file de-duplication are
significantly smaller which takes less computational time
and space when determining the duplicates. Backup
performance is less affected by the de-duplication process.

ii) Fixed-size chunking is conceptually simple
and fast as it requires less processing power due to the
smaller index and reduced number of comparisons.

iii) In variable size chunking, the impact on the
system performing the inspection and recovery time is
less. The efficiency of identifying the duplicate is high.

iv) Bit De-duplication performs bit level de-
duplication and it is more efficient since it eliminates
redundancy at bit level.

B. Disadvantages of existing methods

i) The efficiency of Whole File de-duplication is
not good as a little change within the file makes the whole
file to be saved again. For example, if 100 identical
attachments are sent by a telecom provider, this method
identifies all those 100 attachments that are exactly same
in size, but it would not find the exact duplicate copies that
are saved (i.e.) Bill. Feb, Bill. Mar, Bill. Apr etc. This de-
duplication searches only the size of the file irrespective of
the content on each file.

ii) When a small amount of data is inserted into a
file or deleted from a file in Fixed-size chunking, a
completely different set of chunks is generated from the
new file.

iii) In both fixed and variable size chunking, the
indexes are large resulting in larger index table and higher
number of comparisons. This leads to low throughput and
higher processing time to identify the duplicate bit.

C. Methods of block level de-duplication

The block level de-duplication partitions the
incoming file into fixed size chunks or variable size
chunks. Depending on the duplicate detection of incoming
chunk, the variable size chunk de-duplication can be

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9575

divided into Chunk level de-duplication and File level de-
duplication.

D. Chunk level De-duplication - DDDFS

When a file is received and determined to be
written in cloud server, every chunk of the file is verified
for duplicate with chunks of all files. This is the
methodology used in Chunk level de-duplication to
identify duplicates in the file. Data Domain De-duplication
File System (DDDFS) is a file system which performs
chunk level de-duplication [5] which supports multiple
access protocols. This is managed by the interfaces such as
Network File System (NFS), Common Internet File
System (CIFS) or Virtual Tape Library (VTL) to a generic
file service layer.

File service layer manages the file metadata using
Namespace index and sends the file to the content store.
Content store partitions the file into chunks of variable
size. Secure Hash Algorithm SHA-1 or MD5 identifies the
hash value for each variable size chunk which is called as
ChunkID. Content store maintains the File Reference
Index (FRI) which contains the sequence of ChunkID
constituting that file. Chunk store maintains a chunk index
that is used for duplicate chunk detection. Chunk index is
the metadata which usually contains ChunkID and the
address of actual chunks in cloud storage. Unique chunks
will be compressed and stored in the container.

E. File level De-duplication - extreme binning

When a file is received and determined to be
written in cloud server, every chunk of that file is checked
for duplicate with all the chunks of the similar files. This
is the approach of identifying duplicates called as File
level de-duplication. Extreme Binning uses this approach
by dividing the chunk index into two tiers namely Primary
index and Bin [4]. Primary Index contains the
representative ChunkID, whole file hash and pointer to
bin. The disk includes bin, Data chunks and the File
recipes. The file recipes contain the sequence of chunked
for that file. Bhagwat, et al., [4] explained the logic for
knowing the structure of a backup node in extreme binning
de-duplication. When a file has to be backed up, it
performs variable size chunking and finds the
representative ChunkID and the hash value for the entire
file. The Representative ChunkID is verified in the
primary index. If it is not present in primary index, then
the incoming file is identified as a new one and a new bin
is created with all ChunkID, chunk size and a pointer to
the actual chunks which are added to the disk.
Representative ChunkID, file hash value and the pointer to
bin of the newly created bin are added to the primary
index. If the representative ChunkID, file hash of the
incoming file is already present in the primary index, then
the file is a duplicate and it is not loaded into disk and the
bin is not updated. If the representative ChunkID of the
incoming file is already present in the primary index but

the hash value of the whole file does not match, then the
incoming file is considered to be nearly similar to the one
that is already on the disk. Most of the chunks of this file
will be available in the disk. The corresponding bin is
loaded to RAM from the disk, and now searches for the
matching chunks of the incoming file. If the ChunkID is
not found in the bin, then its metadata of the chunk is
added to the bin and the corresponding chunk is written to
the disk. The whole file hash value is not modified in the
primary index and the updated bin is written back to the
disk. Here every incoming chunk is checked only against
the indices of similar files, this approach achieves better
throughput compared to the chunk level de-duplication.
Since non-traditional backup workload demands better de-
duplication throughput, file level de-duplication approach
is more suited in this case.

3. OUR CONTRIBUTION

A. Proposed system

Generally the backup of the private storage cloud
belongs to the non-traditional backup. Traditional backup
contains data streams with locality of reference. But the
non-traditional backup contains the individual files that
owns by the individual users of the organization with no
locality of reference. The storage of the private cloud
should be optimized as there is physical limitation on the
storage space. Here we try to enhance the File level de-
duplication since it provides high de-duplication
throughput. However a single primary index is used for
de-duplication that takes more time in merely checking the
representative ChunkID of the file. This leads to low de-
duplication throughput. So we try to refine file level de-
duplication further to increase the throughput and de-
duplication efficiency. So we propose a new method for
de-duplication namely Intricate Stringent Chunking (ISC)
File De-duplication which is the modified File Level de-
duplication that provides grouping of files of individual
users. Our System architecture has four components as
users, Cloud Storage Controller, Intricate Stringent
Chunker and is shown in Figure-3.

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9576

Figure-3. Intricate Stringent Chunking (ISC) File De-
duplication – system architecture.

B. Intricate Stringent Chunking (ISC) File De-
 duplication

The existing File Level de-duplication (Extreme
Binning) is shown in Figure-4. The single Primary index
contains representative ChunkID, whole file hash and bin
pointer which points to the bin of the backup node which
is used for finding the duplication regardless of the users
of the private cloud which leads to low de-duplication
throughput.

Figure-4. Backup node in extreme binning.

The single Primary index contains representative
ChunkID, whole file hash and bin pointer which points to
the bin of the backup node which is used for finding the
duplication regardless of the users of the private cloud
which leads to low de-duplication throughput. Private
storage cloud consists of personal documents of the
individual users belonging to organization. If we use
Extreme Binning, then there will be only one primary
index for all user files. So all the incoming files that
belong to the different user’s merely waste time for
checking the representative chunkID of the single primary
index that reduce the throughput and de-duplication
efficiency. In our Intricate Stringent Chunking (ISC) File
De-duplication, the users accessing the private cloud
storage are identified by their unique user-id. Here the
Chunk File index is divided into Intricate Index, Intricate
Stringent Index, Chunk Index and Bin. We create separate
Intricate Index, Intricate Stringent Index, Chunk Index and
Bin for all the files of each user and each file belonging to
an individual user is grouped with their folders and is
shown in Figure-5. With this method, it is possible to
group the files of each users of the organization.

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9577

Figure-5. Chunk file index of intricate Stringent Chunking (ISC) File De-duplication.

4. DESIGN OF INTRICATE STRINGENT CHUNKING (ISC)
 FILE DE-DUPLICATION
 Before we start our design of ISC De-duplication,
we have the following assumptions,
 Users of the Private Cloud are provided with the

separate Userid.
 The files of the individual users are collected in

separate folders in the cloud backup.
 Bin of Backup Cloud storage server contains the files

of each users as separate folders

A. Function definition of ISC

Our new Intricate Stringent Chunking (ISC) File
De-duplication scheme has the following functions,

Functions of data users
a) Provide Cloud Service()
Functions of Cloud Storage Controller:
b) Initiate Cloud Storage Service()

c) Control Cloud Storage Service()
Functions of Intricate Stringent Chunker:
d) Intricate Stringent Chunking()
e) Deduplicate Cloud Backup()

 The Cloud Service Providing module is executed
by data users. The Cloud Storage Initiation module and
Cloud Storage Controller module are executed by Cloud
storage controller. The Cloud Storage Controller groups
all the user files as separate folders and is sent to intricate
stringent chunker. The Intricate stringent chunking module
and Cloud Backup Deduplication module is executed by
intricate stringent chunker.

B. Cloud service providing module

The user authentication is done in this module. If
the user is new, then the registration process is done in this
module and is shown in Algorithm 1.

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9578

Algorithm 1: Provide cloud service ()
Input: Login Request from user
Output: Authenticated user details
1. Receive the login user name
2. Get the login password
3. Verify the authenticity of the user
4. if (user = = existing user)
5. then provide useraccess with CSC
6. else
7. Request for new user registration
8. call InitiateCloudStorage()

C. Cloud storage initiation module
After the user authentication is done in the private

cloud, then he / she can start viewing, editing and saving
their personal files into their folders and it is shown in
Algorithm 2. In this module, the authenticated user can
perform their own work and they may also try to upload
the files from online

Algorithm 2: Initiate cloud storage service ()
Input: New User Registration and Authenticated User
request from Cloud Service Providing module.
Output: Enabling viewing, editing and saving the file.
1. Receive the Authenticated user request.
2. Get the user login and password
3. Verify the authenticity of the user
4. if (user = = existing user)
5. then provide access for viewing, editing and

saving their personal files
6. else
7. Request for new user registration
8. call ControlCloudStorageService()

D. Cloud storage controller module

This module performs the function of integrating
the files of the individual users. This module groups the
files of all users and is shown in Algorithm 3.

Algorithm 3: Control cloud storage service ()
Input: Files of the User from Cloud Storage Initiation
Module
Output: User Grouped files in separate folders
1. Receive the files from user.
2. Separate the files of each users
3. Create individual folders for each users
4. Group the files in folders of respective users.
5. call Intricate Stringent Chunking ()
E. Intricate stringent chunking module

The Intricate Stringent Chunking module is
executed by Intricate Stringent Chunker. The Chunk File
index for each user is created in this module and it is
shown in Algorithm 4.

Algorithm 4: Intricate stringent chunking ()
Input: User Grouped files in separate folders from Cloud
Storage Controller Module.
Output: Creating Chunk File Index in three forms as
 Intricate Index, Intricate Stringent Index,
 Chunk Index for all User files
1. Receive the file folders of all the users

/ * creating Intricate Index with three field’s
namely Fixed ChunkID, FileHash and Binptr for
each user */

2. Find the size of the file as FileHash.
3. Divide the files equally into fixed sized chunks.
4. Each Fixed Sized chunks is updated as Fixed

ChunkID in Intricate Index.
5. Update FileHash value in Intricate Index.
6. Link the BinPtr of Intricate Index to their

respective Intricate Stringent Index of each user.
/ * creating Intricate Stringent Index with three
field’s namely Intricate Fixed ChunkID, FileHash
and Binptr for each user */

7. Divide each Fixed ChunkID in Intricate Index
into fixed sized chunks as Intricate Fixed
ChunkID.

8. Update FileHash value in Intricate Stringent
Index.

9. Link the BinPtr of Intricate Stringent Index to
their respective Chunk Index of each user.
/ * creating Chunk Index with three field’s
namely Minimal ChunkID, FileHash and Binptr
for each user */

10. Find the Minimal ChunkID of each file of
Intricate Stringent Index

11. Update Minimal ChunkID in Chunk Index.
12. Update FileHash value in Chunk Index.
13. Link the BinPtr of Chunk Index to their

respective Bin of each user in Backup Cloud
storage Server.

14. Send the Chunk File index to Backup cloud
Storage Server.

15. call DeduplicateCloudBackup()

Here three indexes are created for all the user
files as Intricate Index, Intricate Stringent Index, Chunk
Index. The Intricate Index has three field’s namely Fixed
ChunkID, FileHash and Binptr. The Intricate Stringent
Index has three field’s namely Intricate Fixed ChunkID,
FileHash and Binptr. The Chunk Index has three field’s
namely Minimal ChunkID, FileHash and Binptr. First, The
Filehash value is found for all the files. Then the files for
each user are divided into fixed sized chunks as fixed
chunkID. Then each fixed chunkID is palced in the
Intricate Index with their filehash value. Now each fixed
chunkID is again divided into fixed sized chunks as
Intricate Fixed ChunkID and is placed in the Intricate

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9579

Stringent Index along with the FileHash value. Now the
minimal fixed chunkID of that Intricate Fixed ChunkID is
found for all the files. The Intricate Fixed ChunkID with
minimum hash value is choosen to be the minimal
ChunkID for the chunk index. The minimal ChunkID is
palced in the Chunk index along with the FileHash value
with binptr pointing to the corresponding bin in the
Backup Cloud storage server.

The minimal chunkID is found using Broder’s
theorem [16]. The purpose of finding the minimal
ChunkID is that according to Broder’s theorem, the
probability that the two sets S1 and S2 have the same
minimum hash element is the same as their Jaccard
similarity coefficient [17]. In other words, if two files are
highly similar they share many chunks and hence their
minimum chunk ID is the same with high probability. The
file hash is found by SHA-1 or MD5. The Binptr provides
pointer to the corresponding bin. Each bin contains two
fields as chunkID and the chunksize. The hash value of the
chunk is named as ChunkID.

F. Cloud backup De-duplication module

This module performs the function of de-
duplication detection by comparing the incoming Chunk
file index with the backup node Chunk file index. It starts
by checking the minimal ChunkID of chunk index of the
Backup server with the minimal ChunkID of chunk index
retrieved from intricate stringent chunker. If both the
minimal ChunkID of chunk index are the same, then the
file is a duplicate one. If the file is identified as duplicate,
then it is not saved into the disk of Backup RAM. If the
existing minimal ChunkID does not match with intricate
stringent chunker, then it corresponding file is assumed as
new file and unmatched chunks of the file are updated into
backup node. So here the file is assumed to be duplicate if
and only if both the intricate stringent chunker and Backup
cloud storage server share the same minimal ChunkID in
their chunk index thereby increasing the de-duplication
efficiency by executing algorithm 5.

Algorithm 5: De-duplicate cloud back up ()
Input: Chunk File Index for all User files
Output: Backing up the respective chunks.
1) Receive the Chunk File Index in three forms as
 Intricate Index, Intricate Stringent Index, Chunk
 Index for all User files
2) Declare the retrieved chunk file index as New

Chunk File Index
3) Declare the chunk file index of Backup Cloud

Storage Server Old Chunk File Index.
4) If (minimal Chunk ID of New Chunk File Index

= = minimal Chunk ID of Old Chunk File Index
&& File Hash of New Chunk File Index= = File
Hash of Old Chunk File Index) then

5) Report the detection of Duplicate File.

6) Create the pointer with the previous file
6) else
7) Extract the Files having unmatched minimal

Chunk ID
8) Create a new bin with two fields Chunk ID,

Chunk Size for the unmatched minimal ChunkID.
9) Update the fields ChunkID, Chunk Size of

unmatched minimal Chunk ID in new bin
10) Update the Chunk Index of New Chunk File

Index related to unmatched minimal Chunk ID
11) Update the Intricate Index of New Chunk File

Index related to unmatched minimal Chunk ID
12) Update the Intricate Stringent Index of New

Chunk File Index related to unmatched minimal
Chunk ID

13) Save the new File of unmatched minimal Chunk
ID into Back up Disk.

14) Update the data chunks and file recipes in to the
Back Up disk

15) End

5. IMPLEMENTATION

We have implemented this by creating the Cloud
storage Controller, Intricate Stringent Chunker and
Backup Cloud Storage Server and multiple clients on
WINDOWS platform. Any number of clients can be
registered to the cloud server. The coding is done by using
visual studio.Net and back end as Microsoft SQL server.
The cloud server node is executed followed by the users’
registration. All the users can have their individual
username and password. They can upload any type of
files. Our Intricate Stringent Chunking De-duplication is
compared with the Extreme Binning file de-duplication.
Our analysis is showing that our proposed system will
have de-duplication efficiency based on the number of
files being stored in the backup node. Our result analysis is
shown in the Figure 6 and 7.

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9580

Figure-6. Registering clients to cloud storage controller
CSC.

Figure-7. Making backup for cloud users.

The performance analysis of De-duplication File
efficiency is analyzed by the number of files stored in the
Backup Cloud Storage Server and it is shown in the Table-
1 and Figure-8.

Table-1.

Number of
files given for

Backup

Number of files
stored in ISC

De-duplication

Number of files
stored in

Extreme binning

500 12 150

550 8 125

600 15 110

650 7 90

700 19 200

750 25 230

800 15 270

850 29 180

900 11 270

950 20 290

1000 35 320

Figure-8. De-duplication file efficiency.

The performance analysis of De-duplication Time
efficiency is analyzed by the time taken to store the de-
duplicated file in the Backup Cloud Storage Server and it
is shown in the Table-2 and Figure-9.

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9581

Table-2.

Number of
files given
for backup

De-duplication
Time with ISC
De-duplication

(ms)

De-duplication
time with

extreme binning
(ms)

500 9 95

550 15 130

600 13 170

650 19 110

700 24 85

750 12 105

800 17 135

850 22 156

900 14 175

950 12 125

1000 23 180

Figure-9. De-duplication time efficiency.

6. CONCLUSIONS

This paper describes a novel design namely
Intricate Stringent Chunking File De-duplication that
effectively removes duplication. It is highly advantageous
to improve the private cloud backup storage efficiency by
reducing the de-duplication time and the number of files to
be backed up. Our future enhancement is to use chunk
level de-duplication in the private cloud storage by
overcoming the negative factors in its efficiency.

REFERENCES

[1] Jaehong Min, Daeyoung Yoon, and Youjip Won.

2011. Efficient De-duplication techniques in modern
backup operation. IEEE Transactions on Computers.
60(6).

[2] Wei et al. Mad2: A scalable High-throughput exact
de-duplication approach for network backup services,
Mass Storage Systems and Technologies, IEEE /
NASA Goddard Conference.

[3] Abe et al. Towards better integration of parallel file
systems into cloud storage. In Cluster Computing
Workshops and Posters (CLUSTER WORKSHOPS).
IEEE International Conference.

[4] Bhagwat D., Eshghi K., Lillibridge M. 2009. Extreme
binning: Scalable, parallel de-duplication for chunk-
based file backup.

[5] Zhu B., Li K. and Patterson H. 2008. Avoiding the
disk bottleneck in the data domain de-duplication file
system. In: Proceedings of the 6th USENIX
Conference on File and Storage Technologies,
FAST’08, Berkeley, CA, USA. USENIX Association.
pp. 18: 1-18: 14.

[6] P. Kulkarni, F. Douglis, J. La Voie and J. Tracey.
2004. Redundancy Elimination within Large
Collections of Files. Proc. USENIX Ann.Technical
Conf., General Track. pp. 59-72.

[7] B. Hong and D.D.E. Long. 2004. Duplicate Data
Elimination in a San File System. Proc. 21st IEEE /
12th NASA Goddard Conf. Mass Storage Systems and
Technologies (MSST), pp. 301-314.

[8] C. Dubnicki, L. Gryz et al. 2009. HYDR Astor: a
Scalable Secondary Storage. In: Proceedings of the 7th
USENIX Conference on File and Storage
Technologies (FAST), San Francisco, CA, USA, Feb.
2009.

[9] C. Policroniades and I. Pratt. 2004. Alternatives for
Detecting Redundancy in Storage Systems Data. Proc.
Conf. USEXNIX ’04, June.

[10] W.J. Bolosky et al. 2000. Single Instance Storage in
Windows 2000. Proc. Fourth USENIX Windows
Systems Symp. pp. 13-24.

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9582

[11] L.L. You, K.T. Pollack and D.D.E. Long. 2005. Deep
Store: An Archival Storage System Architecture.
Proc. Int’l Conf. Data Engineering (ICDE ’05). pp.
804-8015.

[12] M. Lillibridge et al. 2009. Sparse Indexing: Large
Scale, Inline Deduplication Using Sampling and
Locality. Proc. Seventh USENIX Conf. File and
Storage Technologies (FAST ’09).

[13] D.R. Bobbarjung, S. Jagannathan and C. Dubnicki.
2006. Improving Duplicate Elimination in Storage
Systems. ACM Trans. Storage. 2(4): 424-448.

[14] Zeng W, Zhao Y, Ou K and Song W. 2009. Research
on cloud storage architecture and key technologies,
ICIS ’09: Proceedings of the second International
Conference on Interaction Sciences. pp. 1044-1048.

[15] Policroniades C. and Pratt I. 2004. Alternatives for
detecting redundancy in storage systems data, ATEC
’04: Proceedings of the annual conference on

USENIX Annual Technical Conference, A. Z. Broder.
On the resemblance and containment of documents. In
SEQUENCES ’97: Proceedings of the Compression
and Complexity of Sequences. 1997, pp. 21–29.

[16] P. Jaccard. 1901. Etude comparative de la distribution
orale dans une portion des Alpes et des Jura. In
Bulletin del la Soci´et´e Vaudoise des Sciences
Naturelles. 37: 547-579.

[17] G. Forman, K. Eshghi and S. Chiocchetti. 2005.
Finding similar files in large document repositories. In
KDD ’05: Proceeding of the Eleventh ACM SIGKDD
International Conference on Knowledge Discovery in
Data Mining. pp. 394-400.

[18] Amazon Web Services LLC. 2009. Amazon Simple
Storage Service. http://aws.amazon.com/s3/, 2009.

[19] Amazon’s Elastic Block Storage. Elastic Block
Storage, [Online] Available:
http://aws.amazon.com/ebs/.

APPENDIX A
Activity diagram for the intricate stringent chunking file De-duplication:

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9583

Existing User

[New User]

Data users Cloud Storage
Controller

Intricate Stringent
Chunker

Backup Cloud Storage
Server

Login Request from
user

Request for the
password

Verify the user
Authenticity

Request New User
Registration

Provide User access
with Cloud Storage
Controller

Receive Authenticated
user Request

Verify the Authenticity

Login with new user
name and password

Provide User Access
for viewing, editing
and saving the files

A

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9584

Data users Cloud Storage
Controller

Intricate Stringent
Chunker

Backup Cloud Storage
Server

Saving the files to
the Private Cloud
Storage BackUp

Receive the files from
Cloud Storage Controller

Separate files of
each User

Receive the
folders of all users

Find the size of the
file as fileHash

Send the folders
of all users

Group each user files
in separate folders

Divide Files into Equal
Sized Fixed Chunks as
Fixed ChunkID

A

Create Intricate Index
with Fixed ChunkID,
FileHash and BinPtr

Link the BinPtr to
Intricate Stringent Index

B

Divide Fixed ChunkID
into fixed Chunks as
Intricate Fixed ChunkID

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9585

Data users Cloud Storage
Controller

Intricate Stringent
Chunker

Backup Cloud
Storage Server

Receive the
Chunk File Index

C

Send the Intricate Index,
Intricate Stringent Index,
Chunk Index as Chunk
File Index to BackUp
cloud Storage Server

B

Check if Chunk File Index
is received for the first time

Link the BinPtr to
Chunk Index

Create Intricate Stringent
Index with Intricate
Fixed ChunkID,
FileHash and BinPtr

Find the Minimal
chunkID among
Intricate FixedChunkID

Link the BinPtr to bin of
BackUp Cloud Storage

Divide Fixed ChunkID
into fixed Chunks as
Intricate Fixed ChunkID

Yes
Y

Save the ChunkFile
Index as
OldChunkFileIndex

N

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9586

Data Users
Cloud Storage

Controller
Backup Cloud
Storage Server

Save the ChunkFile Index
as NewChunkFileIndex

CA

Check if the minimal
chunkID and FileHash of
NewChunkFileIndex
And OldChunkFileIndex
is equal

Yes

Detection of
Duplicate File

Create pointer to
previous File

Intricate Stringent
Chunker

No

Extract files of
unmatched
minimal chunkID

Create new bin with
ChunkID, ChunkSize

Update the ChunkID,
ChunkSize of
unmatched minimal
chunkID to new bin

D

 VOL. 10, NO 20, NOVEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 9587

Data Users
Cloud Storage

Controller
Backup Cloud
Storage Server

Update the Chunk Index of
NewChunkFileIndex related to
unmatched minimal chunkID

DA

Intricate Stringent
Chunker

Save the new File of
unmatched minimal
chunkID to BackUp Disk

Update the Data
Chunks into the
BackUp Disk

Update the Intricate Index of
NewChunkFileIndex related to
unmatched minimal chunkID

Update the Intricate
Stringent Index of
NewChunkFileIndex
related to unmatched
minimal chunkID

Update the File
recipies into the
BackUp Disk

