
 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10372

WEB SERVICES ORIENTED ARCHITECTURE FOR
DYNAMIC EVOLUTION OF COMMUNICATION

WITH EMBEDDED SYSTEMS

Smt. J. Sasi Bhanu1, A. Vinaya Babu2 and P. Trimurthy3

1Department of Computer Science Engineering, KL University, Vaddeswaram, Guntur District, India
2Department of Computer Science and Engineering, JNTU, Hyderabad, India

3Department of Computer Science and Engineering, ANU, Guntur, India
E-Mail: sasibhanu@kluniversity.in

ABSTRACT

A HOST is a Computer system that needs to be situated at a remote location preferably connected through internet
for communicating with an embedded system which is meant for monitoring and controlling a safety or mission critical
system. The communication between the HOST and the embedded system must be dynamically evolvable if the changes to
the communication system must be effected while the embedded system is up running. The main issue that must be
addressed while attempting to implement dynamically evolvable embedded system is to ensure that the entire system must
be light weight due to the availability of limited resources with the embedded systems. Implementing the ES software
related to syntax, semantics, online testing and communication components along with components that are required to
make the entire system dynamically evolvable is the issue that can be addressed through use of WEB services related
technologies. Architectural frameworks are required to explain how the entire dynamic evolution system can be
implemented through use of WEB services oriented technologies. This paper is aimed at determining various web services
oriented architectures and selecting the best that suits the dynamic evolution of communication with an embedded system.

Keywords: dynamic evolution, communication systems, embedded systems, web services, safety and mission critical systems.

1. INTRODUCTION

The overall architecture of dynamic evolution of
embedded from the point of view of evolution of syntax,
semantics and online testing has been shown in the Figure-
1. The first layer in this model is the communication sub-
system. Communication between the HOST and the
TARGET is initiated from the HOST through commands
strings which follow the UNIX like standard. The physical
connection between the HOST and the embedded system
can be achieved in many ways. Sastry [1, 2] have
presented the way peer to peer communication between a
Target and HOST can be achieved using wireless
communication methods which include Wi-Fi and
Bluetooth which have distance limitations.

Embedded systems can also be connected to a
HOST using SPI and interfacing the same with a I2C,
USB, RS425, CAN or Multi port interface [3, 4, 5, 6, 7, 8,
9]. A HOST communication with the TARGET using
serial port communications systems such as I2C, USB,
RS425, CAN or mulit port is limited by the distance to a
maximum of 1200 Meters.

An embedded system can be connected to an
Internet so as to increase its distance from the HOST. Use
of Ethernet interface and use of TCP/IP or UDP based
communication helps establishing communication
between the HOST and the Target. Both HOST and the
TARGET can be situated at longer distances, thus meeting
the primary requirement of Safety and Mission critical
systems.

Communication between the HOST and the
Target using the internet can be achieved through
implementation of an email extension server, WEB server
or a WEB service server using TCP/IP communication
protocol. The way the communication between the HOST
and the TARGET can be archived through implementation
of a WEB service server within the target system has been
the main focus of this paper as it allows communication
using the OPEN standards which help in dynamic
evolution of communication system.

Communication between the HOST and the
Target can be effected by several protocols such as
TCP/IP, HTTP, UDP, X.25 etc. The target can host several
services and a different communication protocol is
necessary for utilizing a WEB service. Thus the
communication system must evolve dynamically based on
the type of protocol needed by a service which is initiated
by the HOST for execution by the TARGET.

The implementation of dynamic evolution models
requires fairly more memory resources and faster
processor. The modern Microcontroller based systems no
doubt can run a dynamically evolvable embedded system
due to the availability of more resources. However, low
powered microcontroller systems may not be able to take
much load. Sometimes it is worthwhile idea to move some
of the processing load to the HOST and keep the
embedded system light weighted. The dynamic evolution
of the communication system however is needed so that

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10373

communication with the WEB services can be done as per
the protocol used by it.

Use of web services technology addresses both
the requirements of dynamic communication system and

the lightweight embedded system. Implementation of
dynamic evolution using the WEB services Technologies
is necessary as they support OPEN standards which is the
true means of evolving dynamic evolvable systems.

Test Evolution

Se
m

an
ti

c
Ev

o
lu

ti
o

n
 T

as
ks

Communication
Interface

Syntax
Evolution

RTOS

Semantic
Evolution

Syantax
Evolution

Tasks

Test Evolution
Tasks

Semantic
Evolution
Process

Syntax
Evolution
Processes

Test Evolution
processes

TARGET

Communication
Interface

PC Side
Application

HOST

Figure-1. Overall architecture of dynamic evolution of embedded systems.

There are many architectures that support
dynamic evolution using the WEB services. It is necessary
to find the best of the architectures that support dual
purposes of OPEN communication and dynamic evolution.
Dynamic evolution is the ability to make changes to any of
the software components while the system is up and
running.

The general web service architecture is shown in
the Figure-2. There are two ways to view the WEB service
architecture. The first is to examine the individual roles of
each WEB service actor; the second is to examine the
emerging Web service protocol stack.

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10374

Figure-2. WEB service architecture.

There are three major roles within the WEB
service architecture which include service provider,
service requester, and service registry. Service provider
provides the service on a server which is connected to the
Internet by using standard protocols. Service requestor
uses the WEB service for implementing various types of
applications. The requestor utilizes an existing Web
service by opening a network connection and sending an
XML request. Service registry is a logically centralized
directory of services. The registry provides a central place
where developers can publish new services or find existing
ones. It therefore serves as a centralized clearinghouse for
companies and their services.

A second option for viewing the WEB service
architecture is to examine the emerging Web service
protocol stack shown in Figure-3.

The stack is still evolving, but currently has four
main layers. The first service is Service transport layer.
This layer is responsible for transporting messages
between applications. Currently, this layer includes
hypertext transfer protocol (HTTP), Simple mail transfer
protocol (SMTP), file transfer protocol, such as Blocks
Extensible Exchange Protocol (BEEP) etc. In the second
layer, XML messaging is used for encoding messages in a
common format so that messages can be understood at
their end. Currently, this layer includes XML-RPC and
SOAP. The third layer is service description layer which is
responsible for public interface to a specific WEB service.
Currently, service description is handled via the WEB
service description language (WSDL). Service discovery
is the fourth layer which is responsible for centralizing
services into a common registry, and providing easy
publish/find functionality. Currently, service discovery is
handled via Universal Discovery, and Integration (UDDI).

Figure-3. Web service protocol stack.

Several technologies are being used for
implementing WEB services which include UDDI, XML,
SOAP and WSDL. UDDI (Universal data discovery
interface) forms part of the discovery layer within the
WEB service protocol stack. UDDI is a technical
specification for building a distributed directory of
business and Web services. Data is stored within a specific
XML format. The UDDI specification details API for
searching existing data and publishing new data. UDDI is

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10375

implemented through building a business registry which
fully implements UDDI specification.

XML is a language that is described over open
standard and enables diverse computer system to share
data most easily, regardless of operating system or
programming language. There are dozens of XML tools,
including parsers and editors that are available for nearly
every operating system and every programming language,
including java, C#, C, C++ etc.

XML-RPC is a simple protocol that uses XML
messages to perform RPCs. Requests are encoded in XML
and sent via HTTP POST. XML responses are embedded
into the body of the HTTP response. Because XML-RPC
is platform independent, it allows diverse applications to
communicate. For example, a java client can speak XML-
RPC to a perl server.

SOAP is XML based protocol for exchanging
information between computers. Although SOAP can be
used in variety of messaging systems and can be delivered
via a variety of transport protocols, the initial focus of
SOAP is remote procedure calls transported via HTTP.
SOAP therefore enables client application to easily
connect to remote services and invoke remote methods.
For example, a client can immediately add language
translation to its features set by locating the correct SOAP
service and invoking the correct method. SOAP
specification defines three major parts:

WSDL is a specification meant for describing
WEB services in a common XML grammar. WSDL
describes four different aspects which include Interface
information describing all publicly available functions,
Data type information for all message requests and
message responses, Binding information about the
transport protocol to be used and addresses information for
locating the specific server.

In a nutshell, WSDL represents a contract
between the services requestor and the service provider, in
much the same way that the java interface represents a
contract between client code and the actual java object.
The crucial difference is that WSDL platform is language
independent and is used primarily to describe SOAP
services. Using WSDL a client can locate a WEB service
and invoking any of its publicly available functions. With
the WSDL-aware tools, one can also automate this
process, enabling applications to easily integrate new
services with little or no manual code. WSDL therefore
represents a cornerstone of the WEB service architecture,
because it provides a common language for describing
services and a platform for automatically integrating those
services.

UDP and TCP are standard, well-supported
protocols for computers that need to send and receive
messages with in local network or on the internet. Many
application protocols transfer information using UDP or
TCP. For example, a computer that sends a request for an
IP address to a DNS server places the request in a UDP

datagram. A request to a server for a Web page and the
page sent in response both travel in TCP segments. UDP
and TCP can also be used to transfer messages of any
type, including information in application-specific
formats. In general, UDP is a simpler protocol to
implement but has no built-in support for acknowledging
receipt of messages, determining the intended order of
messages, or flow control.

Communications that use UDP, TCP, or other
Internet protocols must use IP addresses to identify the
sender and receiver of the communications (with the
exception that a UDP datagram doesn’t have to specify a
source address). In addition, sending a message using IP
may require a net mask value, the IP address of a gateway,
or router, and the IP address of a domain-name server. The
device firmware may specify these values, or the device
may request the values from a DHCP server. Many
standard application-level protocols also use TCP or UDP
when exchanging information. One of the most popular of
these is the hypertext transfer protocol (HTTP), which
enables a computer to serve Web pages on request.

Every embedded board can be provided with data
related to IP address, network mask, logical port number
stored in its EEPROM. The Ethernet port can be binded
with the TCP/IP address and suit a TCP/IP function calls
can be made available as callable functions as regular
functions that can be called from an ES application

2. PROBLEM DEFINITION

Implementing WEB services server within an
embedded systems leads to extensive automation and
reuse. Implementation of WEB services requires huge
amount of storage area processing power and porting of
the technologies which are required for interacting with
internet world. Embedded systems are low in resources
and therefore throw a challenge to implement light-weight
embedded WEB services that can cater for the user
requirements. The main problem is to develop simple
WEB services architecture that requires very less
resources on the embedded system side which is expected
to host all the services required to complete the tasks
initiated by the HOST and returns the results achieved out
of execution of the tasks.

Many tasks which together forms embedded
system software (TARGET) are required for implementing
dynamic evolution of syntax, semantics, and online
testing. The tasks are to be activated based on the
commands initiated from the HOST and the results
obtained out of execution of the tasks are to be returned to
the HOST which gets connected to the TARGET through
internet. Dynamic evolution is the ability to make changes
to the software components while the embedded system is
up and running.

The commands initiated from the HOST can be
enclosed into a SOAP message which is formatted in
XML language and transmitted. The SOAP message is

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10376

received and parsed and the command is retrieved. Based
on the command received, one of the services related to
Syntax Evolution, Semantic evolution, online testing or
communication system can be initiated.

An efficient WEB services oriented architecture
is required to implement a communication system that is
dynamically evolvable and also be able to execute the
tasks which are, kind of services that can be invoked and
executed in seamless manner. On the embedded system
side, all the components related to syntax, semantics,
online testing and those components that are responsible
for dynamic evolution of the operating components must
be co existent with proper interfaces. The components and
the interfaces between them must be light weight and must
be operable within the limited resources.

Thus the problem is to find an efficient WEB
services oriented architecture which is simple to
implement and that requires very few resources. One
important way is to explore pushing much of the
processing to the HOST and just the services are
implemented on the target side. The implementation must
be done using the platforms that require few resources. To
the extent possible, it is necessary to develop open
architecture so that the overheads that one has to face
when technologies like TOMCAT, WEBLOGIC
SERVER, JBOSS etc. gets completely eliminated.

3. LITERATURE SURVEY

Michael Sig Birkmose [10] mainly described the
applicability of WEB services in distributed embedded
systems environment. The first and foremost thing that one
needs to find is, how the overhead associated abstractions
provided by WEB services can be minimized. The extra
overhead is caused by the extra size of the messages that
must be transferred, when compared to the actual size of
data carried within such message. Stanislav Sliva [11]
stated that distributed processing plays a major role in
applications whose parts (Procedures) are executed in
local nodes and in remote nodes distributed in a network.
Distributed processing applicable to embedded systems
describes several possibilities of using distributed
computations in an embedded environment. The major
part of the distributed processing applicable to embedded
systems is focused on a description of WEB services and
related protocols like SOAP, XML-RPC.

 Kevin J [12] have presented their observations in
integrating a WEB service infrastructure into a Simple
Network Management Protocol (SNMP). SNMP has been
used predominantly for the development of networking
equipment which are developed using embedded systems.
WEB services based approach allows enhancing their
existing applications with XML/SOAP interoperability,
SSL/TLS security and the potential to migrate both
application and protocol layers to encompass future
extensions and WEB browser accessibility. The difficulty
with SNMP, and many other legacy networking protocols,

is that they are all installed on legacy hardware. Their
vision for a WEB service-based SNMP has led to non-
intrusive extension to the existing protocol. They have
proposed a scheme for extending and improving the
existing SNMP v2 infrastructure through the use of WEB
services at the transport level using an XML encoded
SOAP message encapsulation and bound to HTTP for
SNMP transport. They investigated two options for
implementing these extensions which include, using
standard WEB server and java tool set, and another being
using light weight HTTP/SOAP stack. Both were
integrated with an existing SNMP daemon and tool set.
Their main aim was to achieve interoperability between
the two approaches, as well as maintain interoperability
with legacy systems. Each scheme has unique
performance and feature characteristics, and both provide
SNMP with the benefits of the WEB Services.

Nikolay Kakanakov [13] mainly discussed the
possibility of adaption of WEB service architecture
(WSA) for implementing distributed embedded systems.
The WSA integrates the best aspects of component-based
development and World Wide Web. According to R.
Pallavi [14] a service is: “a software system identified by a
URI, whose public interfaces and bindings are defined and
described using XML. Its definition can be discovered by
other software systems. These systems may then interact
with the WEB services in a manner prescribed by its
definition, using XML based messages conveyed by
Internet protocols.” Applications access WEB services via
common WEB protocols and data formats. The most
common used protocol for transferring data in the Internet
is HTTP (Hypertext Transfer Protocol) and it is the key
transport protocol in the WSA. The universal schema in
the Internet is the one that codes the data is XML
(Extensible Mark-up Language). The current structure of
Internet is based on program-to-user interaction and the
WSA is based on program-to-program interaction [15].
The WSA is based on some key standards: XML for data
representation; SOAP for accessing services; WSDL for
describing services; UDDI - registering and discovery of
services.

 Daniel Schall [16] have mainly discussed the
capabilities of embedded devices such as smartphones that
provide flexibility of data access and collaboration with
other smart phones around while being mobile. From the
distributed computing point of view, fundamental issues in
mobile computing include heterogeneity in terms of
varying device capabilities (i.e., operating systems and
various hardware platforms), performance characteristics
and real-time behaviour, and the ability to discover and
interact with peers seamlessly. WEB services are a family
of XML based protocols to achieve interoperability among
loosely coupled networked applications. They proposed
the use of WEB services on embedded devices in order to
solve interoperability issues in distributed mobile systems.
They discussed various toolkits available for embedded
devices and investigate performance characteristics of

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10377

embedded WEB services on smartphones. The goal is to
guide the design of WEB services based applications on
mobile devices, and provide estimates of performance that
can be expected.

Guilherme Bertoni Machado [17] have presented
that the Embedded applications, which were originally
built on standalone devices, nowadays require a growing
integration with other systems through their
interconnection with TCP/IP networks. WEB Services,
which provide a service oriented distributed architecture
for the interconnection of systems through TCP/IP
networks, have been widely adopted for the integration of
business applications, but this sort of integration is still not
provided by embedded applications. They demonstrated
the feasibility of using WEB Services for the integration of
embedded applications running on heterogeneous
architectures. This is achieved through the provision of a
support for the development and deployment of WEB
services on embedded platforms. The feasibility of this
approach is demonstrated by developing an application
deployed on an embedded platform - the SHIP board -
which is then integrated with a distributed enterprise
application.

 Mitko Petro Shopov [18] have said that one of
the most promising trends from the recent years - the
service oriented architecture (SOA) is now emerging in
the domain of distributed embedded systems. One of the
most important benefits of such a shift is the possibility to
replace traditional vendor specific solutions with popular
open standards for communication and to satisfy the
arising need to connect distributed embedded devices
within the network of enterprise systems. They have
presented test-bed experiments for evaluation of WEB
services implementation for ARM-based embedded
system running embedded Linux 2.6. The gSOAP WEB
services generation toolkit optimized for embedded
devices is used. Two WEB services are developed for the
experiments: Echo and Temperature. The WEB services
are tested as a standalone application which Apache WEB
server using CGI Interface. The services are tested with
gSOAP and .NET WEB services clients.

David E. Culler [19] have explained that
integrating diverse sources of information takes place at
three levels. The bottom is the communication media that
allows information and control actions to be exchanged.
Given such an interconnection, the communicating
participants must agree on how information is represented.
The data required for transferring messages include
format, data model, or object model. The information
exchanges to be useful, it is necessary to discover the
services that the devices are capable of delivering. Danilo
J. Oklobdzija [20] pointed the need for new technologies
for integrating embedded devices in heterogeneous
distributed networks, and outline the perspectives opened
by applying service-oriented paradigm for realizing
interaction with embedded devices. As a foundation for
interaction with embedded devices, XML and WEB

services have been used. Strong integration power of XML
and WEB services make the framework appropriate for
unique approach to all resources of embedded device
regardless of applied technology. WEB services based
middleware, provides application designers with a high
level of semantic abstraction, hiding the complexity of the
applied technologies. Elmar Zeeb [21] introduced the
WS4D initiative, a project that tries to provide a common
open source platform for using DPWS (Device profile
WEB services) in different environments. The usage of the
Service Oriented Architecture (SOA) paradigm currently
changes the view on many enterprise applications. SOA
allows the creation of modular and clearly defined
software architectures that ensure a high grade of
interoperability and reusability. As even small, resource-
constraint networked devices get more and more powerful
it is common sense to try to adopt the SOA paradigms to
embedded device networks. This idea is substantiated in
the specification of DPWS, a standard that uses the
primitives of the WEB services architecture (WSA) to
create a framework for interoperable and standardized
communication between embedded devices.

 Risto Serg [22] have explained that most
embedded systems are seldom used alone. Systems that
communicate between each other are much more common
in real world ubiquitous applications. If the embedded
sensors and devices could directly work together and with
other computing devices, they would add value to each
other, and enable new consumer application. Present
requirements of cyber-physical systems are usually too
high for implementing them on single, non-networked
units. Using service oriented architecture is one of the
solutions to achieve interoperability and possible future
scaling of the system. They have explained that a limited
subset of XML WEB service protocols can be
implemented in very limited environment. Surprisingly
they found that limited XML WEB service
implementation introduces only minimal overhead.

Yin-Wei-Feng [23] have said that engineering
education necessitates the use of laboratories for
measurement, data collection, analysis and design
activities as well as for hands on experience of equipment,
physical devices. Local laboratories are the traditional
way of doing experimentation. Neither a virtual
environment nor remote access can replace its function.
But it has disadvantages like fixed time and place,
limitation on the number of equipment sets and hence the
number of students who can use them as the broadband
connectivity to the Internet becomes common, Web based
e-Learning have come to play an important role in self-
learning, where learners are given much flexibility in
choosing place and time to study. They have implemented
remote laboratories. Remote laboratories are software
environments that run experiments by interacting with
real devices, which allow remote users to communicate
with measurement devices and experiments set up to
make experiments on a real system.

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10378

 Elmar Zeeb [24] have presented that as the
application of the Internet Protocol (IP) is no longer
restricted to the internet and computer networks, future IP-
based application scenarios require an enormous diversity
of heterogeneous platforms and systems. Thereby
emerging communication architectures, concepts,
technologies and protocols must be capable of handling
thousands of devices and communication endpoints on the
one hand and be flexible and extensible enough on the
other hand, to provide cross domain interoperability
independent of platform specific constraints. The Devices
Profile for Web Services (DPWS) is as such a cross
domain technology. They provide an overview of DPWS
and existing DPWS implementations and toolkits with
special focus on the Web Service for Devices (WS4D)
initiative. Therefore, features and capabilities of DPWS
are described in detail by referring to the open source
WS4D implementations. The target platforms are ranging
from resource rich server platforms down to highly
resource constrained embedded devices.

3.1 Drawback of existing methods

When WEB services oriented technologies are
used, extra overhead is caused by the extra size of the
messages that must be transferred, when compared to the
actual size of the data carried within such messages. This
includes abstractions on the underlying network protocols
and serializations of the data. The complexity and
verbosity of XML Web services protocols creates a whole
new set of design trade-offs and issues for developing
Web services applications for embedded systems.
Embedded systems rarely have enough memory and
processing power to run Web services. On the other hand,
current Web services implementations do not adequately
apply to the embedded processing. While that being the
cases many of the embedded systems behave like server
engaged in collecting the process data and process the
same before the same are transmitted to a remote location.
Some of the embedded systems can be designed to collect
the environment data and transfer the same to those we
need such data. A client can make a request to an
embedded server which in term makes available the

process data as a service to the client. Many applications
exist that needs a model as above. The embedded systems
suffer from lack of resources which are required for
implementing the platform required to launch the services.
Therefore there is a need to design a service oriented
architecture that is light weight and still be able to support
the entire platform required for implementing the WEB
services.

4. INVESTIGATIONS AND FINDINGS

Different types of architectures are possible for
implementing the WEB services for execution of software
components within embedded systems. A review of
possible architectures is needed to find the suitability of
architecture for implementing dynamic evolution within
the embedded system. Most efficient architecture that
completely suits to an embedded system that implements
dynamic evolution of syntax, semantics and online testing
is needed. Just recommending architecture is not
sufficient. An implementation mechanism that is feasible
and implementable has to be determined and then must be
applied to a alive application to determine proper working
of the WEB services installed within the embedded
systems. Different kinds of WEB service architectures that
can be deployed are presented and then a comparative
analysis is made to find the best suitable architecture to
implement dynamic evolution of the embedded systems.

4.1 Embedded system as WEB service server

Figure-4 shows the architecture which includes
all the components related to WEB server, SOAP
processor, component for scheduling the services, WSDL
scripts, and the application tasks whether real time or
normal. In this case all the WSDL files are stored in the
client in the HOST. SOAP messages are extracted from
the WDSL files and sent to the embedded systems which
are servers in this case. Client sends its XML/SOAP
messages according to the required service type
(previously known through the WSDL file located in the
Embedded System and/or in a UDDI repository) through
the HTTP protocol.

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10379

Figure-4. WEB services architecture.

In this architecture, the WEB service occurs in a
pre-processing stage, for efficient scheduling of HTTP
requests. The process that deals with “scheduling policy”
tries to offer a fair chance that every request will be served
based on the priority associated to each service. Then
these messages will be processed by the microcontroller.
After the execution, a reply is generated by the service
which is returned to the client through http response. In
this architecture the WEB server that hosts the web
services is located within the embedded system. Thus
requiring many resources. Even WSDL files are also to be
stored within the embedded systems which require more
storage area.

4.2 HOST as WEB service server

Figure-5 shows the architecture. In this case it is
the HOST that is loaded with a web server under which

the WEB services are deployed. Embedded systems keeps
getting the inputs from the environment that it is
controlling and makes a HTTP request to a HOST based
server for undertaking a function such as updating a
database with the sensed data, or informing a medical
assistant, doctor or any other concerned using different
types of gadgets such as a PC, Mobile phone either
through direct connections or through internet.

In this architecture it can be seen that the
embedded system only makes the request to the server for
doing a service. An embedded system in it implement a
UDDI registry to get the WSDL through an XML enquiry,
parse the same and then makes a HTTP request through a
SOAP message. In this architecture HTTP response is not
received by the embedded system and as such embedded
system is not providing any service to the remote host.

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10380

Figure-5. Typical implementation of WEB services.

The role of the application server is to store and
distribute the diverse information coming from different
sets of Embedded devices. The great advantage of this
architecture is that, since the HOST is providing the WEB
Services, the rest of the distributed environment has
handled just the SOAP messages. Concerns regarding
integration with legacy systems, database structure, the
kind of software the client is using, etc. are irrelevant in
this case as the communication between the embedded
systems and the HOST is based on SOAP message which
is open standard.

4.3 A three tier WEB services architecture

WEB Services present a way to interconnect
applications through Internet among computational
systems. Besides, its eminently open and standardized
architecture provides WEB Services a great potential use
in distributed computation. Therefore, nothing more
natural than proposing the deployment of a WEB services
in an embedded systems provide the integration of
applications running on the embedded platform with other
systems in a distributed environment. WEB Services as
middleware to Embedded Systems integration helps

especially to tie-up with heterogeneous issues. Besides,
web services add to QoS support in WEB Services,
because QoS requirements and its use policies are not still
well consolidated in this technology.

A three tyre WEB services is shown in the
Figure-6. In this WEB service architecture, each
information source or computational element describes
itself in a WEB Services Description Language (WSDL)
file. As illustrated in Figure 6, a requestor of the service
first obtains its WSDL, either directly from the service, as
in device discovery, or indirectly from a repository. The
WSDL is a complete machine readable description of the
service, including how information is represented and
what behaviours are provided. It allows the requestor to
bind to the provider of the service and establish any
necessary translations in a fully automated fashion. Then,
data sharing and behaviour invocation are conducted
efficiently through the established service interface. XML
and WSDL provide an automated framework for defining
objects and operations. The application domain determines
the specific objects and operations that are included in the
services.

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10381

Figure-6. WEB service discovery, bind and utilize.

The increasing intelligence, ubiquity and
diversity of sensors have made paramount the need for an
interoperable, robust means of communicating with
sensors and interpreting their output. In this architecture,
three individual entities exist. Service provider develops
the web service and hosts the same within its own server.
The WSDL specification is developed at the service
provider side. Service registry provider maintains the
services provided by different service provider through
maintaining a registry of services. It implements an
enquiry response and a publish interface. A request is
made by the service provider through publish interface for
registering the service.

The clients bind itself with the service provider
using a protocol of its implementation and then starts
communicating by posting the messages. The services
provided runs the service requested and transmits the
messages back to the client. As said earlier the messages
are formatted using XML and the messages are

encapsulated into SOAP messages which are also
developed using XML language.

4.4 A middleware based WEB services architecture

Figure-7 shows a middleware based architecture
using which WEB services can be implemented. A
middleware kind of architecture would be required when
several embedded systems are to be used in the
development of an application. Several embedded systems
with heterogeneous platforms may have to be used for the
development of the embedded applications which is truly a
distributed application that either distribute the HW or
distribute the ES software. One can implement
middleware in each of the embedded system and the
embedded system that provides networking services. This
kind of architecture is complicated while individual
embedded systems runs their respective WEB services, but
in the front end, a middleware component works which is
an additional burden on the part of the embedded system.

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10382

Figure-7. Middleware based WEB services architecture.

This architecture is suitable for use in many
domains, independent of embedded devices physical
realization or network characteristics. The middleware
takes care of heterogeneous issues by marshalling the data
either way.

4.5 A four tier WEB services architecture

Web services technology is to be used to provide
services for multi-user sharing purposes. Figure-8 shows
four tier service architecture. This architecture is useful for
the applications that use distributed resource management
using the embedded system as the primary means for
communication. The Client application can be WEB
application rendered through a WEB browser. Client
application calls for WEB services for want of using a
resource may be for learning or conducting an experiment.
The application server hosts all the services that run a part
of the application. The WEB service server provides the
interface required for communication, messaging through
SAP and parsing for getting the actual message and to
invoke a service component that has been deployed on the
application server. The application conducts the
experiment required using the hardware and send back the
experimental results back to the client application through
a WEB browser or through a specially written application
that uses the WEB services. The client applications is used
by the user for the purposes of experimenting for using
any of the services the way they are required by the client.

4.6 WEB services architecture suitable for dynamic
 evolution

The most important WEB services architecture
which is suitable for implementing dynamic evolution of
embedded system is what is required with the dual purpose
of implementing dynamic evolution of the communication
system through which a HOST communicates with the
embedded system in an open manner and also reduce the
computation load as much possible. The computation load
on the embedded system can be reduced in a way to the
HOST. The dynamic evolution system can be made to be
resident at the HOST. All the evolution components can
be converted into the services and can be made to be
working as tasks under the influence of an RTOS. Two of
the dynamic evolution system related web service
architectures can be implemented.

4.6.1 Dynamic evolution using web services
 architecture - Alternative -1

This architecture is shown in the Figure-9. This is
essentially two tier architecture. Tier-1 is the HOST which
is the client itself. At the client, UDDI registry is
implemented, thus eliminating the requirement of another
server. This also reduces the communication delays quite
drastically. The client application uses the UDDI for
registering the WEB services through publishing the WEB

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10383

services into the registry. The UDDI is an application by
itself that implements the UDDI protocol through use of
SOAP/XML messaging. The client application uses UDDI
interface both for publishing and enquiring the details of
the WEB services. WSDL scripts are written for all the
WEB services and the same are published into UDDI

Figure-8. Tire WEB services architecture.

The client application parses the details of the

WEB application after obtaining the WSDL scripts from
UDDI. The command string that the client needs to
transmit is queried from the data base or obtained through
a user interface is developed into a XML script and the
same is encapsulated into SOAP message and transmitted
to the Embedded systems. On the embedded systems side,
different types of evolution components are recognized as
tasks operating under the influence of a Real time
operating system. The tasks are treated as WEB services.
However the service execution is undertaken through tasks

that together accomplish a command initiated from the
HOST as a HTTP request. From the architecture diagram
it can be seen that service execution through tasks is
always achieved through the syntax evolution task.

This architecture implements all the dynamic
evolution models and also archives dynamic evolution of
communication system. The communication is undertaken
through SOAP messages into which the commands that
are coded as XML messages have been encoded. Even the
results are also sent as XML messages, thus requiring the
parsing to obtain the actual results to be presented using
the GUI implemented by the client. The architecture is
excellent as long as the embedded system has as much
resources as required. This is definitely a light weight web
services system as the embedded system is not burdened
with the need for a WEB server or Application server
which is definitely a major advantage.

The Communication block implements the
Communication related web services tasks. The
Communication related WEB services task receives the
message, parse the message to retrieve the command,
validate the command and passes the same to the
command processors which validates the command for its
semantics and parses the command to its related task
which is executed as a service. The service task places the
output in global variables and the results are returned by
the web service oriented communication services by
retrieving the data from the global variables, forming into
a XML script, enclose into SOAP message and transmit.

On the Clint side, the Web services oriented
communication application receives the SOAP messages,
extracts the XML message and parse the same into data
which is displayed either on the user interface or the same
is used to update the database.

Figure-9. Dynamic evolution of embedded system oriented - Web Services Architecture - Alternative-1.

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10384

4.6.2 Dynamic evolution using web services
 architecture - Alternative -2

Another WEB services oriented architecture that
suits to the dynamic evolution of the embedded system
that is implemented on a Low powered low storage
embedded system is shown in the Figure-10.

Figure-10. Dynamic evolution of embedded system oriented - Web Services Architecture - Alternative-2.

In this architecture the entire block related to
syntax evolution of the embedded system is shifted to the
HOST. The command language evolution, syntax and
sematic verification when the commands are inputted from
the user screen are carried on the HOST. If the commands
are directly fetched from the database, the syntax and
semantic evaluation are bypassed leading to processing of
the commands. This architecture implements web services
as further light weight services as no web server or
application server is used for the implementation of
dynamic evolution of the embedded systems. The syntax
evolution module now placed in the client takes care of all
the tasks/processes that are related to syntax evolution
after finding the correctness of the command, hands it over
to WEB service oriented communication system. The web
service oriented communication system converts the
command string into XML specification which in
encapsulated into a SOAP message and the same is sent to
the embedded server where the SOAP is messaged is
received parsed and handed over to the service oriented
task that runs under the influence of the RTOS.

5. COMPARATIVE ANALYSIS OF WEB SERVICES

ORIENTED ARCHITECTURES
Table-1 shows the comparative analysis of

various architectures presented in the previous sections
from the point of view of their suitability to
implementation of Dynamic evolution of the embedded
system. It can be shown that architectures presented as
alternative-1 and alternative-2 is best suited for

implementing dynamic evolution of the embedded
systems.

Table-1 shows the comparison of WEB services
based architectural models. Alternative-1 and Alternative-
2 architectures are same by all means except for the
reasons of load balancing between the client and the
embedded system. Alternative-1 is quite suitable if the
microcontroller used for implementing the embedded
system is high powered backed with huge memory and the
alternative-2 is quite suitable for the embedded systems
that are built with microcontroller which is medium
powered and support medium size of the memory. One of
the Alternative-1 or Alternative-2 can be chosen based on
the power of the microcontroller that is provided for
implementing the embedded system.

6. CONCLUSIONS

Implementation of WEB services for the dynamic
evolution of the embedded systems helps in allowing any
client using a different communication standard to
communicate with the embedded server. The
implementation of web servers to establish communication
between the HOST and the server truly makes it possible
to evolve dynamically with respect to communication. The
HOST can be situated anywhere, thus true remoteness of
the HOST from the ES server can be achieved which is the
most important requirement to monitor and control safety
and mission critical systems. Certain amount of load on
the ES sever can also be shifted to client when WEB
services oriented architecture is chosen for implementation
of dynamic evolution of the embedded system.

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10385

WEB services oriented dynamic evolution helps
one to implement true dynamic evolution which caters for
all dynamic evolution components which include Syntax,
Semantic, Online Testing and the HOST communication
with the client. Task based service implementation does

not require any web server or any other application server,
thus making the ES based server light, making it possible
to implement WEB services within the limited resources
available with the embedded system.

Table-1. Comparative analysis of WEB services oriented architectural models for dynamic evolution of

embedded systems.

Se
ri

al
 N

um
be

r

P
ar

am
et

er

E
S

 a
s

se
rv

er

H
O

S
T

 a
s

se
rv

er

T
h

re
e

ti
re

(M

id
d

le
w

ar
e

b
as

ed
)

F
ou

r
T

ie
r

E
S

 a
s

se
rv

er

(A
lt

er
na

ti
ve

-1
)

E
S

 a
s

se
rv

er

(A
lt

er
na

ti
ve

-1
)

1 Overhead due to WEB server High None High High None None

2 Overhead due to application server None High None High None None

3
Support of dynamic evolution through
service chaining

None None None None YES YES

4 Storage requirement Huge Huge Huge Huge Small Small

5 Memory requirement Huge Huge Huge Huge Less Less

6 Client and server balancing None None None None None Exists

7 Number of servers required 0 1 2 3 0 0

8 Command based communication None None None None Yes Yes

REFERENCES

[1] Sastry JKR, Venkataram N, Srinivasa Ravi K,

Pradeep G, Reddy LSS. 2012. On Dynamic
Configurability and Adaptability of Intelligent Tags
with Handheld Mobile Devices. International
Journal of Electronics, systems and circuits
(IIJECS). 1(2): 114-123.

[2] Sastry JKR, Venkataram N, Srinivasa Ravi K,
Pradeep G. 2012. Software Architecture for
Implementing Dynamic Configurability and
Adaptability of Intelligent Tags with handheld
Mobile Devices. Research Journal of Computer
Systems Engineering - RJCSE. 3(2): 393-398.

[3] Sasi Bhanu J, Sastry JKR, J Viswanath Ganesh.
2015. I2C based Networking for Implementing
Heterogeneous Microcontroller based Distributed
Embedded Systems. Indian Journal of Science and
Technology. 8(15): 1-10.

[4] Sasi Bhanu J, Sastry JKR, Sai Kumar Reddy. 2015.
Networking Heterogeneous Microcontroller based

Systems through Universal serial bus. International
Journal of Electrical and computer Engineering.

[5] Sasi Bhanu J, Sastry JKR, Vijaya Lakshmi
Machineni. 2015. Optimizing Communication
between heterogeneous distributed Embedded
Systems using CAN protocol. ARPN Journal of
engineering and applied sciences.

[6] Sasi Bhanu J., Sastry JKR, Suresh A. 2015.
Building Heterogeneous Distributed Embedded
Systems through RS485 Communication Protocol.
ARPN Journal of Engineering and Applied
Sciences. 10(16): 6793-6803.

[7] Sasi Bhanu J, Sastry JKR, Mounica. 2015. On
Testing Distributed Embedded Systems through
Scaffolding. Journal of Embedded systems - Inder
Science.

[8] Sastry JKR, Neeraja N, Naga Teja K, Devi Kavya
Priya M, Vineela D, Immanuel K. 2012. An
Approach towards Development of Communication
Standard around CAN Protocol Suite for
Networking Embedded Systems. International

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10386

Journal of Advances in Science and Technology.
4(2): 36-42.

[9] Sastry JKR, Neeraja N, Pushpa A.G, Satya Prakash
G, Tejaswi G, Muni Kumari T. 2012. An Open
Specification for Fire wire Standard to extend its
suitability to diversified Applications. International
Transactions on Electrical, Electronics and
Communication Engineering. 2(2): 1-8.

[10] Michael Sig Birkmose, Lars Haugaard Kristensen.
2004. Producing Efficient Web Services for
Distributed Embedded Systems. Thesis -
AALBORG UNIVERSITY.

[11] Stanislav Sliva, Vilem Srovnal. 2005. Distributed
Processing Applicable To Embedded Systems.
WSEAS International Conference on Automatic
Control, Modelling and Simulation.

[12] Kevin J. Ma, Radim Barto. 2005. Performance
Impact of WEB Service Migration in Embedded
Environment. IEEE.

[13] Nikolay Kakanakov, Grisha Spasov. 2005.
Adaptation Of WEB Services Architecture In
Distributed Embedded Systems. International
Conference on Computer Systems and
Technologies.

[14] R. Pallavi, C. Veeranna. 2015. Implementation of
TCP/IP Ethernet WEB services On ARM7
LPC2148 for Embedded Systems. IJARCSSE.
Volume 5.

[15] Kreger H, Austin, D., A. Barbir, C. Ferris, S. Garg.
Austin, D., A. Barbir, C. Ferris, S. Garg. 2001. Web
Services Conceptual Architecture (WSCA 1.0).
IBM Software Group, www.redbooks.ibm.com.

[16] Daniel Schall, Marco Aiello, Schahram Dustdar.
2005. WEB Services on Embedded Devices. J. Web
Infor. Syst. Vol. 1.

[17] Guilherme Bertoni Machado, Frank Siqueira,
Roninson Mittmann, Carlos Augusto Vieira. 2006.
Integration of Embedded Devices through Web
Services: Requirements, Challenges and Early
Results.

[18] Mitko Petro Shopov, Hristo Matev matev, Grisha
Valentino Spaso. 2007. Evaluation of WEB services

Implementation for ARM Based Embedded
Systems. Proc of Electronics. Vol. 7.

[19] David E. Culler, Gilman Tolle. 2007. Embedded
WEB services: Making Sense out Of Diverse
Sensors. Arch Rock Corp.

[20] Danilo J. Oklobdzija, Bransislav T. Jevtovic. 2008.
Using XML WEB services as Platform for Remote
Access and Control of Embedded Systems. Vol. 28.

[21] Elmar Zeeb, Andre Pohl, Ingo Luck. 2008. WS4D:
SOA-Toolkits Making Embedded Systems Ready
for WEB services.

[22] Risto Serg, Johanner Helander. 2008. Using XML
WEB services For Embedded Systems
Interoperability World's Smallest WEB 2.0 Server
Demo.

[23] Yin-Wei-Feng, Sun Rong-Gao, Wan Zhong. 2009.
Distributed Remote Laboratory Using WEB
services For Embedded Systems. CCISST.

[24] Elmar Zeeb, Guido Moritz, Dirk Timmermann.
2010. WS4D: Toolkits For Networked Embedded
Systems Based on the Devices Profile for WEB
services.

