
                               VOL. 10, NO 22, DECEMBER, 2015                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                    10303 

KNOWLEDGE SHARING THROUGH INTERNALIZATION PROCESS OF 
PAIR PROGRAMMING IN STUDENT’S ACADEMIC PROJECTS 

 
V. Venkatesan and A. Sankar 

Department of Computer Applications, PSG College of Technology, India 
E-Mail: v_venkkatesan@yahoo.co.in 

 
ABSTRACT 

Students continue to struggle with learning to program, for reasons that the hypothesis is not solely cognitive. This 
study contributed for better understanding of important knowledge sharing activities to construct student’s learning skills 
during internalization process through pair programming. The pair programming is one of the very important pedagogical 
approaches that can enhance students’ abilities in the area of computer programming. Knowledge sharing in pair 
programming can be improved with the guidance of lecturers or teaching assistants and also increasing the frequency of 
programming activities between the student pair members. In the academic setup, based on few set of experiments, we 
found that students who used pair programming produced better programs, confident in their solutions, and enjoyed 
completing the assignments more than students who programmed alone. Pair programming improves the design ability, 
reduces time taken to do their academic mini-projects and it increases the knowledge and programming skill of the pair 
members. This experimental study represents the results of the knowledge sharing during pair programming exercise 
carried out with sixty Master of Computer Applications students who are engaged in developing small applications as a 
part of their Mini-project during their II year at PSG College of Technology, during the odd semester of 2014. 
 
Keywords: Pair programming, extreme programming, knowledge sharing. 

 
1. INTRODUCTION 

In recent past years the concept of pair 
programming has evolved as one of the important 
technique of coding. Extreme Programming (XP) is a 
computer software development approach that credits 
much of its success to the pair programming by all 
programmers, regardless of experience (L. Williams, 
2000; Cockburn.A. et al, 2000). Extreme Programming 
focuses on disseminating knowledge through collaborative 
practices such as Pair Programming where teams of two 
people work together, Test Driven Development which is 
to writing lots of tests, and writing them early, Continuous 
Integration represents putting code together as soon as 
code written, not at the last minute, Coding Standards 
which helps to learn and follow well established 
conventions, Collective Code Ownership where members 
are responsible for the partner’s code and  do Simple 
Design. 

The idea behind these practices is to sharing of 
knowledge, work and to expertise with all teams (Beck. K, 
2000). XP promotes testing code literally every few 
minutes, after every minor change in code. It works best 
for relatively small projects size with a small number of 
efficient programmers. It is assumed that while 
programming in pairs, people try harder to code well and 
thus gains confidence in programming and knowledge.  
 
2. PAIR PROGRAMMING 

Pair programming is a software development 
technique where two programmers work together side-by-
side on the same machine to achieve their goals. In this 

programming methodology two programmers collaborate 
on the same programming task at the same time, with each 
programmer having their distinct role and responsibilities. 
The primary role is called the driver; this is the 
programmer with control of the input devices, usually a 
single keyboard and mouse combination, and there are 
actively coding the solution to the task faced by the pair. 
The other programmer has the role of navigator, and this 
programmer has the responsibility to review the driver’s 
work on as much level as they can. “Tactical defects” is a 
term for low level mistakes, such as syntax errors, types 
and basic logic errors (Williams L. et al., 2002). “Strategic 
defects” is the term for high level errors, when the solution 
being implemented heads in the wrong direction or has 
non-local effects on the system.   

It is responsibility of the navigator to consider 
both tactical and strategic defects and attempt to mitigate 
them as the driver produces them while coding (Saurabh 
Ratti, 2008). 

Most of the previous researches have evaluated 
the effectiveness of pair programming by measuring the 
characteristics of the product (computer programs) that 
were developed by the students. Each of the products was 
delivered by a pair. However, to prove that pair 
programming is an effective learning methodology, it 
should also improve the individual students’ subject 
knowledge and programming skills. Only, very few 
attempts have been made to measure the individual 
performance. 

Software design plays an important role in 
software development in industry. The same is also true 



                               VOL. 10, NO 22, DECEMBER, 2015                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                    10304 

for developing programs for student projects since, it is 
also used for evaluation in educational institutions.  

When pair programming is used in long duration 
projects, the students have to work together both at 
educational institutions and at home. In this kind of 
environment, the students had reported that it was difficult 
to find time to meet and work together.   

Various studies have been done on determining 
the usefulness and effectiveness of Pair Programming as 
pedagogical tool and indicated the following positive 
results: i) Pair programming can improve students’ 
performance by gaining higher scores on programming 
assignment (Werner et al., 2004; McDowell et al., 2003; 
Cliburn, 2003; Slaten et al., 2005). ii) Pair programming 
can increase student’s confidence and satisfaction (Werner 
et al., 2004; McDowell et al., 2003; Cliburn, 2003; Slaten 
et al., 2005). ii) Pair programming can encourage students 
to complete the programming course (Werner et al., 2004; 
McDowell et al., 2003). The studies suggested that pairing 
might be impractical when deadlines are tight. (Paranjape, 
2001; Becker-Pechau, Breitling et al. 2003; Gittins, Hope 
et al. 2001) all suggest that pairing could more useful 
when it is introduced in a non-mandatory fashion, 
perchance focusing its use on a most critical or complex 
tasks.   

Some Studies have shown that pair programming 
creates an environment conducive to more advanced, 
active learning and social interaction, leading to students 
being less frustrated, more confident, and more interested 
in Information Technology. Pair programming encourages 
students to interact with peers in their classes and 
laboratories, thereby creating a more communal and 
supportive environments.  
 
2.1 Advantage of pair programming 

Earlier task completion: Pair programming can 
potentially increase the development speed and thus 
shorten time-to-market. On the economics’ perspective, 
two developers working in pairs is only superior when the 
resulting time is less than halved compared to individual 
all programming.  

Better code readability: Readability promotes 
exchangeability of code and potentially lowers program 
maintenance cost. Related evidence such as improved 
conformance of coding standard. 

Early identification of faults: Due to continuous 
code review, potential software faults can be identified 
earlier, where as in solo programming, a fault typically 
exists until an appropriate code review or test is 
undertaken.  
 
2.2 Integrating pair programming into a software  
      development process 

Programming pairs routinely “refactor” the code 
base by continuous change and enhancement. They view 

the code as the self-evolving design- they do not spend 
time on a design document. 

One of the things that we firmly believe in is the 
value of collaboration and learning from the each other, 
especially when programming.  

In pair programming at its simplest, a pair of 
students will work together on a programming assignment.   

The two programmers periodically switch their 
roles; they work together as equal to develop software. 
This practice of pair programming can be integrating into 
any software development process.  
 
2.3 Problem solving 

Groups of students work together during the 
problem solving process and regularly called on to present 
their solutions on the entire class. Students who get the 
most out of these workshops [Donna Teague et al. 2007] 
tend to be those that are actively involved in discussions 
during the problem solving process.  

Novice programmers require hands-on 
experience, and lots of it, because their knowledge of 
programming is not passively absorbed through texts and 
lectures, but rather actively constructed via their own 
practical experiences. Students should be given a 
supportive environment in which to experiment, and get 
the practical experience they need. Providing a totally 
collaborative learning (Donna Teague et al. 2007) 
environment may provide the support that students need to 
develop sound problem solving and programming skills.  
 
2.4 Pair learning 

Knowledge is constantly being passed between 
partners, from tip on tool usage, to programming language 
rules, design and programming idioms, and overall design 
skill. Pair programming may contextualize the learning 
activity in a manner that allows the students to focus on 
the different knowledge types, and provide the feedback 
necessary to increase their ability to develop monitoring 
mechanisms for their own learning activities (Furberg et 
al., 2013). If the pair can work together, then they learn 
ways to communicate more easily and they communicate 
more often with each other. 

Existing literature on the pedagogical adoption of 
pair programming indicate several benefits like enhanced 
learning, knowledge transfer and improvements in student 
performance.   

One significant benefit to pair programming is 
that it is a common professional practice situated in the 
workplace. Therefore, exposure to pair programming in 
the classroom could familiarize students with a method 
they will be required to employ on the job (Madhumita 
Singha Neogi et al, 2011). Similarly, pair programming 
could supplement existing curricula with additional 
learning opportunities that could support students in future 
careers. For example, students might learn method for 
collaboratively solving problems, communicating their 



                               VOL. 10, NO 22, DECEMBER, 2015                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                    10305 

understanding verbally, and resolving disagreements with 
their peers.  

This study focuses on the quality of the program 
developed by students using pair programming method, 
their performance and confidence towards developing a 
program using coding standard, code efficiency, testing 
and documentations (Subbaraya Kuppuswami and 
Kalimuthu Vivekanandan, 2004). Also this research 
focuses on the knowledge transfer of the students during 
programming.   
 
3. KNOWLEDGE SHARING IN ACADEMIC  
    PROJECTS 

Pair programming raises issues for project 
management. On the positive side, it may act as a backup 
for absent or departing developers [Williams, L., et al, 
2000]. This was also reflected in the some literature with 
‘no one person has a monopoly on any one section of the 
code, which should remove organizational dependencies 
on particular resources and mitigate risk to the businesses. 
On a less positive note, there are challenges for project 
management in terms of planning and estimation. This was 
highlighted in the study by ‘Methods of 
planning/estimating need to change when   team is pair-
programming rather than tackling tasks as individuals’ 
Knowledge sharing and transfer is one of the most widely-
claimed benefits of pair programming [Mawarny et al, 
2011].  An experiment was conducted in PSG College of 
Technology, with 60 students of II year Master of 
Computer Application (MCA) for their Mini Project-I 
course during the odd sem 2014.  

The mini project was evaluated in three stages, 
say project review1, project review2 and final project viva 
with demo. For this, 25% of marks will be   allotted for 
review one and for second review another 25% of marks 
and for final project viva and demo 50% marks will be 
evaluated.  The entire project review will be done under 
various faculty review panels and concerned faculty guide.  

Students are advised to choose a domain for 
doing their project. The class tutor will form pairs based 
on the domain of the students and then faculty guide be 
assigned. During First two review students are allowed to 
present project presentations with their partners. But for 
the final project demo and viva they must face the review 
panel individually. In review1 each student explained 
about the project objective, system analysis and design, 
their roles, tools and technologies to be used, 
implementations and deadlines of the project. From day 
one of the project work each students help each other and 
to share their knowledge to complete project in time. 
During second review, students were required to partially 
complete their project utilizing the pair programming 
practice.  

The students frequently updated their project 
status to their faculty guide/ project guide. They worked 
with the same partner for entire project until completed.  

In this experiment, out of 60 students 40 were 
programming their project in paired group and 20 students 
did their projects in solo programming. Our study was 
specifically aimed at the analysis of pair programming on 
both students groups toward knowledge sharing and 
quality of work. The Figure-1 shows the flow diagram of 
the evaluation process of academic mini-project work. 
 

 
 

Figure-1. Pair programming process in mini project. 
 



                               VOL. 10, NO 22, DECEMBER, 2015                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                    10306 

4. PAIR PROGRAMMING ANALYSIS 
As discussed earlier, the data sources, collection 

procedures and tools evolved during the mini project. This 
is why all metrics have not been calculated for each 
project. Each metric is defined in the subsequent section 
together with the empirical results. Table-1 shows the data 
table of coding standard where the difference in the coding 
standard and the corresponding chart shown in Figure-2.  

Hypothesis is there was significance difference 
on improvement of Coding Standard in Pair programming 
with the following value Pair Mean: 75, SD: 35 and Solo 
Mean: 54, SD: 11 at Level of significance α=5% using t-
distribution. 
 
Table-1. The Comparisions of solo and pair programming 

in terms of coding standard. 
 

Percentage 0% 25% 50% 75% 100% 

Solo 1 6 8 8 2 

Pair 0 3 7 13 13 

 

 
 

Figure-2. Coding standard. 
 

Table-2 shows the efficiency data table where the 
difference in the Efficiency is shown in Figure-3. 

Hypothesis is there was significance difference 
on improvement of efficiency in Pair programming with 
the following value Pair Mean: 75, SD: 36 and Solo Mean: 
64, SD: 19 at Level of significance α=5% using t-
distribution. 
 
 
 
 

Table-2. The comparisions of solo and pair programming 
in terms of efficiency. 

 

Percentage 0% 25% 50% 75% 100% 

Solo 0 6 5 8 6 

Pair 0 2 7 15 12 

 

 
 

Figure-3. Efficiency. 
 

Table-3 shows the testing data table where the 
difference in the testing is shown in Figure-4. 

Hypothesis is there was significance difference 
on improvement of testing in Pair programming with the 
following value Pair Mean: 82, SD: 45 and Solo Mean: 58, 
SD: 16 at Level of significance α=5% using t-distribution. 
 

 
 

Figure-4. Testing. 

1

6

8 8

2

0

3

7

13 13

0

2

4

6

8

10

12

14

0% 25% 50% 75% 100%

St
u
d
e
n
ts

Coding Standard Percentage

Coding Standard

Solo Pair

0

6
5

8

6

0

2

7

15

12

0

2

4

6

8

10

12

14

16

0% 25% 50% 75% 100%

St
u
d
e
n
ts

Efficiency Percentage

Efficiency

Solo Pair

2

5 6 7
5

0
2

4

12

18

0

5

10

15

20

0% 25% 50% 75% 100%

St
u
d
en

ts

Testing Percentage

Testing

Solo Pair



                               VOL. 10, NO 22, DECEMBER, 2015                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                    10307 

Table-3. The comparisions of solo and pair programming 
in terms of testing. 

 

Percentage 0% 25% 50% 75% 100% 

Solo 0 5 6 7 5 

Pair 0 2 4 12 18 

 
Table-4 shows the data table of Documentation 

where the difference is shown in Figure-4. 
 
Table-4. The comparisions of solo and pair programming 

in terms of documentation. 
 

Percentage 0% 25% 50% 75% 100% 

Solo 0 4 8 8 5 

Pair 0 2 4 14 16 

 
Hypothesis is there was significance difference 

on improvement of documentation in Pair programming 
with the following value Pair Mean: 80.55, SD: 42 and 
Solo Mean: 64, SD: 18 at Level of significance α=5% 
using t-distribution. 
 

 
 

Figure-5. Documentation. 
These metric describing the actual use of pair 

programming in the students projects is productivity, 
which provides information on how pair programmer’s 
productivity evolves as the project progresses and also 
allows comparing the productivity of the two different 
programming styles. In this study, productivity is 
calculated for both pair and solo programming styles for 
each iteration as a ratio of produced logical code lines and 
spent effort. It is acknowledged that measuring 
productivity is not a straight forward task and using lines 
of code counts has its challenges. However, it is the most 
commonly used means for describing productivity and 

thus used also here. The numbers of code lines for each 
programming style were obtained by calculating the 
amount of code lines in the iteration’s end baseline made 
with each programming style. The total productivity of 
pair and solo programming in the three sections on mini 
projects. There seems to be no regularity between the 
productivity of different programming styles: in case two 
solo programming has a bit higher productivity than pair 
programming, in case three the situation is reversed, and in 
case four, pair programming has substantially higher 
productivity than solo programming. 
 
4.1 Rationale for pair programming 

The results concerning with the rationale for pair 
programming obtained through team surveys are presented 
in the following. The focus of this qualitative data (i.e., 
recorded, described) is on determining the types of tasks 
and situations, which developers find especially suitable or 
unsuitable for pair programming [H. Hulkko. et al., 2005].  
The study aimed at collecting team members’ views about 
the usefulness of pair programming in different application 
situations and development phases. One developer found 
pair programming to be suitable for many coding tasks, 
but not necessarily like installation tasks. The team 
members of cases one, three and four pair programming to 
be especially useful for novice team members and  in the 
beginning of  a project. 

The effect of the complexity of the task on the 
usefulness of pair programming was also brought up by 
the developers in the final interviews. The developers felt 
that pair programming was more useful for demanding and 
complex tasks than for role tasks.  

The first metric used to describe the quality 
effects of pair programming is related to adherence to 
coding standards. In accordance to agile philosophy, the 
project team was responsible for defining the coding 
standards in the beginning of each project, and the code 
has been compared against these same standards when 
deriving this metric.  
 
5. COMMUNICATION 

Communication plays an important role during 
the planning game and when pair programming. In the 
planning game story cards help to structure the 
communication. Pair programming and testing rely on a 
flexible, unstructured and creative communication 
between pair members where communication is guided by 
the source code the pair is working on.  For an example, 
the possible channel of communication is shown in 
Figure-6. 
 

0

4

8 8
5

0
2

4

14
16

0

5

10

15

20

0% 25% 50% 75% 100%

St
u
d
e
n
ts

Documentation Percentage

Documentation

Solo Pair



                               VOL. 10, NO 22, DECEMBER, 2015                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                    10308 

 
 

Figure-6. Communication channel. 
 

These meetings acted as a communication 
channel between the team and the organization. The 
practice communicate pair had a positive effect on the 
collaboration between the team and its surrounding 
organization since it provided the organization and the 
team with means for discussing software development 
issues on a more detailed level. Everyone needs to be in 
touch with each other throughout the day.  

Software projects require a great deal of 
communication. If you’re writing an application just for 
your own use, then the communication channels are all 
extremely fast, making for very tight feedback loops.  

Solo developers can inter communicate n 
members they need = n*(n-1)/2 way. So they need more 
time to finish their work. But pair programmer need only 
minimum communication n pair = n communication way 
they used.  
 
6. PRODUCT QUALITY 

Pair Programming is not just about producing the 
actual code of programming. It also collaborating as pairs 
with tasks as: analysis, architecture and low-level design, 
test or other software related problems affecting the 
software and its quality.  Selected metrics were used as 
key performance indicators to assess the software quality 
on regular basis. This information was used for making the 
internal software quality transparent for management. 
Additionally, explicit tasks for quality improvement have 
been filed to address and schedule software quality issues 
within pair development process. The students performed 
much more consistently and with higher quality in pairs 
than they did individually - even the less motivated 
students performed well on the programming projects.  

The students felt they were more productive 
when working collaboratively. They were several reasons 
observed. First, when they met with their partner they both 
worked very intently each kept the other on task and were 
highly motivated to complete the task at hand during the 
session. The Table-5 shows positive aspects of pair 
programming based on the data collected from students.  
 

Table-5. Positive aspects of pair programming. 
 

Variables Mean 

Learning 3.92 

Quality of work 4.59 

Knowledge  sharing 4.51 

Responsibility 4.11 

Pair support 3.87 

Roles Switching 3.09 

Usefulness 4.57 

Satisfaction 4.42 

Overall Productivity 4.15 

 
The pair students were extremely positive about 

their collaborative experience. The Figure-7 shows the 
positive aspects of pair programming based on the data 
given be pair members.  
 

 
 

Figure-7. Positive aspects of pair programming. 
 

All pair Members was happier and less frustrated 
with the class. They also felt good and able to come up 
with more creative, efficient solutions when working with 
a partner. 
 
7. CONCLUSIONS 

Pair programming would be the key benefit as 
this would enable students to share mentoring roles, reflect 
on their own and each other’s work and share the learning 
experience together during problem solving and program 
development. Programming really is complex and difficult 
to learn, there also cultural and social influences on 
students presenting to introductory computer science 
courses. Students’ knowledge building, reflected in scores, 
contributed to their domain understanding. This paper 
highlights the advantages of intensive collaboration 
between students by exploiting the students’ own ability 
and desire to interact with their peers. Peer interaction can 

0

5

Positive Aspects  of Pair 
Programming

Mean



                               VOL. 10, NO 22, DECEMBER, 2015                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                    10309 

lead to very strong learning experiences and overall there 
is a good knowledge sharing among students. Our findings 
suggest that not only does pairing not compromise 
students’ learning, but that it may enhance the quality of 
their programs.  
 
REFERENCES 
 
[1] Beck. K. 2000. Extreme Programming Explained 

(Addison-Wesley. 

[2] Cliburn D.C. 2003. Experiences with pair 
programming at a small college.  Consortium for 
Computing Science in College. 19(1): 20-29. 

[3] Cockburn. A and L. Williams. 2000. The Cost and 
Benefits of Pair Programming. 1st International 
Conference of Extreme Programming and Flexible 
Processes in Software Engineering, Italy. 

[4] 2007. Donna Teague and Paul Roe:  Learning to 
Program: Going Pair-Shaped. Innovation in Teaching 
and Learning in Information and Computer Sciences. 
6(4). 

[5] Furberg A., Kluge A. and Ludvigsen S. 2013. Student 
sense making with science diagrams in a computer-
based setting. International Journal of Computer-
Supported Collaborative Learning. 8(1): 41-64. 

[6] Hulkko. H and Abrahamsson. P. 2005. A Multiple 
Case Study on the Impact of Pair Programming on 
Product Quality. In International conference on 
Software Engineering (ICSE). 

[7] Madhumita Singha Neogi and Vandana Bhattacherjee. 
2011. Pair vs Solo Programming: Students’ 
Perceptions. International Journal of Computer 
Science and Information Technologies. 2(3). 

[8] Mawarny Md. Rejab, Mazni Omar, Mazida Ahmad, 
Khairul Baraih Ahamad. 2011. Pair Programing in 
inducing knowledge sharing. ICOCI, pp. 11-20. 

[9] McDowell C., Hanks B. and Werner L. 2003. 
Experimenting with pair programming in the 
classroom. Proceedings of the 8th annual conference 
on innovation and technology in computer science 
education. 35(3): 60-64. 

[10] McDowell C., Werner L., Bullock, H.E. and Fernald 
J. 2003. The impact of pair programming on student 
performance, perception and persistence. Proceedings 

of the 25th International Conference on Software 
Engineering. pp. 602-607. 

[11] Saurabh Ratti. 2008. Pair Programming - Software 
Engineering Project Management Project Report. 

[12] Slaten K.M., Droujkova M., Beenson S.B., Williams 
L. and Layman L. 2005. Undergraduate student 
perceptions of pair programming and agile software 
methodologies: verifying a model of social 
interaction. Proceedings of the Agile Development 
Conference. Software Engineering. 36: 61-80. 

[13] Subbaraya Kuppuswami and Kalimuthu 
Vivekanandan. 2004. The Effects of Pair 
Programming on Learning Efficiency in Short 
Programming Assignments. Informatics in Education. 
Vol. 3. 

[14] Werner L.L., Hanks B. and McDowell C. 2004. Pair-
programming helps female Computer Science 
Students. ACM Journal of Educational Resources in 
Computing. 41(3). 

[15] Willams. L and R. Kessler. 2003. Pair Programming 
Illuminated. Addison- Wesley. 

[16] Williams L. et al. 2006. Examining the Compatibility 
of Student Pair Programmers. Agile Conference 2006, 
Minneapolis, MN. pp. 411-420. 

[17] Williams, L. et al. In Support of Pair Programming in 
the Introductory Computer Science Course. Computer 
Science Education. 12: 197-212. 

[18] Williams L.A. and Kessler R.R. 2000. The effects of 
“pair-pressure” and “pair-learning” on software 
engineering   education. Thirteenth   Conference on 
Software Engineering Education and Training. pp. 59-
65.    

[19] Williams. L and. Kessler R. R. 2002. Pair 
Programming Illuminated, Boston, MA: Addison-
Wesley.  

[20] Williams. L, et al. 2000. Strengthening the Case for 
Pair Programming. In IEEE Software. 


