©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

STRESS ANALYSIS OF THIN-WALLED LAMINATED COMPOSITE BEAMS

J. S. Mohamed Ali, Meftah Hrairi and Masturah Mohamad

Department of Mechanical Engineering, International Islamic University Malaysia (IIUM), Kuala Lumpur, Malaysia Email: jaffar@iium.edu.my

ABSTRACT

An educational software which can aid students in stress analysis of thin wall open sections made of composite material has been developed. The software enables students to easily calculate stresses of thin wall open section and evaluate the stresses in each ply. Results obtained through this software have been validated against ANSYS V14. The software is intended to be used as a resourceful tool for effective teaching and learning process on thin-walled structures, aircraft structures and composite structures courses.

Keywords: stress analysis, educational software, thin wall open section, composite structures.

INTRODUCTION

Composite materials are known due to their properties such as excellent fatigue resistance, high specific strength and stiffness, good corrosion resistance, excellent fire resistance and lower thermal expansion. Due to that, many industries like aerospace and defense, marine, automotive, and sports choose to use composite materials instead of other materials. The complexity of composite materials has attracted researchers to study their behavior and up until now, complete composite behavior is still unknown. This is because; the anisotropic properties of composite materials complicate the prediction of structural behavior.

In universities, engineering students who are specializing in Aerospace discipline are required to take courses such as Structural Mechanics, Aircraft Structures and Composite Structures. However, these courses especially Aircraft Structures and Composite Structures involve calculations that are lengthy, tedious and hence time consuming which makes the students loose interest in these courses.

Available software such as MDSolids has its limitation because it is deals only with basic Mechanics of Materials, and the students will not be able to learn advanced topic on structures using this software. An extensive literature shows that software named TWProfile [1] is the only commercial software available in the market that can perform analysis of thin-walled sections made of composite materials. The software determines structural properties and stresses as defined by Vlasov theory.

Previously, Nurhuda and Mohamed Ali [2] had done a great work in developing educational software for thin-walled sections of isotropic and composite materials. The students of IIUM have extensively used for the Aircraft Structures course. The software is able to evaluate direct stress due to bending, shear flow due to shear and maximum shear stress due to torsion for I, C, T, and Z cross section beams. This software when applied for

composites, just reports the average stresses instead of a detailed ply by ply analysis which is useful for design.

Advance finite element software like ANSYS and ABAQUS are very helpful to understand the behavior of either isotropic or composite beams under various loading. However, the original software are very expensive and students must study how the software works from modelling, meshing processes and applying loads correctly in order to get good results and understand the results thoroughly. The process to familiarize them with the finite element software itself is very challenging and stressful.

In this work, software is developed using MATLAB which is capable to evaluate stresses in each ply for I-, C- and T- section composite beams under axial and bending loads. MATLAB is chosen instead of other programming software not only because it is familiar software among students and lecturers, but also because it is widely used in aerospace and automotive industries. Hence, it is expected that this software will be very useful to students and lecturers and also will ease the teaching and learning processes by acting as a complementary tool to traditional teaching and learning methods.

METHODOLOGY

A thin-walled open section made of composite material subjected to axial force and bending moments in two planes is considered for analysis. As the theory for stress analysis of thin-walled open section made of composite material is well established in the literature, the theory and methods of calculation have been referred from [3] except where it is stated otherwise.

An FRP laminate may have individual plies oriented at different angles, relative to the reference (loading) axes, to produce the desired stiffness and strength in the required directions. The properties of the laminate depend very much on the individual ply properties and the stacking sequence of the plies.

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

Determination of elastic constants of laminate

The procedure for computing the stiffness, compliance and equivalent elastic constants is the same for any laminate configuration and it is as follows:

From the given elastic properties E_1 , E_2 , G_{12} and v_{12} of each ply, determine the reduced stiffness terms Q_{11} . Q_{22} , Q_{33} and Q_{12} using the following equation

$$\begin{array}{l} Q_{11} = E_1/(1-\nu_{12}\nu_{21}) \\ Q_{22} = E_2/(1-\nu_{12}\nu_{21}) \\ Q_{23} = G_{12} \\ Q_{12} = \nu_{21}E_1/(1-\nu_{12}\nu_{21}) \end{array} \tag{1}$$

2. Using the obtained Qij terms, the transformed reduced stiffness terms Q_{ij} for a given ply angle can be calculated using the equation given below in a boxed matrix form:

	Q ₁₁	Q ₂₂	Q ₁₂	Q33	
\bar{Q}_{11}	m ⁴	n ⁴	$2m^2n^2$	$4m^2n^2$	
\bar{Q}_{22}	n ⁴	m^4	$2m^2n^2$	$4m^2n^2$	
\bar{Q}_{33}	m^2n^2	m^2n^2	$-2m^2n^2$	$(m^2 - n^2)^2$	
\bar{Q}_{12}	m^2n^2	m^2n^2	$m^4 + n^4$	$-4 \text{ m}^2\text{n}^2$	
\bar{Q}_{13}	m^3n	$-mn^3$	$mn^3 - m^3n$	$2(mn^3-m^3n)$	
\bar{Q}_{23}	mn^3	$-m^3n$	$\mathbf{m}^3\mathbf{n}-\mathbf{m}\mathbf{n}^3$	$2(m^3n-mn^3)$	\perp (2)

While the Qij matrix relates the stresses to the strains in the material axes 1-2, the transformed reduced stiffness terms \bar{Q}_{ij} relate the stresses to the strains in the reference or loading axes x-y as shown in Equation (3).

$$\begin{bmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{bmatrix} = \begin{bmatrix} \overline{Q}_{11} & \overline{Q}_{12} & \overline{Q}_{13} \\ \overline{Q}_{12} & \overline{Q}_{22} & \overline{Q}_{23} \\ \overline{Q}_{13} & \overline{Q}_{23} & \overline{Q}_{33} \end{bmatrix} \begin{bmatrix} \epsilon_x \\ \epsilon_y \\ \gamma_{xy} \end{bmatrix}$$
 (3)

$$\begin{bmatrix} \epsilon_{x} \\ \epsilon_{y} \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} \epsilon_{x}^{0} \\ \epsilon_{y}^{0} \\ \gamma_{xy}^{0} \end{bmatrix} + zk \begin{bmatrix} k_{x} \\ k_{y} \\ k_{xy} \end{bmatrix}$$

$$(4)$$

For each ply in a laminate, determine the following values (refer Figure-1): t_p: ply thickness, associated with A_{ii} term

 \overline{z}_{n} : ply centroidal value

 $t_p \overline{z}_p$: associated with B_{ii}

 $(t_p \bar{z}_n^2 + t_p^3/12)$: associated with D_{ij} term

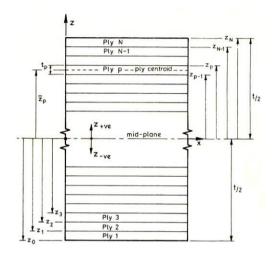


Figure-1. A layered laminate [5].

$$\begin{split} A_{ij} &= \sum_{p=1}^{N} t_{p} \left(\overline{Q}_{ij}\right)_{p} \\ B_{ij} &= \sum_{p=1}^{N} -t_{p} \overline{z}_{p} \left(\overline{Q}_{ij}\right)_{p} \\ D_{ij} &= \sum_{p=1}^{N} (t_{p} \overline{z}_{p}^{2} + t_{p}^{3}/12) \left(\overline{Q}_{ij}\right)_{p} \end{split} \tag{5}$$

The complete laminate constitutive equation the relationship between load intensity and deformation, taking into account forces and moments acting on a point on the laminate. Below is the laminate constitutive equation in a boxed matrix notation form:

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

(6)

www.arpnjournals.com

	εςο	εο	γ_{xy}^{o}	k _x	k _y	k _{xy}
N _x	A ₁₁	A ₁₂	A ₁₃	B ₁₁	B ₁₂	B ₁₃
N _y	A ₁₂	A ₂₂	A ₂₃	B ₁₂	B ₂₂	B ₂₃
N _{xy}	A ₁₃	A ₂₃	A ₃₃	B ₁₃	B ₂₃	B ₃₃
M _x	B ₁₁	B ₁₂	B ₁₃	D ₁₁	D ₁₂	D ₁₃
M _y	B ₁₂	B ₂₂	B ₂₃	D ₁₂	D ₂₂	D ₂₃
M _{xy}	B ₁₃	B ₂₃	B ₃₃	D ₁₃	D ₂₃	D ₃₃

 N_x , N_y and N_{xy} : Force intensities M_x , M_y and M_{xy} : Moment intensities ε_x^o , ε_y^o and γ_{xy}^o : Midplane strains k_x , k_y and k_{xy} : Midplane curvatures

The A_{ij} terms are the extensional stiffness terms relating the membrane (in-plane) force intensities to the laminate midplane membrane strains. The B_{ij} terms are the coupling stiffness terms relating the membrane force intensities to the out-of-plane curvature deformation. The B_{ij} terms also relate the moment intensities to the laminate midplane membrane strains. The D_{ij} terms are the bending stiffness terms which relate the moment intensities to the bending curvatures.

4. The laminate stiffness terms A_{ij} , B_{ij} and D_{ij} are inverted to obtain the corresponding compliance terms a_{ij} , b_{ij} and d_{ij} . For symmetric laminates, as is the case being considered in this work, all B_{ij} terms are zero. Thus, Equation (6) becomes:

	N _x	N _y	N _{xy}
ε _x ο ε _y ο	a ₁₁	a ₁₂	a ₁₃
ϵ_{y}^{o}	a ₁₂	a ₂₂	a ₂₃
γ_{xy}^{o}	a ₁₃	a ₂₃	a ₃₃

	M _x	M _y	M _{xy}
k _x	d ₁₁	d ₁₂	d ₁₃
k _y	d_{12}	d_{22}	d ₂₃
k_{xy}	d ₁₃	d ₂₃	d ₃₃

Analysis of thin-walled composite open sections

A thin-walled composite open section is made from an assembly of flat layered laminated composite. A section is defined as thin-walled if its thickness is small compared to the cross-sectional dimension; the ratio of the thickness to the cross-sectional dimension being at least one tenth.

Assumptions and axes system

Orthotropic materials have material properties that change with direction of a point. The material axes, which denoted by 1 and 2 axes is a set of mutually perpendicular directions parallel and perpendicular to the fiber directions. It is also known as the symmetry axes or principal axes. Direction 1 is the direction of the long fiber (longitudinal direction) and direction 2 is the direction of the matrix (transverse direction). The reference axis is a set of mutually perpendicular directions parallel and perpendicular to a reference direction. The reference direction is usually coincident with the loading direction. It is denoted by x, y, z axes system. The software developed in this work uses x-direction as the length of the beam, y-direction as width of beam's cross section and z-direction as the height of the cross section.

Centroid and stiffness of cross section

If each element is made of different ply orientation, the material properties will be different for each section. That means, the Young's modulus of upper flange, lower flange and web will be different. Thus, in order to analyze the stress of a composite laminate due to various loading condition such as tensile load and bending, location of centroid (z_c), the equivalent tensile stiffness (EA) and equivalent bending stiffness (EI $_{yy}$ and EI $_{zz}$) must be obtained. Equations (9) through (12) are obtained from

$$z_c = \frac{1}{EA} \left[\frac{b_{fu}}{(a_{11_{fu}})} bw + \frac{b_w}{(a_{11_{w}})} z_w \right]$$
 (9)

$$EI_{yy} = \frac{b_{fu}}{(a_{11}_{fu})} (bw - z_c)^2 + \frac{b_{fl}}{(a_{11}_{fl})} z_c^2 + \frac{b_{fu}}{(a_{11}_{fu})} + \frac{b_{fl}}{(a_{11}_{fu})} + \frac{1}{(a_{11}_{wl})} \left(\frac{b_{w1}^3 + b_{w2}^3}{3}\right)$$
(10)

$$EI_{zz} = \frac{b_w}{(d11_w)} + \frac{b_{fl}^3}{12(a11_{fl})} + \frac{b_{fu}^3}{12(a11_{fu})}$$
(11)

$$EA = \frac{b_{fu}}{(a11_{fu})} + \frac{b_{fl}}{(a11_{fl})} + \frac{b_{w}}{(a11_{w})}$$
 (12)

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

where b_{fu} is the width of top flange, b_w is the width of web and z_w is the distance from bottom flange to the center of web. To calculate stiffness for T-section, width of lower flange, b_{fl} is removed from the equation.

Bending

If bending moment is applied about y- axis, the beam will bend about y-axis on its flanges. The curvature of the mid-plane of the web remains flat. Thus, only flanges will have moment per unit length, M_y . The resultant of applied bending moment about y-axis, m_y is the summation of axial forces acting on the flanges and web and moment per unit length acting on the flanges.

$$m_{y} = (b_{f}N_{x}z_{f} + b_{f}M_{y})_{fu} + (b_{f}N_{x}z_{f} + b_{f}M_{y})_{fl} + \int_{bw} N_{x}z_{w}dz$$
(13)

Once the axial force intensity N_x and moment per unit length M_y are known, these valus can be substituted into Eq. 7 and 8. Similarly for a bending moment about z-axis, the curvature of the mid-plane of the web remains flat. The resultant of moment about z-axis is as follow:

$$m_z = (b_f N_x y_f + b_f M_y)_{fu} + \int_{hw} N_x y_w dz + \int_{hw} M_x dz$$
 (14)

Axial force

Under the application of axial load, the beam remains straight. The axial strains are the same across the cross section and the curvature is zero. Thus, only axial force intensity, $N_{\rm x}$ on each wall segment is required to determine in order to calculate the stresses.

ANSYS SIMULATION

The I-, C-, and T- cross section beams are modeled using ANSYS V14 by using Shell 181 layered element. Meshing is done by setting the size of width lines to 0.01, meanwhile the length lines are set to 500 number of division. The spacing ratio is set to a negative value so that the density of the element will be increased at the edges. Prior to application of load, the model is bonded to each other using the Contact Wizard. Three lines at one edge of the beam is constraint by setting the degree of freedom to zero.

The tensile and bending stiffness are measured using formula obtained in [4]:

$$EA = \frac{NL}{2U_{x (at \ x = \frac{L}{2})}} \tag{15}$$

RESULTS AND DISCUSSIONS

The programming for the stress analysis components discussed in the previous section was carried out in MATLAB R2013b. Three different standard thin-

walled cross sections C, I, and T-sections have been considered in the analysis.

Coding for stress analysis of thin-walled open sections

User will be asked to enter material properties, cross-sectional of the beam, number of layers and their orientation. The software will compute the laminate stiffness properties based on the user input data.

Later, the user will be asked to select cross sectional of the beam and desired loads which are either axial load, moment M_y and/or M_z . The outputs are the direct or normal stress, transverse stress and shear stress in each ply.

Validation of the results

The individual components of the software are checked to ensure its validity and accuracy by comparing the results with ANSYS V14 (Mechanical APDL).

Material properties

The material of composite laminate beams used in this work is carbon /epoxy prepreg [5]. The elastic properties of the plies are: $E_1 = 140 \text{ kN/mm}^2$, $E_2 = E_3 = 10 \text{ kN/mm}^2$, $G_{12} = G_{13} = 5 \text{ kN/mm}^2$, $G_{23} = 3.85 \text{ kN/mm}^2$, $V_{12} = V_{13} = V_{23} = 0.3$. The plies are each 0.005mm thick.

Configuration of composite laminate beams

For I-beam, the bottom and top flange configurations are $(\pm 45/0_2/90)_s$ and $(\pm 45/0/90)_s$, respectively meanwhile the web configuration is $(\pm 45)_s$. For C-beam, the bottom and top flange configurations are $(0/\pm 45/90)_s$, meanwhile the web configuration is $(\pm 45)_s$. The configuration for T-beam is similar to the C-beam except that no bottom flange is required.

Table-1. Geometrical dimension of beams.

Section	$\mathbf{b}_{\text{fu}}(\text{mm})$	$\mathbf{b}_{\mathbf{fl}}(\mathbf{mm})$	$\mathbf{b}_{\mathbf{w}}(\mathbf{mm})$
I	0.5	0.75	0.5
С	1	1	2
T	1	-	0.5

Equivalent axial stiffness of composite laminates

Table-2. I-beam tensile and bending stiffness.

	Software (N)	ANSYS(N)	% Difference
EA	$3.93(10^3)$	$3.94(10^3)$	0.25
EI _{yy}	198.48	198.81	0.16

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

Table-3. C-beam tensile and bending stiffness.

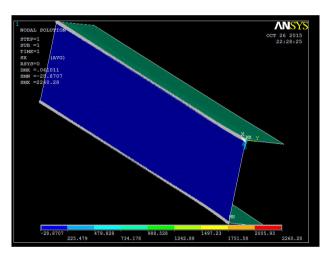

	Software (N)	ANSYS (N)	% Difference
EA	$5.0350(10^3)$	5076.49	1.71
EI _{yy}	4.7377(10 ³)	4670.309	1.42

Table-4. T-beam tensile and bending stiffness.

	Software (N)	ANSYS (N)	% Difference
EA	$2.3401(10^3)$	$2.35(10^3)$	0.388
EI_{yy}	16.1267	17.59751	9.12

Beam under axial load

The C-beam is subjected to 30kN. Pressures are applied to each flange and web lines so that it equivalent to the desired load.

Figure-2. SX contour plot of C-beam subjected to axial load.

Table-5. Stresses due to axial load on C-beam of web.

PLY	WEB	SX	SZ	SXZ
1	ANSYS	106.36	1.2168	44.826
1 (45°)	Software	105.70	0.0	44.04
(43)	%Diff	-0.62	100.00	-1.78
2	ANSYS	106.18	0.97797	-44.649
2 (-45°)	Software	105.70	0.0	-44.04
	%Diff	-0.45	100.00	-1.38
	ANSYS	106	0.74817	-44.481
3 (-45°)	Software	105.70	0.0	-44.04
(-43)	%Diff	-0.28	100.00	-1.00
4 (45°)	ANSYS	105.81	0.50027	44.294
	Software	105.70	0.0	44.04
	%Diff	-0.10	100.00	-0.57

Table-6. Stresses due to axial load on C-beam of top flange.

PLY		SX	SY	SXY
	ANSYS	833.96	-0.66158	0.0
1 (0°)	Software	833.95	-0.68	0.0
	%Diff	-0.001	2.18	0.0
	ANSYS	200.07	121.95	134.15
2 (45°)	Software	200.14	122.01	134.23
	%Diff	0.035	0.049	0.059
	ANSYS	200.13	121.99	-134.22
3 (-45°)	Software	200.14	122.01	-134.23
	%Diff	0.005	0.017	0.007
	ANSYS	54.362	-243.52	0.0
4 (90°)	Software	54.37	-243.34	0.0
	%Diff	0.011	-0.072	0.0
	ANSYS	54.358	-243.65	0.0
5 (90°)	Software	54.37	-243.34	0.0
	%Diff	0.018	-0.126	0.0
	ANSYS	199.79	121.63	-133.87
6 (-45°)	Software	200.14	122.01	-134.23
	%Diff	0.17	0.31	0.27
	ANSYS	200.28	122.12	134.41
7 (45°)	Software	200.14	122.01	134.23
	%Diff	-0.07	-0.09	-0.13
	ANSYS	833.85	-0.72761	0.0
8 (0°)	Software	833.95	-0.68	0.0
	%Diff	0.012	-7.58	0.0

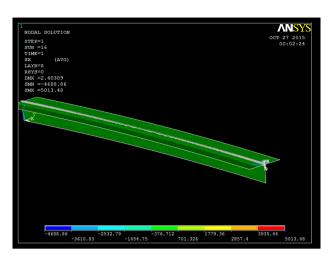
The results given by the software for axial of all composite sections agree very well with the results from ANSYS simulation.

Bending of composite sections

The following shows the results of T-section beam under bending moment M_y =0.5 kNmm about y-axis at the centroid. Figure 3 shows that T-beam is subjected to M_y . Figure-4 shows that I-beam is subjected to bending moments M_y = M_z =0.5 kNmm about y and z-axes.

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com



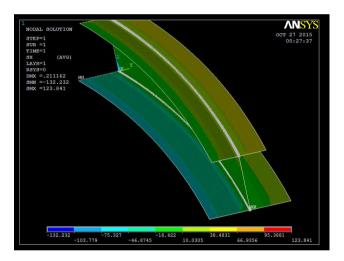

Figure-3. SX contour plot of T-section beam subjected to bending $M_{\nu_{\!\scriptscriptstyle L}}$

Table-7. Stresses due to bending about y-axis on T-beam of top flange.

PLY		SX	SY	SXY
	ANSYS	19.625	1.3358	0.38938
1 (0°)	Software	19.58	1.33	0.39
	%Diff	-0.21	-0.20	-0.19
	ANSYS	15.212	12.028	11.816
2 (45°)	Software	15.18	12.00	11.79
(43)	%Diff	-0.21	-0.20	-0.20
_	ANSYS	16.966	11.057	-11.443
3 (-45°)	Software	16.93	11.03	-11.42
(-43)	%Diff	-0.21	-0.20	-0.20
	ANSYS	6.008	-26.891	0.0
4 (90°)	Software	6.00	-26.84	0.0
(90)	%Diff	-0.20	-0.20	0.0
	ANSYS	7.4579	-40.292	-0.12979
5 (90°)	Software	7.44	-40.21	-0.13
(90)	%Diff	-0.20	-0.20	-0.18
	ANSYS	32.418	18.334	-21.613
6 (-45°)	Software	32.35	18.30	-21.57
(-43)	%Diff	-0.20	-0.20	-0.20
	ANSYS	32.474	15.665	19.359
7 (45°)	Software	32.41	15.63	19.32
(43)	%Diff	-0.20	-0.21	-0.20
_	ANSYS	188.87	-1.9554	-0.51917
8 (0°)	Software	188.48	-1.95	-0.52
(0)	%Diff	-0.21	-0.20	-0.19

Table-8. Stresses due to bending about y-axis on T-beam of web at z=0.25.

PLY	WEB	SX	SZ	SXZ
1	ANSYS	-142.4	0	-59.333
(45°)	Software	-141.60	0	-58.9984
(43)	%Diff	-0.57	0	-0.57
2	ANSYS	-142.4	0	59.333
(-45°)	Software	-141.60	0	58.9984
(-43)	%Diff	-0.57	0	-0.57
2	ANSYS	-142.4	0	59.333
(-45°)	Software	-141.60	0	58.9984
(-43)	%Diff	-0.57	0	-0.57
4 (45°)	ANSYS	-142.4	0	-59.333
	Software	-141.60	0	-58.9984
(43)	%Diff	-0.57	0	-0.57

Figure-4. SX contour plot of I-beam under moment about y- and z-axes.

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

Table-9. Stresses due to bending about y- and z-axes on I-beam of bottom flange (at y=-0.375).

PLY		SX	SY	SXY	
1 (45°)	ANSYS	-55.505	-33.343	-36.993	
	Software	-56.132	-33.722	-37.412	
	%Diff	1.116	1.123	1.119	
2 (-45°)	ANSYS	-55.432	-33.484	37.069	
	Software	-56.058	-33.864	37.488	
	%Diff	1.116	1.122	1.117	
3 (0°)	ANSYS	230.950	0.282	0.008	
	Software	233.553	0.284	0.008	
	%Diff	1.115	0.909	0.618	
4 (0°)	ANSYS	- 229.210	0.229	0.004	
	Software	231.805	0.232	0.004	
	%Diff	1.119	0.993	0.694	
5 (90°)	ANSYS	-14.832	66.270	0.000	
	Software	-15.000	67.024	0.000	
	%Diff	1.122	1.125	0.000	
6 (90°)	ANSYS	-14.733	65.045	-0.004	
	Software	-14.901	65.792	-0.004	
	%Diff	1.126	1.136	0.387	
7 (0°)	ANSYS	223.990	0.072	-0.008	
	Software	226.563	0.074	-0.008	
	%Diff	1.136	1.959	0.465	
8 (0°)	ANSYS	222.250	0.020	-0.011	
	Software	224.815	0.021	-0.011	
	%Diff	1.141	5.508	0.492	
0	ANSYS	-53.526	-33.083	36.060	
9 (-45°)	Software	-54.142	-33.461	36.474	
	%Diff	1.137	1.128	1.134	
10 (45°)	ANSYS	-53.502	-33.274	-36.191	
	Software	-54.118	-33.653	-36.605	
	%Diff	1.138	1.125	1.132	

Table-10. Stresses due to bending about y- and z-axes on I-beam of web at z=0.

PLY	WEB	SX	SZ	SXZ
1 (45°)	ANSYS	-6.137	0.00	-2.597
	Software	-6.351	0.00	-2.646
	%Diff	3.377	0.00	1.875
2 (-45°)	ANSYS	-6.393	0.00	2.664
	Software	-6.651	0.00	2.771
	%Diff	3.885	0.00	3.885
3 (-45°)	ANSYS	-6.859	0.00	2.963
	Software	-6.951	0.00	2.896
	%Diff	1.330	0.00	-2.303
4 (45°)	ANSYS	-6.905	0.00	-2.798
	Software	-7.251	0.00	-3.021
	%Diff	4.775	0.00	7.405

The results given by the software for bending of composite T-section beam about y-axis agree very well with the results from ANSYS simulation. The I-beam under bending moment M_y and M_z also gives excellent result compare to ANSYS.

CONCLUSIONS

A software to perform stress analysis of thinwalled open sections made of composite materials has been developed using MATLAB. The results obtained from the software were found to be in excellent agreement with ANSYS. Shear load and torsional analysis will be added to the software in order to improve its capability in computing stress analysis of thin wall beams. Thus, the software is expected to be useful as guidance and educational tool for students and lecturers.

REFERENCES

- [1] MechaTools Technologies. (n.d.). TWProfile. Retrieved 26 September 2014. from http://mechatools.com/en/twprofile.html.
- [2] Nurhuda Bt Ismail and Mohamed Ali J.S. 2011. Educational Software for Stress Analysis of Thin-Walled Section 2: Composite Material. ICMAAE'11, May 17-19, IIUM, KualaLumpur.
- [3] Kollar, L. P. and Springer, G. S. 2003. Mechanics of Composite Structures. Cambridge: Cambridge University Press.

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

- [4] Parambil, J. C. 2010. Stress Analysis of Laminated Composite Beam with I-section. M.Sc. Thesis. The University of Texas at Arlington: Arlington.
- [5] Datoo, M. H. 1991. Mechanics of Fibrous Composites. London: Elsevier Applied Science.
- [6] Megson, T. H. G. 2007. Aircraft Structures for Engineering Students (4th Ed.). Oxford: Elsevier Ltd.
- [7] Daniel, G. and Suong, V.H. 2006. Composite Materials: Design and Applications. CRC Press.