
 VOL. 10, NO. 21, NOVEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

9730

INVESTIGATION ON ROUTING ASPECTS TOWARDS RPL
OPTIMIZATION

Wan Fariza binti, Wan Abdul Rahman1, Md. Rafiqul Islam2 and Aisha Hassan Abdalla2

1Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, Malaysia
2Department of Electrical and Computer Engineering, Kuliyyah of Engineering, International Islamic University of Malaysia, Malaysia

E-Mail: wfariza@kelantan.uitm.edu.my

 ABSTRACT

Routing in Low-power and Lossy Networks (LLNs) requires low overhead on data packets, low routing overhead,
minimal memory and computation requirements, and support for sleeping nodes considering battery saving. Most of the
devices are distinguished by their low bandwidth, short range, scarce memory capacity, limited processing capability and
other attributes of inexpensive hardware. These devices are designed to be compatible with the IEEE 802.15.4 standard.
IPv6 over IEEE 802.15.4 has been defined to carry IPv6 packets over IEEE 802.15.4 and similar networks, due to its
capability to support routing over possibly various types of interconnected links. The IETF Routing Over Low Power and
Lossy Networks (ROLL) working group has designed the IPv6 route-over Routing Protocol for LLNs, known as RPL,
which covers the routing requirements of all application domains. However, there are still a number of routing aspects to
be tackled in RPL, including memory efficiency, routing overhead and loops occurrence. Therefore, the purpose of this
paper is to highlight these issues and investigate the efforts/approaches for solving them.

Keywords: LLN, RPL optimization, loop repair, routing overhead, memory efficiency, asymmetrical links.

INTRODUCTION
 Different characteristics of LLNs offer unique
challenges to a routing solution. This type of network
consist large number of constrained nodes with limited
processing power and memory. The routers are
interconnected by lossy links, typically supporting only
low data rates, which are unstable with relatively low
packet delivery rates [1].
 The IETF ROLL working group has defined an
IPv6 Routing Protocol for Low-Power and Lossy
Networks (RPL) as a standard routing for LLNs. RPL is
based on a Directed Acyclic Graph (DAG) having the
property that all edges are oriented in such a way that no
cycles exist. All edges are contained in paths oriented
toward and terminating at one or more root nodes (DAG
root). All DAGs must have at least one DAG root and all
paths terminate at a DAG root. The term Destination-
Oriented DAG (DODAG) refers to a DAG rooted at a
single destination with no outgoing edges. Two important
elements in RPL are Rank and Objective Function (OF). A
node’s Rank defines the node’s individual position relative
to other nodes with respect to a DODAG root. Rank
strictly decreases in the Up direction (from leaf nodes
towards DODAG root) and strictly increases in the Down
direction (from DODAG root towards leaf nodes). An OF
defines how routing metrics, optimization objectives, and
related functions are used to compute Rank. Rank is not
necessarily a good indication of a distance or path cost to
the root. The stability of the Rank determines the stability
of the routing topology. RPL nodes construct and maintain
these DODAGs through DODAG Information Object
(DIO) messages [1].
 Nodes advertise their presence, routing cost and
related metrics by sending link-local multicast DIO
messages to all-RPL-nodes. Nodes listen for DIOs and use
their information to join a new DODAG (selecting

DODAG parents) or to maintain an existing DODAGs
(based on specified OF and Rank of their neighbours) [1].
To establish Downward routes, RPL uses Destination
Advertisement Object (DAO) messages to propagate
destination information Upward along the DODAG. DAO
messages are an optional feature for applications that
require point-to-multipoint (P2MP) and or point-to-point
(P2P) traffic. The next-hop destinations of these DAO
messages are called DAO parents. The Downward traffic
can be supported either in Storing (fully stateful) or Non-
Storing (fully source routed) mode. In both modes, P2P
packets travel Up toward a DODAG root then Down to the
final destination (unless the destination is on the Upward
route). A simple one-hop P2P optimization is allowed for
both modes in which a node may send a P2P packet
destined to a one-hop neighbour directly to that node [1].

STORING VERSUS NON-STORING MODE
 In Storing mode, packet is directed Down
towards the destination by a common ancestor of the
source and the destination prior to reaching a DODAG
root. In Non-Storing mode, the packet has to travel all the
way to a DODAG root before travelling Down. In Storing
mode, the DAO message is unicast by a child to the
selected parent(s). A node must not address unicast DAO
messages to nodes that are not its DAO parents. In Non-
Storing mode, the DAO message is unicast to the DODAG
root. Standard RPL defined in [1] stated that no
implementation is expected to support both Storing and
Non-Storing modes.
 In Storing mode, all non-root, non-leaf nodes
store Downward routing tables for their sub-DODAG and
destinations learned from DAOs. Each hop on the
Downward route in a Storing network examines its routing
table to decide on the next hop. In Non-Storing mode,
nodes do not store Downward routing tables. Only the

 VOL. 10, NO. 21, NOVEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

9731

DODAG root should store source routing table entries for
destinations learned from DAOs. The DODAG root
therefore must be able to generate source routes for those
destinations. Downward packets are routed with source
routes populated by a DODAG root [1].
 The Transit Information option in DAO message
is used for a node to indicate its DODAG parents to an
ancestor that is collecting DODAG routing information for
the purpose of constructing source routes. In Non-Storing
mode, the ancestor will be the DODAG root, and this
option is carried by the DAO message. A Non-Storing
node that has more than one DAO parent may include a
Transit Information option for each DAO parent with a
preference among parents. The preference may influence
the decision of the DODAG root when selecting among
the alternate parents for constructing Downward routes.
When a node removes a node from its DAO parent set, it
may generate a new DAO message with an updated
Transit Information option. In the Storing mode, the
DODAG Parent Address subfield is not needed because
the DAO message is sent directly to the parent. When a
Storing mode node removes a node from its DAO parent
set, it should send a No-Path DAO message to that
removed DAO parent to invalidate the existing route [1].
In Non-Storing mode, the root builds a strict source
routing header, hop-by-hop, by recursively looking up
one-hop information that ties a Target and a transit address
together [1].
 All nodes joining the DODAG must be able to
honour the Mode of Operation (MOP) as administratively
provisioned at and distributed by the DODAG root in
order to fully participate as a router, or else they must only
join as a leaf. The DIO message (on occasion) of a leaf
node must be advertised with an INFINITE_RANK (in
order to avoid other nodes from selecting this node as their
parents) [1].

ROUTING PATHOLOGY
 Although initial RPL standard does not support
mixed-mode of operation where some nodes source route
and other store routing tables, routing pathology issues in
a mixed network of Storing and Non-Storing nodes has
been discussed in [2].
 In practical, as the size of LLN deployments
increase, a homogeneous Non-Storing mode network will
introduce a high level of communication overhead, and a
homogeneous Storing mode network will require too much
memory resources. The primary advantage of the Non-
Storing mode is that it requires very little memory for
Storing routing states on the resource-constrained
embedded devices with limited processing and storage
capabilities. However, the Non-Storing mode requires a
source routing header to be attached to all packets which
not only increase the packet size but also cause the packet
size to be variable depending on the path length. This in
turn decreases the effective maximum transmission unit
(MTU) of the packet. On the other hand, the Storing mode
does not have the long-route problem since it does not
need source routing header. However, each RPL node

must store route information to all destinations in its own
subtree, which may be too demanding for the limited
memory constraints of small embedded devices. A More
Memory-efficient Storing mode RPL; MERPL has been
proposed in [3] by ensuring that the number of routing
table entry stored in a node does not exceed a pre-
specified factor of N. When the number of routing table
entries to be stored is larger than N, the node will transfer
part of its responsibility to the selected child (based on the
number of routing table entries maintained at child node).
However, no clear approach on how to determine the
value of N has been defined.
 It is stated in [2] that a more efficient network can
be achieved by allowing a mixed of computationally
powerful nodes with route Storing capabilities and low-
cost nodes that do not need to maintain a routing table.
However, allowing a mix of nodes operating in Storing
and Non-Storing modes to form a single network can
cause a routing pathology. Routing pathology can partition
the network due to the scenarios where nodes cannot send
packets to the root and the root cannot send packets to the
nodes even though they have plenty of multi-hop physical
connectivity in the network.
 Three problems in a mixed network are; (i)
‘cannot route through leaf problem’, (ii) ‘no source route
header problem’, (iii) ‘DAO not processed problem’. As
stated in standard RPL, when a node attaches itself as a
leaf (due to different MOPs), the node cannot act a router.
Leaf nodes may send their data to their next hop, but may
never accept data for forwarding. This is not an issue if the
node is at the fringe of the network. However, the problem
occurs when the node is somewhere in the middle of a
forwarding path and the node has a subtree of nodes that
needs to connect to itself for routing. This is known as
‘cannot route through leaf’ problem [4].
 In case of Downward routing, ‘cannot route
through leaf’ problem also occurs with two additional
problems. Consider a mixed network with a Storing mode
root. A Non-Storing node attached itself as a leaf (in the
middle of this network) is not only incapable of
forwarding the packets from root to its subtree because it
is a leaf, but also due to no knowledge about of any routes
to its subtrees. The Non-Storing node neither received nor
processed any DAO messages from its subtrees and thus
never stored any routing table entries for the nodes in its
subtree. This problem is known as ‘no source route
header’ problem plus ‘DAO not processed’ problem [4].
 In another situation, consider a mixed network
with a Non-Storing root. The packets (going Downward)
from the root has a source routing header. However, a
Storing node joined the network as a leaf, does not process
those routing headers, refraining the root from reaching its
subtree. The Storing mode node ignores the source routing
header because this element is not used in Storing mode
operations. This problem is known as ‘ignore source route’
problem [4].
 To eliminate the network partition problem and
preserve the high bidirectional data delivery performance,
a few solutions have been proposed in [2] and [4]. The

 VOL. 10, NO. 21, NOVEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

9732

first solution is to enhance the capability of a leaf as a
router. In this ‘leaf as a router’ scheme, Storing mode node
in a network with Non-Storing root, and Non-Storing
mode node in a network with Storing root will no longer
use infinity as its Rank. However, implementing a single
‘leaf as a router’ scheme does not solve the whole problem
in a mixed network. There are another four enhancements
suggested; (i) modified DAO transmission, (ii) modified
DAO format, (iii) modified source routing header support,
and (iv) Storing mode flag.
 Modified DAO transmission requires the Non-
Storing mode nodes to send DAOs hop-by-hop, giving a
chance to all Storing mode nodes along the path towards
the root to store the DAO information. This allows all
DAO messages, from both Storing and Non-Storing mode
nodes to be processed at intermediate nodes, thus solves
the ‘DAO not processed’ problem [4].
 It is stated in RPL standard that the Parent
Address field in the Transit Information option is optional
for Storing mode operation. However, that information is
needed in Non-Storing mode operation so that the root can
construct the routing paths and include it in the source
routing header. Thus, modified DAO format requires all
DAOs from both Storing and Non-Storing mode nodes to
include the Transit Information option’s address field in
order to resolve the ‘no source routing header’ problem for
packets being sent by Storing mode nodes [4].
 Apart from the above modified DAO format, to
solve the problem of ‘ignore source route’ and ‘no source
route’, all Storing mode nodes should implement source
routing header support by understanding and following the
routing information included in the source routing header
(if present) [4].
 Another enhancement (optional) is Storing mode
flag. This 1-bit flag in DAO message is set when DAO
initiating node supports Storing mode, and cleared
otherwise. A Storing node receiving this DAO message is
required to store this flag information. The purpose is to
construct a more efficient Downward routes. The source
routing header may be constructed only up to the next
Storing node rather than constructing a full end-to-end
routing path which can be longer [4].

DATA-PATH VALIDATION AND LOOP
OCCURRENCE

The occurrence of loop is another concerned
issue in RPL. Avoiding loop is important to prevent
packets from being forwarded between two nodes without
any progress. Although RPL tries to avoid creating loops
when undergoing topology changes, practically it
guarantees neither loop-free path selection. However, RPL
can detect and repair a loop using Rank-based data path
validation [1].

RPL uses on-demand loop detection using data
packets due to the low-power and lossy nature of LLNs.
Maintaining a routing topology that is constantly up-to-
date with the physical topology can waste energy. Thus,
transient and infrequent changes in connectivity need not
be addressed by RPL until there is data to send [1].

The Rank is used to avoid and detect loops. If the
Rank of node X is less than the Rank of node Y, the
position of node X is closer to the DODAG root than the
position of node Y. In this case, node X may safely be a
DODAG parent for node Y without risk of creating a loop.
If the Rank of node X equals to the Rank of node Y, their
positions with respect to the root are identical. Routing
through a node with equal (or greater) Rank may cause a
routing loop. Particularly, the Rank of the nodes must
monotonically decrease towards the DODAG destination.
An inconsistency between the routing decision of a packet
(Upward or Downward) and the Rank relationship
between the source and destination nodes indicates a
possible loop. A local repair is triggered on receiving such
a packet [1].

A DODAG loop may occur when a node detaches
from the DODAG and reattaches to a device in its prior
sub-DODAG. This may happen when DIO messages are
missed. Consider a local repair mechanism that allows a
node to detach from the DODAG, advertise a Rank of
infinity (in order to poison its route and inform its sub-
DODAG) and then reattach to the DODAG. However, the
poisoning may fail if the INFINITE_RANK
advertisements are lost. The detached node may reattach to
its own prior sub-DODAG, thus causing a DODAG loop.
The Rank-based data-path validation mechanism can be
used to detect and trigger correction of the loop [1].
A DAO loop may occur when a parent has a route
installed upon receiving and processing a DAO message
from a child, but the child has subsequently cleaned up the
related DAO state. This is due to the missing No-Path (a
DAO message that invalidates a previously announced
prefix). To mitigate the impact of a single DAO message
being missed, an optional mechanism to acknowledge
DAO messages is included in RPL [1].

DAG INCONSISTENCY LOOP DETECTION

RPL includes a reactive loop detection technique
that triggers repair of broken paths. The RPL Packet
Information that is transported within the data packet is
used to detect loop. A receiver detects a DODAG
inconsistency if the direction of a packet does not match
the Rank relationship based on Down ‘O’ and Sender
Rank fields in the RPL Packet Information. Down ‘O’ is
1-bit flag indicating whether the packet is expected to
progress Up or Down. The ‘O’ flag is set when the packet
is expected to progress Down, and cleared when
forwarding toward the DODAG root. A SenderRank is 16-
bit field set to zero by the source and to DAGRank(rank)
by a router that forwards inside the RPL network. There is
an inconsistency if a packet is received with either the ‘O’
bit set from a node of a higher Rank, or the ‘O’ bit cleared
from a node of a lower Rank [1].

DODAG GLOBAL REPAIR

A global repair is initiated by the DODAG root
by incrementing the DODAGVersionNumber. The
increment in DODAGVersionNumber results in a different
DODAG topology and a new DODAG Version spreads

 VOL. 10, NO. 21, NOVEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

9733

outward from the DODAG root. A parent that advertises
the new DODAGVersionNumber cannot belong to the
sub-DODAG of a node advertising an older
DODAGVersionNumber. Therefore, a node can safely add
a parent of any Rank with a newer
DODAGVersionNumber without forming a loop [1].

Consider a situation where a node has left a
DODAG with DODAGVersionNumber N. The node had a
sub-DODAG and did attempt to poison that sub-DODAG
by advertising a Rank of INFINITE_RANK, but those
advertisements may have become lost. Then, if the node
did observe a candidate neighbour advertising a position in
that previous DODAG with DODAGVersionNumber N,
that candidate neighbour could possibly has been in the
node’s former sub-DODAG, and there is a possible case
where adding that candidate neighbour as a parent could
cause a loop. However, if that candidate neighbour is
observed to advertise a DODAGVersionNumber N + 1,
then that candidate is certain to be safe, as it has been able
to increment the DODAGVersionNumber by listening
from the DODAG root while the original node was
detached [1].

A temporary Rank discontinuity may form
between the next DODAG Version and the prior DODAG
Version when the DODAG root increments the
DODAGVersionNumber. This is due to the decision of
nodes in adjusting their Rank in the next DODAG Version
and deferring their migration into the next DODAG
Version [1].

When a router that is still a member of the prior
DODAG Version forward a packet to a (future) parent in
the next DODAG Version, the parent may detect an
inconsistency because the Rank ordering in the prior
DODAG Version is not necessarily the same as in the next
DODAG Version. If the sending router is aware that the
chosen successor has already joined the next DODAG
Version, it must update the SenderRank to
INFINITE_RANK as it forwards the packet to avoid false
detection of Rank inconsistency [1].

A packet with one inconsistency detected along
the path may still continue as it is not considered as a
critical error. However, if there is a second detection along
the path of the same packet, the packet must be dropped.
This is done based on the Rank-Error bit associated with
the packet. When an inconsistency is detected, if the Rank-
Error bit was not set, then the bit is set. If the Rank-Error
bit was set already, then the packet will be discarded [1].

DAO INCONSISTENCY RECOVERY

DAO inconsistency loop recovery applies to
Storing mode only. A packet can be used to recursively
explore and clean up the obsolete DAO states along a sub-
DODAG. When DAO inconsistency is detected, the router
should send the packet back to the parent that passed it
with the Forwarding-Error ‘F’ bit set. Forwarding-Error
‘F’ bit is 1-bit flag indicating that this node cannot forward
the packet further towards the destination. Otherwise, the
router must silently discard the packet [1].

Upon receiving a packet with a Forwarding-Error
bit set, the (parent) node removes the routing states that
caused forwarding to that neighbour, clears the
Forwarding-Error bit and attempts to send the packet again
via an alternate neighbour. If the alternate neighbour still
has an inconsistent DAO state via this node, the previous
process will recursively repeats. In Non-Storing mode, the
packets are source routed to the destination. Therefore,
DAO inconsistencies are not corrected locally. Instead, an
ICMP error with a new code “Error in Source Routing
Header” is sent back to the root [1].

LOOP FREE LOCAL REPAIR

DODAG loops caused by local DODAG repair
mechanism are an issue to be addressed. As mentioned
above, the cause of DODAG loops comes from Rank
increase by DODAG local repair mechanism. The idea of
loop prevention, detection and avoidance has been
emphasized in [5]. However, each approach involved with
certain costs. The loop prevention approach requires a
node to wait for a sequence number update by the
DODAG root (global repair) before increasing its Rank in
order to choose new parents. The loop detection approach
puts costs on the already small available space for carrying
the data by requiring the node tags to be carried in the
packet. On the other hand, the loop avoidance requires
dismantling the sub-DAG rooted at the node performing
the Rank increase which can be too pricy if resolved
quickly with a minor change in DAG structure. Using this
loop avoidance approach, whenever any node needs to
increase its Rank, it starts a wait timer and generates a new
DIO advertising an infinite Rank, thereby detaching itself
from the DAG. As the children node receives this DIO,
they either remove the node from their parent set or detach
from the DAG themselves. New DIOs will be generated
by the children node within specific interval (wait time) to
advertise their new status. Therefore, if the wait time is
large enough, new Rank can be chosen correctly without
creating any loops. However, the loop may still occur if
the DIOs lost or the wait time is not large enough. Based
on simulations performed in [5], loop avoidance in a DAG
based routing protocol is not recommended due to the
turmoil caused by dismantling of the sub-DAGs in order to
increase Ranks may be much more than what the routing
loops themselves will cause. This is due to the generation
of large number DIOs during the stabilization times
resulting from large number of affected nodes.
As mentioned earlier, the reason for RPL to repair loops
only when detected is to reduce control overhead.
However, when repairing loops is done only when
detected, the forward progress of data packets would be
delayed by the triggered local repair mechanism, thus,
increasing end-to-end delay. In addition, the data packet
has to be buffered during repair. The first problem will
give a bad impact for real-time application such as alarm
signals in which increased delay may be undesirable. The
second issue, buffering incoming packets during the route
repair process may not be possible for all incoming data
packets, thus, leading to dropped packets. This is due to

 VOL. 10, NO. 21, NOVEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

9734

the nature of RPL which is supposed to run on LLN
routers with memory constraint [6].

Furthermore, a global repair (by increasing the
DODAGVersionNumber) in Non-Storing mode leads to
an increased control overhead in the network caused by
DIO messages. Thus, results in a possible energy drain of
the routers and congestion of the channel. According to
[6], the above mentioned effects of loop detection in RPL
may be minimized if carefully implemented with respect
to avoiding loops before they occur. Another method for
repairing DODAG locally without causing any DODAG
loops has been proposed in [7]. Instead of increasing the
Rank as in standard RPL, the method proposed does not
increase the Rank. Thus, it is loop free. Similar to standard
RPL, when a DODAG parent becomes unreachable, a
node may switch to another DODAG parent for upward
traffic. However, the node first has to transmit a DODAG
Repair Request (DRQ) message via link-local multicasting
to all-RPL-nodes to locally repair the DODAG [7].

If the receiving the DRQ message, a link-local
neighbouring router will act accordingly based on four
cases. First, if a link-local neighbouring router is the
DODAG root, it accepts the DRQ message and generates a
DODAG Repair Reply (DRP) message. Second, a link-
local neighbouring router (which is not the DODAG root)
discards the DRQ message if it does not have any
DODAG parent. Third, if the link-local neighbouring
router is not the DODAG root, has non-empty DODAG
parent set and its Rank is lower than Rank of the node
generating the DRQ message (RankQ), it accepts the DRQ
message and generates a DRP message. Fourth, if the link-
local neighbouring router is not the DODAG root, has
non-empty DODAG parent set and its Rank is greater or
equal to RankQ, it forwards the DRQ message to its
preferred DODAG parent. The forwarding process
continues until the DRQ message reaches a node with the
first, second or third condition above [7].

The DRP message is unicast. In Storing mode,
the DRP message is transmitted to the DRP message
generator by using a Downward routing table, whereas in
Non-Storing mode, it is transmitted by source routing
approach via Path option [7].

Upon receiving a DRP message, a node first
performs filtering process. Only if the DRP message
passes the filtering process, it will be further processed.
The DRP message will be discarded if, (i) the
RPLInstanceID or DODAGVersionNumber or DODAGID
of the DRP message is different from the value maintained
by the receiving node, (ii) the DRP message was already
received, or (iii) the receiving node is a leaf node and is
not a DRQ message generator [7].

If the receiving node is the DRQ message
generator and the DRP message sender is not in its
DODAG parent set, it may add the DRP message sender
into its DODAG parent set and select a new preferred
parent. If the DRP message is received by a router with a
Rank lower than RankQ which has a Downward route
entry to node DRPID, the router updates the Rank of the
node transmitting the DRP message (RankP) to its own

Rank and forwards the DRP message Downward to the
next-hop node. In another case, if the receiving router has
a Downward route entry to node DRPID but its Rank is
greater than or equal to RankQ, it checks whether it can
decrease its Rank such that RankQ > its Rank > RankP. If
no, it just discards the DRP message. If yes, the receiving
router decreases its Rank to an appropriate value, and adds
the DRP message sender into its DODAG parent set if the
sender is not in its DODAG parent set. Any DODAG
parent whose Rank is greater than or equal to its new
Rank, will be removed. If its preferred parent is removed,
a new preferred parent will be selected. The receiving
router than updates the RankP in the DRP message to its
new Rank and forwards the DRP message to the next hop.
However, if the receiving router is not the DRQ message
generator, and it has no route entry to a node DRPID in its
Downward routing table, it discards the DRP message [7].

Using NS-2 simulator, the loop-free local repair
method proposed in [7] is claimed to have lower routing
overhead and shorter end-to-end delay. The performance
could be further verified in future by considering some
common real-time applications requirements.

ASYMMETRICAL LINKS

Apart from loop avoidance issue, a RPL node
should verify that bidirectional connectivity and adequate
link quality is available with a candidate neighbour before
considering that candidate as a DODAG parent [1]. A link
is bidirectional when traffic confirmed possible in both
direction. A topology must be very good for both Upwards
and Downwards traffic; otherwise traffic between two
nodes in the instance may suffer. However, a perfect
symmetry is rarely present in LLNs, whether links are
based on radios or power-line. A link is asymmetric if it is
bidirectional, but exhibits significant differences in link
characteristics for both directions [8].
 An asymmetrical link can only be used for traffic
in one direction, whereby cannot contribute to the routing
topology. This results in an unoptimized use of bandwidth
and/or reduction of the possible path diversity [8]. In order
to fully utilize the network resources (i.e. available path),
the asymmetrical links should also be considered in
routing, but with extra efforts.

A single DAG is adequate for both Upwards and
Downwards traffic when the link properties do not widely
differ between the Upwards and Downwards directions. In
handling the asymmetrical links, two DAGs; one for
Upwards traffic and one for Downwards traffic should be
constructed [8].

Having two DAGs is quite challenging since it
would penalize peer-to-peer traffic that would have to go
through the root in order to leave the Upwards instance
and then re-enter at the root in order to join the
Downwards instance. Going through the root stretches the
path in Storing mode, but it is not an issue in Non-Storing
mode since the packet already has to go through the root to
load the routing header [8].

To avoid extra stretch through the root in Storing
mode, it is required to allow Upward traffic to be

 VOL. 10, NO. 21, NOVEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

9735

transferred from one instance to the next before reaching
the root. Therefore, the two instances; Upwards and
Downwards can be bound together with a parent-child
relationship between the two instances, to transfer traffic
from an instance onto another. The relationship is needed
to ensure traffic that goes down does not generally go back
up again [8].

A new flag bit is defined in DIO message to
indicate that the DAG is directional. An OF that supports
directional links should favor directional links over non
directional links. It is recommended in [8] that the ‘D’ flag
should be accounted for in the selection of the preferred
parent; that is before considering parent that causes the
lesser resulting Ranks of the node. However, there is an
exception. In case there is no next hop for a packet going
down, the packet will be dropped or sent back with an
error along the wrong direction. To avoid this situation,
the constraints that are applied to build the topology can
be lowered. Although this is less efficient, it gives chance
for traffic to still be transferred.

CONCLUSIONS

This paper highlighted several routing aspects to
be tackled in RPL. Memory efficiency and less overhead
could be achieved by considering a mixed mode network
of Storing and Non-Storing nodes. However, the routing
pathology should be handled wisely to ensure a smooth
interoperability. For this purpose, a few elements need to
modified for both Storing and Non-Storing nodes.

Apart from that, loop occurrence in RPL should
be considered. If handled properly, loop avoidance could
enhance the performance of RPL in terms of end-to-end
delay, memory consumption for packet buffering, and
routing overhead. Types of loop in RPL and the solutions
proposed have been detailed. The issue of asymmetrical
links has also been touched since considering only
symmetrical links would lead to an inefficient use of
network resources. Thus, proper use of asymmetrical links
should be considered. It is hoped that the issues
highlighted and approaches presented in this paper would
be beneficial for further research in optimizing RPL in the
future.

REFERENCES

[1] Winter T., Thubert P., Brandt A., Hui J., Kelsey R.,

Levis P., Pister K., Struik R., Vasseur J. and
Alexander R. 2012. RFC 6550 – RPL, pp. 1–157.

[2] Ko J., Jeong J., Park J., Jun J., Kim N. and Gnawali O.

2014. RPL Routing Pathology in a Network with a
Mix of Nodes Operating in Storing and Non-Storing
Modes. draft-ko-roll-mix-network-pathology-04. pp.
1–8.

[3] Gan W., Shi Z., Zhang C., Sun L. and Ionescu D.

2013. MERPL: A More Memory-efficient Storing
Mode in RPL. 19th IEEE International Conference on
Networks (ICON) 2013, pp. 1–5.

[4] Ko J., Jeong J., Park J., Jun J., Gnawali O and Paek J.
2015. DualMOP-RPL: Supporting Multiple Modes of
Downward Routing in a Single RPL Network. ACM
Transactions on Sensor Networks, Vol. 11, No. 2,
Article Vol. 39, pp. 1–20.

[5] Guo J., Orlik P. and Bhatti G. 2013. Loop Free

DODAG Local Repair. draft-guo-roll-loop-free-
dodag-repair-01, pp. 1–19.

[6] Clausen, T., Colin de Verdiere, A., Yi, J., Herberg, U.

and Igarashi, Y. 2015. Observations of RPL: IPv6
Routing Protocol for Low Power and Lossy Networks.
draft-clausen-lln-rpl-experiences-09, pp. 1–31.

[7] Xie W., Goyal M., Hosseini H., Martocci J., Bashir,
Y., Baccelli, E. and Durresi, A. 2010. Proceedings -
International Conference on Advanced Information
Networking and Applications, AINA, pp. 1–8.

[8] Thubert P. 2012. RPL Adaptation for Asymmetrical

Links. draft-thubert-roll-asymlink-01, pp. 1–9.

