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ABSTRACT 

In recent years, research on titanium and its alloys had increased significantly for hard tissue replacement and 
dental applications due to their excellent mechanical properties such as high strength to weight ratio, low density and 
biocompatibility. However, there are some surface originated problems associated with titanium (Ti): poor implant 
fixation, lack of osseoconductivity, wear and corrosion in physiological environment. As the interaction between the 
implant and host bone is a surface phenomenon, surface properties play a prominent role in determining both the biological 
response to implant and the material response to the biological condition. To improve osseointegration of titanium with 
bone, hydroxyapatite (HA) has been widely used due to its close similarity to bone mineral. Promising new studies have 
been reported regarding coating titanium implant with HA using various surface modification techniques to improve the 
long term stability of titanium implants. Micro-arc oxidation (MAO) has attracted a lot of interest owing to its ability to 
produce a thick microporous oxide layer on titanium implants. The significant part of MAO is that HA can be incorporated 
in the oxide layer when processed in electrolytes containing calcium and phosphorous ions. The oxide layer containing 
hydroxyapatite can be subsequently increased via hydrothermal treatment. The HA produced on titanium surfaces has 
attractive features such as high porosity and adherent layer which facilitate good clinical outcomes. This review presents 
the state of the art of MAO and possible further suggestion of MAO for the production of HA on titanium implants. 
 
Keywords: titanium and its alloys, Hydroxyapatite, Micro-arc oxidation, surface modification. 

 
1. INTRODUCTION 

Titanium and its alloys are widely used as 
artificial hip joints, bone plates, screws and dental 
implants due to their superior mechanical properties and 
the passive oxide’s superior chemical stability [1-4]. 
However, for the passive oxide and smooth surface, Ti and 
its alloy as a rather bioinert material and lack of 
biofunction and considered to have poor bone-bonding 
ability in vivo [5-7]. The problem of osseointegration 
(bone-bonding) i.e., the formation of a direct structural and 
functional connection between the implant and host bone 
is of critical importance, particularly for orthopaedic 
implants. In addition, their low surface hardness, high 
coefficient of friction and poor wear resistance are among 
the limiting factors which restrict their applications in 
biomedical sector.   

To enhance the surface of titanium implant from 
wear, corrosion and improve its bio-functionality, surface 
modification is necessary because biofunction cannot be 
added during manufacturing processes such as melting, 
forging and heat treatment [8]. Surface modification is a 
process of changing the material’s surface composition, 
structure and chemistry without altering the bulk 
properties.  Recently, one used strategy to activate Ti 
surface is to deposit bioactive material on its surface. 
Hydroxyapatite has been widely used as a suitable 
bioactive material due to its excellent osteoconductivity, 

bioactivity and ability to form a direct bone contact at the 
implant-bone and guide bone formation along its surface 
[9-11]. However, the brittle nature of HAp ceramics 
restricts its application as bulk material under load bearing 
condition; therefore it is commonly employed as a coating 
material in clinical setting for Ti and its alloy. The 
bioactive and biocompatibility nature of HA ceramics 
guides bone formation and enhanced implant fixation [12, 
13]. Compared to uncoated prosthetic devices, implants 
coated with HAp demonstrated longer time performance 
after implantation [14]. A range of surface modification 
technologies  have been used to deposit bone like apatite 
(HAp) on  Ti surface including sol-gel [15, 16], plasma 
spray [17, 18], electrophoretic deposition [19, 20] and 
micro-arc oxidation [21, 22].  

Most commonly, HA ceramics are coated on Ti 
and its alloy using plasma spray coating technique which 
is considered as the most popular commercial method for 
depositing HAp ceramics.  However, a major drawback 
remains in the poor interfacial bonding between the HAp 
coating and implant material which results in debonding 
[23, 24]. The particles from de-bonding can subsequently 
cause inflammatory reaction and loosening of the 
implants.  Another surface modification technique that is 
becoming increasing widespread and being used to obtain 
highly adherent, rough and HA thin layer film  on Ti 
surface is micro-arc oxidation. This review provides an 
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overview of HA coated on Ti and its alloy using MAO 
technique and possible further suggestion for the 
production of HA on Ti implants. 
 

1.1 Micro-Arc oxidation  

Micro-arc oxidation (MAO) or plasma 
electrolytic oxidation (PEO) [25] is an enhanced 
electrochemical treatment technology using a conventional 
anodizing and plasma arc discharge within an electrolyte 
solution under high voltage to produce highly adherent 
TiO2 ceramic coatings on light materials ( Ti, Al, Mg, Nb, 
Ta and their alloys) [26-28]. It is a relatively convenient 
and effective technique to introduce Ca and P into porous 
TiO2  coatings on titanium and its alloys. Typical MAO 
equipment consists of an electrolyte bath, working 
electrode and a stainless steel which serves as counter 
electrode. The morphology and structure of the layer are 
determined by the electrolyte ingredients, electrolyte 
concentration, substrate material and processing 
parameters, such as deposition time and voltage [29, 30]. 
MAO treatment is usually carried out at higher voltage 
than the dielectric breakdown potential of the growing 
oxide layer, usually up to 350 V [31, 32] or even higher up 
to 450 V [33, 34] or 500 V [35-37] as against the 
conventional anodizing which operates within the range of 
20-80 V [30]. A schematic setup and an example of actual 
experimental conditions during MAO process is shown in 
Figure-1.  
 

 
 

Figure-1. Schematic diagram of PEO experiment [38]. 
 

During MAO treatment, the samples are used as 
anode plates and immersed in electrolyte of interest and 
mechanically stirred by a mixer.  

When the samples of light metal or their alloys 
are immersed in electrolytes, the metal surface generates a 
layer of insulating oxide film after energization. As the 
applied voltage exceeds a critical value, a micro arc 
discharge with high temperature and pressure develop in 
the discharge channels resulting in porous and a highly 
dense thick layer. The ingredients in aqueous electrolyte 
can be incorporated into the oxide layers by the discharges 
and the coating containing Ca and P can be deposited onto 
the surface of metallic materials. The deposited Ca and P 
usually exist in TiO2 layer and in this case hydrothermal 

treatment is usually used to make MAO coating 
recrystallize. Typical morphology of an oxide layer 
produced by MAO at different voltages is depicted in 
Figure-2. MAO can be performed in both direct, pulse 
biased current and alternating current. Because MAO 
coating is formed on the metal surface via a series of 
localized electrical discharge events, many micropores are 
left in the coating. Thus, the bone cells can be led to grow 
into these pores and compatibility can be improved.  

  

 
 

Figure-2. SEM surface morphologies of Ti surfaces 
treated with MAO with different voltages: (a) 300 V, (b) 
400 V, (c) 450 V and (d) 500 V.  [33].  MAO coatings are 

of interest in biomedical applications of titanium since 
they impede release of metal ions by forming thick, hard 

and well adherent coatings and assists tissue developments 
through their microporous and rough surface formation as 

compared to conventional surface modification 
techniques. 

 
Various electrolytes compositions have been 

reported for the formation of HA layer on Ti and its alloy. 
The ingredients of electrolytes and its temperature during 
MAO treatment play a crucial role in determining the 
properties of MAO coatings. Different electrolytes result 
in different phase composition, structure and elemental 
distribution of MAO treatment. Generally, the electrolytes 
used for MAO coating are acid and alkaline based 
electrolytes [39, 40]. Table-1 summarizes different types 
of electrolytes along with temperature used for HA layer 
formation on Ti.  
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Table-1. Electrolytes used for formation of HA 
layer on Ti. 

 

 
 

1.2 HA layer production on Titanium by MAO  

Using MAO, it is possible to produce HA layers 
[53]. In these studies Ca/P ratio in the coating was 
controlled by varying the concentration of electrolytes in 
the electrolyte bath. A highly crystalline HA coating layer 
(10-25 μm) with fine coarse structure was formed on the 
surface of Ti. Lin et al. [54] showed that control of Ca/P 
ratio is possible but unexpectedly, no peaks corresponding 
to the Ca and P containing phases was detected in XRD 
analysis. The formation of HA is restricted by the 
surrounding TiO2  matrix in form of amorphous. The work 
was extended by carrying out hydrothermal treatment to 
recrystallize the HA within the TiO2 matrix in the MAO 
coating. Hydrothermal treatment of MAO coating 
containing calcium and phosphorus films results in the 
formation of a thin layer of HA over TiO2 layer [55-57]. 
After hydrothermal treatment, the degree of crystallinity 
increases and becomes larger and more glaring [33, 45, 
47]. This is attributed to the outward migration of Ca2+ and 
PO4

3- ion from TiO2 thick oxide layer into HA crystals. 
The hydrothermal treatment is done on already existing 
MAO coating by immersion of coated sample in an 
autoclave or in pressure control reactors containing 
alkaline or neutral aqueous solution. The hydrothermal 
treatment is usually performed at a relatively low 
temperature range 100-250 0C for 2-24 hrs [10, 55, 56, 58-
60] and PH 7-13 [61]. Figure 3 shows the SEM 
micrographs of oxide films treated hydrothermally at 190 
0C for 10 hrs in three different PH water solutions by Liu 
et al. [55]. The morphology of oxide films revealed that 

hydroxyapatite can be precipitated as columnar crystals as 
shown by XRD (Figure-4) and the rough and porous 
structure of MAO coating can still be retained after 
hydrothermal treatment (Figure-3). 
 

 

 
 

Figure-3. SEM micrographs of oxide films treated 
hydrothermally at190°C for 10 h. (a) Water solution 

pH 7.0; (b) water solution pH 9.0; and (c) water 
solution pH 11.0. [55]. 

 
The XRD pattern of oxide film showed that the 

films have high crystallinity and consist of a significant 
amount of anatase TiO2, little amount of TiO2 and 
amorphous phase. After hydrothermally treated at 190 0C 
for 10 h, HA crystals were precipitated on the film surface 
as depicted in Figure-4. 
 

 
 

Figure-4. X-ray diffraction patterns of oxide film surface 
formed in electrolyte of 0.06M Ca-GP and 0.25M CA at 
50 A/m2 and 350 V.(A) Before hydrothermal treatment; 

(B) after hydrothermal treatment. 
 

However, hydrothermal treatment lowers the 
bonding strength and roughness of MAO coating because 
of introduction of additional phases [47]. It is a known fact 
that surface morphology plays a vital role in the overall 
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success of an implant [62]. Either rough or crater like 
surface morphology of an implant is needed in any 
particular clinical setting. Micro-arc oxidation deposition 
technique allows us to prepare highly dense, uniform and 
continuous coatings [36, 42, 49]. The technique allows us 
to prepare porous structure (1-20 μm) with higher coating 
thickness (16.1-63.4 μm) between CaP and Ti substrate as 
depicted in Figure-5 [63].  
 

 

 

 

 
 

Figure-5. Surface morphologies of MAO coatings: (a) 1 
min, (b) 5 min, (c) 10 min, (d) 20 min, (e) 40 min, (f) 60 

min and (g) 120 min. 
 

The average thickness and the average pore sizes 
of the MAO coating increases with treatment time. The 
MAO porous surface can be of beneficial contribution to 
cell attachment and infiltration of new bones [63]. 

 

CONCLUSIONS 

This paper aimed to provide a broad overview of 
the HA produced on titanium and its alloys using micro-
arc oxidation technique. It is clear that micro-arc oxidation 
is a relatively novel technique that can be used to deposit 
highly adherent, dense, microporous thick layer surface on 
titanium substrate. The existence of Ca and P containing 
phases in the thick layer produced by MAO provides 
further capacity for the induction of HA layer via 
hydrothermal treatment. The degree and concentration of 

Ca and P are significantly higher after hydrothermal 
treatment as compared to MAO treated Ti surface. The 
MAO coating process is simple and convenient, but 
according to recent study, the growth of HA crystals inside 
open pores cause surface roughness and cohesive strength 
of hydrothermally treated to be less than the original MAO 
coated sample. As a result, mechanical interlocking 
between the coating and implants will be limited due to 
low surface roughness. Therefore, a high quality coating is 
still worth investigating which has a higher roughness, 
good mechanical interlocking and a longer wear life. More 
improvements should be done for the MAO technique 
which is of great importance in different biomedical 
sectors. 
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