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ABSTRACT  

Autonomous underwater vehicle (X4-AUV) with four inputs and 6 degrees of freedom (DOFs) is an 

underactuated system and has a nonholonomic features. There exist various studies on nonholonomic underatuated control 

so far, but most of them are confined into the case of systems with two inputs and therefore there are a few studies for the 

systems with three or more inputs. Control approaches for nonholonomic systems have utilized canonical forms. A 

nonholonomic double integrator model is the one of canonical forms for nonholonomic systems. In this paper an algorithm 

for an extended double integrator with four inputs is presented. Then a control law for an X4-AUV in extended double 

integrator model is derived using invariant manifold theory. It is expected that each state of the controlled object will be 

converge smoothly to the origin by using this type of control.  
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INTRODUCTION  

Control of underactuated systems, i.e., with less 

control inputs than coordinates is emerging as an 

important topic in control theory and applications. The 

potentials of a complete understanding of this problem are 

enormous. For example, the possibility of building 

mechanism that can perform complex tasks using a small 

number of actuators will reduce cost, weight as well as 

occurrences of failures. One of the main obstacles in the 

development of a comprehensive methodology for 

controlling such systems is the fact that linear control 

techniques cannot be used for these problems. These are 

‘inherently nonlinear’ systems which require new 
approached taking into consideration their nonlinear 

character. One challenging aspect of these systems is that 

they are controllable but not stabilizable by smooth static 

or dynamic state feedback control law [1].  

Control of underactuated systems often fall under 

the area of control of nonholonomic systems. The 

nonholonomic system has some constraints of velocity or 

acceleration. Many of control methods of a nonholonomic 

system convert the controlled system into a canonical form 

first. A canonical form of a symmetry affine system which 

has a velocity constraint is a chained form, a power form, 

and a nonholonomic double integrator. A 4th-order 

symmetry affine system with 2 inputs can convert it into 

the chained form. There are discontinuous control [1] and 

switching control [2-4] as a control method based on a 

canonical form. A control method for the power form 

composed of two inputs and n states is a switching control 

and a quasi-continuous exponential stabilization utilized 

the invariant manifold [5]. A canonical form of the system 

that has the acceleration constraint or torque input is an 

extended nonholonomic double integrator [6][7], a chained 

form, and an extended power form. The advantage of a 

nonholonomic system has lightening, a small energy 

making, and the cost reduction. 

Note however that among them major research is 

for controlled object with two-inputs [8] and therefore 

there is restricted research for controlled object with three 

or more inputs [9-11]. One of causes is that there is no 

definite method of transforming the original model into a 

canonical model to the case of the controlled system with 

three or more inputs. In this research, in order to expand 

the application of underactuated control to the controlled 

system of 3 or more inputs, it aims at establishing a 

control technique for an X4-AUV, which is an 

underactuated system with four inputs and six outputs.  

In this paper, after transforming the controlled 

system with four inputs into the double integrator form 

model of chained form in accordance with the method of 

Watanabe et al. [12], a switching control technique is 

proposed to stabilize the origin by an invariant manifold. It 

is expected that the switching control based on the 

invariant manifold assures that all the states smoothly 

converge to the origin [13],[14].  

 

COORDINATE SYSTEM 

A special reference frame must establish in order 

to describe the motion of the underwater vehicle. There 

are two coordinate systems: i.e., an inertial coordinate 

system (or fixed coordinate system) and motions 

coordinate system (or body-fixed coordinate system). The 

coordinate frame {E} is composed of the orthogonal axes 

{Ex Ey Ez} and is called as an inertial frame. This frame is 

commonly placed at a fixed place on Earth. The axes Ex 

and Ey form a horizontal plane, and Ez is the direction of 

the field of gravity. The body-fixed frame {B} is 

composed of the orthogonal axes {X, Y, Z} and is attached 

to the vehicle. The body axes, two of which coincide with 

the principle axes of inertia of the vehicles are defined by 
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Fossen (Fossen and Sagatun, 1991) as follows: X is the 

longitudinal axis (directed from aft to fore); Y is the 

transverse axis (directed to starboard); Z is the normal axis 

(directed from top to bottom). Figure-1 shows the 

coordinate systems of an AUV, which consist of a right-

hand inertial frame {E} in which the downward vertical 

direction is to be positive, and a right-hand body frame 

{B}. 

Letting � = [ ] T
 denote the centre of 

mass of the body in the inertial frame, and defining the 

rotational angles of the X, Y, and Z axes as � = [� � ]T 
, the rotational matrix R from the body 

frame {B} to the inertial frame {E} is reduced as: 
 



























cccss
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R           (1) 

 

where cα denotes cos α and sα is sin α. 
 

 
 

Figure-1. Coordinate systems of AUV. 

 

X4-AUV DYNAMIC MODEL 

Following a Lagrangian method, this section 

describes the dynamic model of the X4-AUV with the 

assumption of balance between buoyancy and gravity. The 

kinetic energy formula is: 
 

       (2) 

 

here  and   are the translational 

kinetic energy and the rotational kinetic energy is defined 

by: 
 

       (3) 
 

       (4) 
 

in which M is the total mass matrix of the body, and J is 

the total inertia matrix of the body. From the 

characteristics of added mass, it can be written as: 
 

    (5) 
 

     (6) 
 

Here,  is a mass of the vehicle,  is an inertia 

matrix of the vehicle and  is a 3 × 3 identity matrix. 

Letting � denote a density of the fluid and using 

the formulation of the added mass and inertia under the 

assumption of � = 5�  and r = �  = �,  where � , �  

and � the added mass matrix ��  and the added  inertia 

matrix � are: 
 

  (7) 
 

  (8) 
 

From the assumption of the balance between the 

buoyancy and the gravity, i.e., the potential energy = 0, the Lagrangian can be written as: 

 

       (9) 
 

The dynamic model of X4-AUV summarized as:  

 

  (10) 

 

where � , � , � , � �  are the control 

inputs for the translational (x, y, and z-axis) motion, the 

roll (�-axis) motion, the pitch (�-axis) motion, and yaw 

( -axis) motion, respectively. A detailed derivation for 

dynamics model (10) given in [15]. 

Defining that  is a thrust factor, d is a drag 

factor, taken from ���  = � �  then �, � ,� , � , � �  are given by: 
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                                                                        (11) 

The dynamic model (10) can be rewritten in a 

state-space form �̇ = � �,  by introducing � =⋯ �� ℜ   as state vector of the system as 

follows: 

      (12) 

Where 
 

 
 

INVARIANT MANIFOLD FOR EXTENDED 

NONHOLONOMIC DOUBLE INTEGRATOR WITH 

4-INPUTS SYSTEM 
Let the controlled object be represented by the 

following extended nonholonomic double integrator 

system: 
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and consider a stabilizing problem such that )(tx [x1 x2 

x3 x4 x5 x6 x7 x8 x9 x10 y1 y2 y3 y4]
T
 is settled to zero as 

t .  
 

To derive an invariant manifold for this systems, 

assume that the following state feedback law is applied to 

Equation (13). 
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 Now, defining the state vector of the linear partial 

system in (1) as )(t
s

x [x1 x2 x3 x4 y1 y2 y3 y4]
T
 its closed 

loop linear partial becomes 
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Then, the time response of Equation (3) is described by 
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where At
e is  
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Therefore, the closed-loop linear partial system is 

reduced to 
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The time response of nonlinear term becomes 
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Utilizing constant term of Equation (18), 
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are selected to the candidate of invariant 

manifold. The differentiation of Equation (19) is 
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Then it is found that )(
1

tS is an invariant 

manifold. From other nonlinear terms, invariant manifolds 

can be selected as 
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The differentiation of Equation (21) is 
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Then, )(tS
i

is invariant manifold because )(tS
i

converges 

to zero. 

 

CONCLUSIONS 

 In this paper, a new underactuated control method 

has been proposed for nonholonomic underactuated X4-

AUV by applying a double integrator model and invariant 

manifold theory. At present, only the stabilization control 

problem was considered for an X4-AUV dynamic model. 

It is expected that each state of the controlled object will 

be converge mootly to the origin by using this type of 

control. 
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