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ABSTRACT 

In this paper, different Inertia weight techniques in Particle Swarm Optimization algorithm (PSO) have been 
compared to search for the optimal PID controller gains for a Continuous Stirred Tank Reactor (CSTR) process. The 
optimization problem considered is highly nonlinear, complex with multiple objectives, wide operating range and 
constraints. The efficiency of PSO algorithm lies in the suitable selection of Inertia weight (w) to provide a balance 
between global exploration and local exploitation which in turn ensures the convergence behaviour of particles. The 
standard PSO algorithm has premature and local convergence phenomenon when solving complex optimization problem. 
The proposed approach is efficient in achieving stable convergence characteristics, good computational efficiency and 
capability to avoid from local optima. In the present study an attempt has been made to review some of the inertia weight 
techniques. Simulation results demonstrate that Adaptive Inertia weight Particle Swarm Optimization (AWPSO) technique 
is superior to all PSOs considered with various Inertia weight methods for both single objective and multi-objective 
functions. 
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INTRODUCTION 

 Despite of vast development in control theory, 
the majority of industrial processes is controlled by the 
well-established PID controller [1, 2]. The popularity of 
PID control has been appreciated for its simplicity in terms 
of design, parameter tuning and to its good performance in 
a narrow range of operating conditions [3]. Designing 
controller for unstable system is complicated, since most 
of the chemical loops exhibit stable and unstable steady 
states. Also, it exhibits unexpected overshoot or inverse 
response. Conventional controller tuning methods 
proposed by most of the researchers are model dependent 
and require numerical computations in order to get the best 
possible controller parameters [4-6]. For most of the 
metaheuristic algorithms there is no need to provide the 
detailed mathematical description of the process to obtain 
the optimal controller tuned parameters with proper 
guidance of the objective function considered for a 
particular process. Therefore metaheuristic optimization 
algorithms based controller tuning has become the best 
choice for solving complex and intricate problems like 
CSTR which involves optimal control in spite of various 
constraints [7, 8]. 

The Particle Swarm Optimization algorithm 
(PSO) is a novel population based stochastic search 
algorithm introduced by Dr. Kennedy and Dr. Eberhart in 
1995 [9] and its basic idea was originally inspired by 
simulation of the social behaviour of animals such as bird 
flocking, fish schooling and so on. In PSO technique, a lot 

of work has been done by researchers to prove its 
efficiency in handling complex optimization problem, 
especially for nonlinearity and non differentiability, 
multiple optimum and high dimensionality [10-12]. Inertia 
weight is an important parameter in PSO, which 
significantly affects the convergence, exploration and 
exploitation trade-off. Inertia weight is used to control the 
velocity, which is responsible for balancing of exploration 
and exploitation process of a swarm. Also, it determines 
the contribution rate of a particle’s previous velocity to its 
velocity at the current time step. 

Different Inertia Weight strategies for different 
optimization test problems have been done to demonstrate 
the importance of Inertia weight in the convergence of 
particle [13]. The basic PSO, presented by Eberhart and 
Kennedy in 1995 [9], has no Inertia weight. Shi and 
Eberhart extended PSO by introducing Constant Inertia 
weight (Constant-w) and stated that larger value of w leads 
to slow convergence and smaller value of w to fast 
convergence of particle [14]. Eberhart and Shi proposed a 
Random Inertia weight (Random-w) technique and 
inferred that this technique increases the convergence of 
PSO in early iterations of the algorithm [15]. In Linearly 
decreasing or Time Varying Inertia weight (TV-w) 
strategy, improved efficiency and performance of PSO 
have been observed for Inertia weight from 0.9 to 0.4 [16]. 
Linearly decreasing inertia weight PSO (LDIW-PSO) 
algorithm has the shortcoming of premature convergence 
in solving complex optimization problems. With a few 
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modifications in parameters, LDIW-PSO can get better 
optimum fitness convergence speed, stability and 
robustness [17]. In Global-Local Best Inertia weight 
(Global-w), the weight 'w' neither assumes constant value 
nor a linearly decreasing time-varying value instead, it 
depends on local best and global best values of the 
particles in each iteration [18]. Chatterjee and Siarry 
proposed a new variant of PSO, which employs a 
nonlinear variation of inertia weight. This nonlinear 
variation has been adopted to employ aggressive, coarse 
tuning during initial iterations and mild, fine tuning during 
later iterations so that the optimum solution can be 
approached with better accuracy [19]. Agees Kumar and 
Kesavan Nair have proved that the Adaptive Inertia weight 
(Adaptive-w) PSO based PID controller can coordinate 
various performance indices of the system and provide an 
effective tool for trade-off analysis among convergence, 
stability and robustness [20].  

In this work, comparative study on five inertia 
weight strategies in Particle Swarm Optimization 
algorithm has been done for all the inertia weight methods 
considering cost functions individually and as a weighted 
sum of the individual objectives for tuning of PID 
controller parameters to achieve global control of 
concentration variable in CSTR plant. Simulations have 
been performed using Integral Squared Error (ISE), 
Integral Absolute Error (IAE), Integral Time Squared 
Error (ITSE) and Integral Time Absolute Error (ITAE) as 
objective functions. The proposed Multi-Objective 
Adaptive Inertia weight Particle Swarm Optimization 
(MOAWPSO) based PID controller has been validated by 
analysing and comparing the performance of other Multi-
Objective PSOs (MOPSO) with various inertia weight 
techniques. The distribution of inertia weight for different 
weight methods in PSO has been simulated to analyse the 
impact of w on objective functions. 

The organisation of this article is as follows: 
Section II provides a brief description of the optimization 
process considered and Section III discusses the outline of 
PID controller tuning as well as the criteria used to 
evaluate the performance of CSTR process. PSO 
algorithm overview and its implementation in detail have 
been presented in section IV. In section V simulated 
results obtained for different Inertia weight methods are 
shown and finally conclusions of the present research 
work have been reported in section VI. 
 
Nonlinear CSTR process description 
 In the CSTR process considered for this study (as 
shown in Figure-1), an irreversible, exothermic reaction 
occurs. Therefore Reactant A of concentration CAf is 
converted to Product B of Concentration CA in a constant 
volume reactor cooled by a single coolant stream. This 
process is complex with a wide operating range. The first 
principles model of the CSTR and the operating point data 

as specified by Pottmann and Seborg [21] has been used in 
the simulation studies (Table-1). 
 

 
 

Figure-1. Schematic of CSTR process. 
 

Table-1. Steady state operating data of CSTR process. 
 

Process variable 
Normal operating 

condition 

Measured product 
concentration(CA) 

0.0989 mol/lit 

Reactor temperature (T) 438.7763 K 

Coolant flow rate (qc) 103 lit/min 

Process flow rate (q) 100.0 lit/min 

Feed concentration (CAf) 1 mol/lit 

Feed temperature (Tf) 350.0 K 

Inlet coolant temperature (Tcf) 350.0 K 

CSTR volume (V) 100 lit 

Heat transfer term (hA) 7*105 cal/(min.k) 

Reaction rate constant (k0) 7.2*1010min-1 

Activation energy term (E/R) 1*104 K 

Heat of reaction (-ΔH) 2*105 cal/mol 

Liquid density (ρ, ρc) 1*103 g/lit 

Specific heats (Cp, Cpc) 1 cal/(g.k) 

Fouling coefficient φh(t) 1 

Deactivation coefficient φc(t) 1 

 
The first principles model of CSTR process is 

described by a set of equations. The mass balance on 
component A is formulated as 
 

  (t)
RT

E
expCkCC

V

q

dt

dC
cA0AAf

A 





           (1) 

 
Assuming constant volume, heat capacity Cp, 

density ρ and neglecting changes in potential and kinetic 
energy, the reactor energy balance is defined in equation 
(2). 
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MATERIALS AND METHODS 

 
Design of PID control system using different PSO 

variants 

Tuning of PID controller means adjusting the 
controller gains to achieve the best possible control for a 
particular process to satisfy the performance specifications 
like margin of stability, transient response and bandwidth. 
Although trial and error can be used, analytical approach 
is used to compute the gain that can minimize the 
performance index.  

The following performance indices given in 
equation (3), (4), (5), (6) are considered as objective 
functions in this work. 

dte(t)IAE
0



                                                                  (3)                                                                             

dt[e(t)]ISE
0

2




                                                               (4) 

dte(t)tITAE
0



                                                             (5) 

dtt[e(t)]ITSE
0

2




                                                         (6) 

The transfer function of PID controller is 
described by equation (7) in the continuous domain with 
Kp, Ki and Kd as the proportional, integral and derivative 
gains respectively.  
 

sK
s

K
K(s)G d

i
pPID                                          (7) 

The output of the PID controller in time domain 
is given by 

e(t)
dt
d

Ke(t)Ke(t)Ku(t) d

t

0ip                      (8)  

 
where, u(t) and e(t) are the control and tracking error 
signals in time domain respectively. Figure-2 illustrates 
the implementation of PSO algorithm based PID controller 
tuning in CSTR process. 
 Generally PID parameters designed for a 
particular operating point are not suitable to control any 

process globally. Therefore, for multimodal problem, 
global control can be achieved by utilizing population 
based algorithm [22]. In this work, PSO based optimal 
PID controller with various Inertia weight methods has 
been used for global control of CSTR process. 
 

PID Controller CSTR Process

Individual cost

function/ multiple

objective functions

PSO/MOPSO

Algorithm

Setting Parameters of PSO ( swarm

size, dimension, c1, c2,Varying Inertia

weight based on the type of PSO

variant)

R(s) Y(s)e(t) Uc(s)

Kp Ki Kd

+

-

 

Figure-2. Block diagram of PSO based PID controller 
tuning. 

 
PSO algorithm overview  

 The particle swarm optimization algorithm is a 
population based search algorithm based on the simulation 
of the social behaviour of birds within a flock. A swarm 
consists of a set of particles, where each particle represents 
a potential solution. Particles are then flown through the 
hyperspace, where the position of each particle is changed 
according to its own experience and that of its neighbours. 
An individual particle i is composed of three vectors: its 
position in the D-dimensional search 

space )x...,..........x,(xx idi2,i1i  , best position that it 

has individually found )......pp,(pp idi2,i1i  and its 

velocity )v..,,.........v,(vv idi2i1i  .
 

 Particles are initialized in a uniform random 
manner throughout the search space and velocity is also 
randomly initialized. These particles then move 
throughout the search space and updates itself at each time 
step by updating the velocity and position of each particle 
in every dimension by following a set of update equations 
as given in equation (9), (10).  
 

)x(prc)x(prcvv idgd22idid11idid          (9)                      

 

ididid vxx                                                              (10) 

 
where, d = 1, 2… n represents the dimension and i = 1, 
2,…, S represents the particle index. w is the inertia 
weight, c1 and c2 are cognitive and social acceleration 
coefficients respectively, and r1 and r2 are random 
numbers obtained from a uniform random distribution 
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function in the interval 0 to 1. The parameters r1 and r2 are 
used to maintain the diversity of the population. pid and pgd 

represent the best previous position of the i
th particle and 

the position of the best particle among all particles in the 
population respectively. Equations (9) and (10) define the 
standard PSO algorithm. Later, the concept of an Inertia 
weight was developed by Shi and Eberhart [14] in 1998 to 
provide a balance between exploration and exploitation, 
eliminating the need for setting of maximum velocity. The 
resulting velocity update equation becomes 
 

)x(prc)x(prcvwv idgd22idid11idid    (11)                                   

 
The parameter w, helps the particles converge to 

pgd, rather than oscillating around it. The inertia weight 
controls the influence of previous velocities on the new 
velocity. Large inertia weights cause larger exploration of 
the search space while smaller inertia weights, focus the 
search on a smaller region. The choice of the PSO 
parameters especially w seems to be very important for the 
speed and efficiency of the algorithm. Inertia weight plays 
an important role in the convergence of the optimal 
solution to a better optimal value as well as the execution 
time of the simulation run. 
 
Features of PSO 

 
 PSO implementation is easier since the numbers of 

parameters utilized are very few compared to other 
nature-inspired algorithms. 

 Being a population-based search algorithm, it is less 
susceptible of getting trapped in local optima. 

 PSO makes use of the probabilistic transition rules 
that can search a complicated and uncertain area, 
enabling more flexibility and robustness than 
conventional methods. 

 PSO can easily deal with non-differentiable objective 
functions, this property relieves PSO of assumptions 
and approximations, which are often required by 
traditional optimization models. 

 PSO has the ability to control the balance between the 
global and local exploration of the search space. 

 PSO only has one operator, velocity calculation, so 
the computation time is decreased significantly. 

 
 The following inertia weight methods of PSO 
given in Table-2 have been used for simulation, to find 
optimum PID controller parameters for the considered 
nonlinear system and the Inertia weight algorithm of PSO 
is illustrated in Figure-3.  
 
 

 

 

 

Table-2. Formula for different inertia weight techniques. 
 

Different 
inertia 
weight 

techniques 

Formula used 

Constant 
inertia weight 
(Constant-w) 

0.7w  , [14] 

Random 
inertia weight 
(Random-w) 2

rand()
0.5w   , [15] 

Global-Local 
best 

inertia weight 
(Global-w) 

)
pbest

gbest
(1.1w

i

i
i   , [16] 

 

Time varying  
inertia weight 

(TV-w) ]17[,w       

)
iter

iteriter
)(w(ww

max

max

max
minmax






 

 

Adaptive 
inertia weight 
(Adaptive-w) 

)wr(1ww oo    ,  [18] 

 

 
 

Figure-3. Inertia weight PSO algorithm. 
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Formulation of MOAWPSO 

A linearly-decreasing weight would not be 
adequate to improve the performance of the PSO due to its 
nonlinear nature as suggested by Shi and Eberhart [23]. 
Therefore the following formula to change the inertia 
weight at each generation as proposed [18] has been 
utilised in this paper. 
 

)wr(1ww oo                                                  (12) 

 
where w0 is the initial positive constant in the interval [0, 
1] and r is random number in the interval [0, 1]. The 
suggested range for w0 is [0, 0.5], which make the weight 
w randomly varying between w0 and 1. Mahfouf et al. 
proposed [24] an Adaptive Inertia weight PSO (AWPSO) 
algorithm to improve the performance of the PSO for 
multi-objective optimization problems in which the 
velocity in Equation (11) is modified with an acceleration 
factor  as in equation (13)  
 

)]x(prc          

)x(prα[cvwv

idgd22

idid11idid




                       (13) 

 
The acceleration factor α is defined as follows: 
 

max
o iter

iterαα                                                          (14) 

 
where, iter is the current generation, itermax denotes the 
total number of generations and suggested range for o is 
[0.5, 1]. 

In Equation (13), the acceleration term will 
increase with the number of iterations, enhancing the 
global search ability at the end of a run and prevents local 
minima. The simplest approach to deal with Multi-
Objective Problems (MOPs) is to define an aggregate 
objective function fi as a weighted sum of the individual 
objectives. 
  Multi-objective Adaptive Inertia weight PSO is 
formulated as a weighted sum of individual objective 
functions like ISE, IAE and ITSE with adaptive weight 
measure as a PSO variant. The aggregate objective 
function fagr (k) has been coined as reported [25] and given 
in equation (15). 
 

(k)fw(k)f i

n

1i
iagr 


                                                      (15) 

 

where, 1w
n

1i
i 


, n is the number of objective functions 

and k denotes kth particle and weight of each objective 
function normalized as in equation (16). 
 

 


n

j j

i

iw

1



                                                            (16)                      

 
where, i, j    U (0, 1),  μi and μj are random numbers 
obtained from a uniform random distribution function in 
the interval [0,1] 
 
RESULTS AND DISCUSSIONS 

The results have been analysed by implementing 
five different Inertia weight methods in PSO. The goal of 
PSO is to tune PID parameters for the global range of 
CSTR process with minimum error criteria like ISE, ITSE, 
ITAE and IAE. PSO based optimum PID controller 
parameters and performance analysis under various inertia 
weight methods for the four error criteria have been 
tabulated in Table-3, 4, 5 and 6 respectively. The CSTR 
process has been simulated using the nonlinear first 
principles model given by (1) and (2) and the process 
output concentration has been computed by solving the 
nonlinear differential equation using Matlab 7.0. The 
controller saturation limit between 97 and 109 lit/min is 
considered with initial conditions given by �� = 103 
lit/min, CA = 0.0989 mol/lit and T = 438.77 K and the 
sampling time of about 0.083s is selected for all the 
simulation studies.With nominal and shifted operating 
point as set points, simulation studies have been carried 
out to demonstrate the set point tracking capability of the 
CSTR process as shown in Figure-4, 5, 6 and 7. The 
parameters assigned for various PSO variants have been 
reported in Table-7.  
 
Table-3. PSO based optimum parameters under different 

weight variants using ITSE as cost function. 
 

Inertia 

weight 

techniques 

Error 

criteria 

Optimum parameters 

of PID controller 

ITSE Kp Ki Kd 

Constant-w 6.958 23.1348 1.8789 4.7422 

Global-w 4.604 50.3973 2.9916 1.2689 

Random-w 2.664 16.6111 0.5226 0.5969 

TV-w 1.576 36.8646 0.7087 1.4457 

Adaptive-w 1.286 14.3972 0.2483 1.8896 
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Figure-4. Output of CSTR process for various PSO 
variant with ITSE as cost function. 

 
Table-4.  PSO based optimum parameters under different 

weight variants using ISE as cost function. 
 

Inertia 

weight 

techniques 

Error 

Criteria 

Optimum parameters 

of PID controller 

ISE Kp Ki Kd 

Constant-w 0.0374 16.6751 3.6637 1.1515 

Global-w 0.0154 31.0409 2.9555 0.5880 

Random-w 0.0098 21.8642 1.2784 0.6393 

TV-w 0.0054 47.4244 1.6378 0.8773 

Adaptive- w 0.0010 57.3681 0.2989 0.7063 
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Figure-5. Output of CSTR process for various PSO 
variant with ISE as cost function. 

 
Table-5.  PSO based optimum parameters under different 

weight variants using IAE as cost function. 
 

Inertia 

weight 

techniques 

Error 

criteria 

Optimum parameters 

of PID controller 

 IAE Kp Ki Kd 

Constant-w 4.030 17.8812 4.0203 0.8529 

Global-w 3.161 22.1548 3.9013 0.4834 

Random-w 0.812 35.4049 1.5903 1.3666 

TV-w 0.460 19.4559 0.4901 1.3756 

Adaptive- w 0.265 42.9483 0.6172 1.1041 
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Figure-6. Output of CSTR process for various PSO variant with IAE as cost function. 
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Table-6.  PSO based optimum parameters under different weight variants using 
ITAE as cost function. 

 

Inertia weight 

techniques 

Error 

criteria 
Optimum parameters of PID controller 

ITAE Kp Ki Kd 

Constant-w 1290 23.954 2.5231 1.8540 

Global-w 986.1 28.3165 2.2942 1.0423 

Random-w 445.9 14.0639 0.5205 1.2737 

TV-w 236.3 39.4796 0.7802 0.2347 

Adaptive- w 50.67 41.9933 0.1680 0.6392 
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Figure-7. Output of CSTR process for various PSO 
variant with ITAE as cost function. 

 
Table-7. Parameters assigned for various PSO variants. 

 

Parameters 

assigned 

C
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Dimension: 
Swarm 
size: 

C1, C2: 
r1, r2: 

 

Dimension =  3 
Swarm size = 20 
C1 = C2            = 2 
r1, r2:   are random numbers 
obtained from a uniform 
random distribution function 
in the interval [0, 1]. 
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Figure-8 (a), (b),  (c), (d). Effect of inertia weight on 
individual Fitness functions 

 
From Figures-4, 5, 6 and 7, with optimum tuned 

parameters Kp, Ki and Kd, the PID controller are able to 
track the set point variations close to the desired set point 
(concentration of the reactor) considering the cost 

functions ISE, ITSE, ITAE and IAE individually. Figure-8 
shows that the performance of AWPSO method has been 
found to be the best of all other inertia weight methods in 
terms of error minimization on almost all the fitness 
functions. 

MOPSO have been considered with an aggregate 
objective function as a weighted sum of three individual 
cost functions namely ISE, ITSE and IAE. The weights 
assigned for the three cost functions are randomly 
distributed and uniformly followed for all the inertia 
weight methods. Table-8 shows optimum PID parameters 
under different weight variants of PSO and respective cost 
function values. The cost functions treated in MOPSO is 
weighted as 0.4232, 0.2971 and 0.2797 for ISE, ITSE and 
IAE respectively. Table-8 and Figure-9 shows AWPSO 
performs better with minimum ISE, ITSE and IAE on a 
multi-objective case also, where individual cost functions 
are made as a weighted sum.  

 
Table-8. Optimum PID parameters of MOPSO under different inertia weight methods. 

 

MOPSO for 

w techniques 

Error criteria 
Optimum parameters of 

PID controller 

ISE ITSE IAE Kp Ki Kd 

Constant-w 0.008 3.970 0.795 10.75 0.47 0.94 

Global-w 0.004 2.041 0.437 45.30 1.08 1.90 

Random-w 0.002 0.895 0.162 32.17 0.27 2.43 

TV-w 0.004 1.736 0.381 44.18 0.92 0.60 

Adaptive-w 0.001 0.442 0.085 48.27 0.15 0.17 
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Figure-9. Output of CSTR process for various PSO 
variant considering cost functions as weighted sum. 

 
The impact of various inertia weight methods in PSO: 
To depict the importance of the parameter, inertia weight 
factor w, five samples of swarm size have been plotted for 
all considered weight variants in Figure-10. 
 
 Observation on constant inertia weight method 

In constant inertia weight method, it has been 
observed that a large inertia weight facilitates a global 

search and takes much time to converge and a small 
inertia weight facilitates a local search with minimum 
convergence time. Also the distribution of inertia 
weight is constant throughout the iteration process as 
shown in Figure-10. 
 

 Observation on Global-Local Best inertia weight  

In this PSO variant, the inertia weight depends on pgd 
and pid of the particles in each generation. From 
Figure-10.it is clear that it neither takes a constant 
value nor a linearly decreasing time-varying value 
which may lead to premature convergence to a local 
minimum.  
 

 Observation on random inertia weight 

It assumes random w for each iteration. Simulation 
result from Figure-9 reveals that this strategy 
increases the convergence of PSO in early iterations 
of the algorithm.  
 

 Observation on TVIW 
This method has improved the efficiency and 
performance of PSO. It has been found that inertia 
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weight from 0.9 to 0.4 provides appreciable result and 
the distribution of the inertia weight in a population 
size of five has been presented in Figure-10. Even 
though this strategy has the ability to converge to 
optimum value as shown in Figure-4, 5, 6 and 7, 
sometimes there is a possibility of getting trapped into 
the local optimum. 
 

 Observation on AWPSO 
In Figure-10, it has been observed that the inertia 
weight distribution does not linearly decrease with 
time and hence AWPSO has the capability to avoid 
from local optima. Adaptive Inertia Weight strategy 
has been proposed to prevent premature convergence 
to local minimum and to improve its searching 
capability. Population diversity is controlled by 
adaptive adjustment of the inertia weight throughout 
the iteration process.  

 

 
 

Figure-10. Distribution of inertia weight considering 
various PSO weight variants. 

 
CONCLUSIONS 

This research work presents a comparative study 
on five inertia weight strategies in Particle Swarm 
Optimization algorithm. Simulations have been done for 
all the inertia weight methods in PSO considering cost 
functions individually and as a weighted sum of the 
individual objectives. Simulation results prove that 
AWPSO algorithm implemented for optimal control of 
CSTR process converges faster with minimum error 
compared to other inertia weight measures under single 
and multiobjective targets. The better performance of 
AWPSO is due to its adaptiveness with respect to its 
inertia weight and acceleration coefficients enabling a 
good balance between the exploration and exploitation of 
the search space. Also adaptive adjustment of inertia 
weight prevents premature convergence from local 
minima rooting to good results.  
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