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ABSTRACT 

To address the increasing demand for higher resolution and frame rates, processing speed (i.e. performance) and 
area cost need to be considered in the development of next generation video coding.  Context-based adaptive binary 
arithmetic coding (CABAC) is the major entropy-coding algorithm employed in H.264/AVC. In this paper, subinterval 
reordering is proposed for the arithmetic decoder to increase the processing speed and to lower the frequency of memory 
access. Modification of the motion vector difference (MVD) context selection is proposed to reduce memory requirements 
and speed up the memory access. These above two methods and architecture optimizations are non-standard compliant and 
this proposed work is incorporated using buffers and registers for temporary storage and processing of the data. The speed 
of operation is improved by more than 50% with respect to normal operation.   
 
Keywords: H.264, Video Codec, CABAC, MVD. 

 
1. INTRODUCTION 

H.264/AVC [1] has been the state of the art video 
compression standard of the ITU-T Video Coding Experts 
Group and ISO/IEC Moving Picture Experts Group 
(MPEG) in current video applications. It promises to 
outperform the earlier MPEG-4 and H.263 standard, 
employing many better innovative technologies such as 
multiple reference frame, variable block size motion 
estimation, in-loop de-blocking filter and context-based 
adaptive binary arithmetic decoding. H.264/AVC system 
can save the bit-rate up to 50% compared to the previous 
video standard such as H.263 and MPEG-4 under the same 
quality. Traditionally, the focus of video coding 
development has been primarily on improving coding 
efficiency. However, as processing speed requirements 
and area cost continue to rise due to growing resolution 
and frame rate demands, it is important to address the 
architecture implications of the video coding algorithms. 
The standard specifies two types of entropy coding 
algorithm: CABAC and Context-based Adaptive Variable 
Length Coding (CAVLC). CABAC entails an access 
frequency increase from 25% to 30% with bit rate 
reduction up to 16% [2], therefore, researches on CABAC 
hardware implementation have been done in recent years 
[3, 4, 5]. CABAC achieves high compression ratio but 
bringing greater complexity and cost in implementation. 
Because of frequent memory (ROM and RAM) access, it 
spends large time in CABAC decoding process. Although 
the DSP implementation of CABAC decoder decreases the 
working time, it also needs 30~40 cycles to decoding a bit. 
So it is not an appropriate choice for real-time CABAC 
decoding applications, however, FPGA (or ASIC), as a 
good hardware implementation manner, is being 
increasingly used in this field. 

 
Algorithm in [3] illustrates a solution to class all 

SEs to two categories according to their occurring 
frequency to improve the decoding efficiency. The 
architecture for CABAC decoding in [4] is claimed the 
first hardware architecture in the open literature. 
Architecture in [5] handles all the context information 
needed by CABAC and rate distortion optimization 
together. However, in [3], only the bin decoding efficiency 
is emphasized and improved. Prediction-based pipelined 
architectures [6, 7] have been proposed to achieve high-
throughput. Some methods, such as syntax element 
prediction, redundant circuits, and forwarding techniques, 
can be adopted to void pipeline stalls. However, the design 
of [6] does not utilize the memory bandwidth well and 
each pipeline stage contains at least one memory access, 
which greatly increases the frequency of memory access. 
Moreover, the decoder has to load two context models and 
store one in every cycle. Thus, memory access conflicts 
occur frequently and two dual-port static random access 
memory (SRAM) devices have to be used to solve them, 
which increases the cost of hardware. Although the design 
of [7] can decode in high-rate mode, almost all context 
models are stored on chips and both dual-port SRAM and 
registers are used, which impose heavy hardware costs on 
the gate count. [8] proposed an area-efficient architecture, 
but only a single-bin engine is used and the throughput is 
low.  

This paper presents a new architecture design of 
an H.264/AVC CABAC decoder which rearranges the 
context table memory to improve memory efficiency and 
reduce hardware cost, and which optimizes both the 
decode decision and decode bypass engines to increase 
parallelism with a reduced timing penalty. We have 
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reorganized the context table into 29 groups to ensure that 
each group is loaded only once during the decoding 
process of one MB, and have adopted a 112-bit circular 
buffer to cache the context models. Both of these changes 
reduce memory bandwidth dramatically. Furthermore, we 
have divided the decode decision engine into two half 
branches: the most possible symbol (MPS) decode 
decision branch and the least possible symbol (LPS) 
decode decision branch. The MPS branch is much simpler 
than the LPS branch. Therefore, two MPS branches are 
sophisticatedly concatenated to decode two bins in one 
cycle and the critical path is kept almost the same as that 
of the decode decision engine.  

2. CABAC DECODER ARCHITECTURE 
In this we discuss about the building block for 

CABAC decoder and the flow chart for the decoder 
algorithm.    In the encoder side the syntax element (SE) of 
the H.264/AVC will be transferred into the bits of binary 
code called ‘bin’ except flag type of SE. The bin string is 
decoded by two levels of decoder namely binary 
arithmetic decoder and de-binarization. The binary 
arithmetic decoders have three different types such as 
regular, bypass and terminal decoding processes.  The 
basic block diagram is shown in Figure-1. 

 

 
 

Figure-1. Block diagram of CABAC decoding flow. 
 

At the beginning, when a new slice data occur the 
probabilities of the context model has to be initialized by 
the context model initial table. The 459 kinds of context 
model values are calculated and written to the context 
model RAM. The bitstream module provides input 
bitstream to the decoder and 459 context models are stored 
in mxn ROM. To simplify the calculation range of least 
probable symbol (rLPS) is stored in ROM. The core 
decoder module consists of two regular decoding engines 
and two bypass decoding process.  The cache memory is 
used in between the RAM and core decoding unit to 
reduce memory access and it saves the decoding cycle 
evidently. The first decoding flow is the arithmetic 
decoder which is the first stage of decoding one syntax 
element. It produces the bin value depending on the 
current range (codlRange) and the current value 
(codlOffset). The second decoding flow is the binarization 
engine. It reads the bin values to judge if the bin string 
forms the meaningful data. If not, the binarization engine 
requests the arithmetic decoder to decode one bin again 

and re-judges the bin string until identifying the value of 
the current syntax element.  

There are four kinds of SEs including slice data, 
MB layer, (sub) MB pred and residual block cabac. The 
Slice data and MB layer produce once time per macro 
block. (sub) MB pred and residual block cabac are 
produced according to block size. Therefore, we may often 
change our decoding order because of variable macro 
block type.    

In slice data, we have three syntax elements such 
as mb_skip_flag, mb_field_decoding_flag and 
end_of_slice_flag.  The mb_field_decoding_flag is used to 
recognize frame and field MB, and we produce once per 
MB pair. The end_of_slice_flag is always symbolized 
final syntax element of MB, and the slice will be finished 
when end_of_slice_flag equal to one. Besides, if the 
mb_skip_flag equal to one, we directly jump to 
end_of_slice_flag and skip this MB.  

In MB layer, we have four syntax elements such 
as mb_type, transform_size_8x8_flag, 
coded_block_pattern and mb_qp_delta. We can recognize 
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current block in which block size by mb_type and 
transform_size_8x8_flag. The mb_qp_delta is a parameter 
for inverse-quantization, and coded_block_pattern are 
represented zero distribution of residual block.   

After decoding value of mb_type, we can depend 
on block size to judge the following status which will be 
mb_pred or sub_mb_pred. If we decode in sub_mb_pred, 
we may produce sub_mb_type to recognize sub-block 
size. And then, we may decode one or more predictor 
modes such as prev_intra NxN_pred_mode_flag, 
rem_intra NxN_pred_mode, intra_chroma_pred_mode, 
ref_idx_lX and mvd_lX for Intra or Inter predictor. (N4א, 
8; X 1 ,0א)   

Finally, we would decode the coefficient (coeff.) 
block in residual block cabac. The coeff. block size can be 
categorized into 4x4 and 8x8. So, we can get sixteen or 
four coeff. blocks in macro block.  

The  coded_block_pattern may describe situation 
of each 8x8 block, and the coded_block_flag may describe 
that current 4x4 block contains all zero or not. After that 
significant_coeff_flag and last_significant_coeff_flag will 
scan all coeff. positions, and the coeff_abs_level_minusl 
and coeff_sign_flag produce the value of coeff. position 
which isn’t equal to zero. 
 
 

2.1 Design challenges  
However, the bottleneck of CABAC decoder 

design is the throughput for the H.264/AVC system.  The 
next range and value depend on current range and offset, 
and the table is controlled by outputted bin.  So, it has 
notably strong data dependency to restrict throughput. The 
RAM-based context model scheduling for fetching and 
write-back becomes important issue.  The table-base 
CABAC reduce complexity significantly, but it also raises 
large table which have to include memory. 
 
2.2 Cabac decoding flow 

When CABAC decoder is invoked, it schedules 
the timing related to the context model of reading-to and 
writing-back and selecting the arithmetic decoding flows 
and binarization flows. Figure-10 shows the finite state 
machine (FSM) of the traditional CABAC decoding flow 
[9]. The first state (state 0) is the stand-by state. The 
decoder waits for the request of the syntax element parser 
until activating the CABAC decoder system, and jumps to 
state 1. State 1 is required to check the type of AD. If it is 
the regular decoding, the binarization reads the neighbour 
information from the SRAM, and generates the context 
model index and reads the context model form the context 
model. And then, FSM jumps to state 2. 

  

 
 

Figure-2. Traditional CABAC decoding flow. 
 

State 2 is a binary tree where we have defined in 
Section 2.1.2. Based on the binindex (binIdx), the 
binstring is compared with the binary tree. If binstring 
can’t find the mapped binary, the binarization engine 
increases binIdx and requests AD producing the next bin 
value to map again until the mapped binary and the 
suitable value of syntax element instate 3. If it finds the 

mapped binary value, the value of binIdx is initialized as 
“0” and waits for the request of the next syntax element 
 
2.3 Context model index calculating flow  

The values of the context model offer the 
probability value of MPS (pStateIdx) and the historical 
value of bin (MPS) in order to achieve the adaptive 
performance. In the regular decoding process of the 
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arithmetic decoder, we have to prepare the 459 locations 
of the context model to record all decoding results in high 
profile.   
 
ctxIdx=ctxIdxOffset + ctxIdxInc      (1) 
 
ctxIdx=ctxIdxOffset + ctxIdxBlockCatOffset + ctxIdxInc    (2) 
 

It divides into two kinds of the context model 
index (ctxIdx) methods to allocate the context model. (Eq. 
1 is one of the index methods. Besides residual data 
decoding, the context model index is equal to the sum of 
ctxIdxOffset and ctxIdxInc. (Eq. 2 is the index method for 
residual data decoding). The equation contains 
ctxIdxBlockCatOffset term which is depending on the type 
of coefficient block.   
 
3. MEMORY SYSTEM REQUIREMENT  

In order to improve the decoding efficiency the 
storage structures of Context models RAM, rLPS_ROM 
module and storage of neighbouring pixels are modified.  
These memories are closely related to the Core decoder 
module during decoding process.  
 
3.1 Proposed context models RAM structure  

The first clock cycle is used to read the 
corresponding context model from the Context Models 
RAM and one more clock cycle is required to write back 
the updated context model while decoding a bin. Due to 
read and write operation there is needed for at least two 
cycles to maintain one context model and it will reduce the 
speed of operation.  It is necessary to insert a cache 
between the Core decoder module and the Context models 
RAM module, so that fetching models and renewing 
models are implemented in the cache. If the cache is 
organized as inner register group, the Core decoder 
module does not consume any cycle while accessing the 
Context renewing cache module.  

Considering the cache characteristics, we divide 
context models into 25 groups according to the order of 
being called. In this group only one group contains 44 

context models and others contain maximum of 14 context 
models. It is required to organize 44x7 bit registers for the 
cache memory.  In this architecture the entire 459 context 
models are stored in 64 x105 bits RAM.  In our design 
each row contains 15 context models (105 bits) and it is 
called one group. In each group some of them contain less 
than 15 context models. The only group with 44 context 
models are placed in three rows and it requires three 
clocks cycle to read and three clock cycles to write. The 
other group can be loaded and written back in one cycle. 
 
3.2 Range of least probable symbol Read only memory 

During arithmetic decoding there is a need for 
look up fixed tables namely 2 Range of least probable 
symbol Read only memory  (rLPS_ROM) and  other is to 
get transIdxLPS that is the updated pStateIdx (probability 
state index).   

For low complexity the subinterval range values 
of rLPS are pre-stored in a fixed table of 4x64 normally.  
The values of pStateIdx and transIdxLPS are also stored in 
a fixed table.  During encoding each bin it is required to 
look up the above tables and update the pStateIdx value. 
The above tables are stored in ROM and to access a ROM 
it costs one cycle time.  During decoding process 
consumes two cycles to look up two fixed tables.  

In order to speed up the operation we are 
proposing two tables into one table and the width of the 
Table is 112 bits.  The storage structure is shown below 
and it contains 64x112 bits. 

The width of current rLPS, next rLPS and last 
rLPS is 32 bits each. The variable transIdxLPS  has 8 bits 
representing the renewed pStateIdx of the least probable 
symbol (LPS). The variable transIdxMPS is not stored in 
the table and it can be calculated as follows: 
 
If(pStateIdx!=62 && pStateIdx!=63) 
transIdxMPS=pstateIdx+1; 
else 
transIdxMPS=pstateIdx 
end if; 

 

 
 

Figure-3. Storage structure for rLPS and pStateIdx. 
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 The main objective of the above storage 
requirements are 
 
a) prefetching mechanism of rLPS for the next bin 

b) In order to have parallelism rLPS values to two 

regular engines  

 
Using this approach, it does not cost any cycle to load 

the rLPS and the renewed pStateIdx from the rLPS_ROM. 
when the ctxIdxInc value of current bin is either equal to 
the former bin or one greater than former bin’s in most of 
decoding process. Therefore the structure characteristic of 
the rLPS_ROM module is beneficial to improve decoding 
efficiency. 
 
3.3 Neighbouring pixel value storage 

The other parts to be considered is neighbour 
information storage.  When we access data from external 
memory for the neighbour information will increase the 
latency.  When we access the data through system bus, the 
latency will exceed the timing requirement.  This is due to 
system clock; other modules occupy the memory 
bandwidth etc.  This leads to problem when we decode in 
real time application even though less storage is used.   
 

 
 

Figure-4. Neighbouring pixel requirement. 
 

In this work we are proposing a method to store 
row of MB neighbour information in an internal memory. 
This will require about 20 Kbits SRAM for CABAC 
decoder. The best way for the above problem to reduce the 
stored neighbour information.  The most efficient way to 
pre-calculate syntax element for neighbour macroblock 
and provide a concentrated buffer to reduce redundant 
hardware cost. 

To store one motion vector difference (mvd) we 
require 10 bits.  Each MB has  16 mvd for worst case.  To 
calculate ctxIdx for mvd, we need left and top neighbour 
mvd.  To calculate ctxIdxInc we are not using entire 10 
bits for the most of the cases.  From the analysis we find 
the most of mvd can be represented by two bits only.  By 
this approach we can reduce each mvd from 10 to 2 bits.  
To store extra mvd we use extra 5 bits.  To access 
neighbour mvd, first 2 bits for each mvd and several extra 
mvd from memory are accessed. By this method we can 
reduce about 65 to 70 % storage area. 

 

 
 

Figure-5. In the end of top and left buffer (b) After decoding MB process. 
 

When we decode first bin of SE, we are accessing 
the same SE at the neighbour, which is present in current 
MB or neighbour MB.  For this we require two buffers one 
buffer is used to store the data from neighbour MB and the 
other to store the current MB. Both of them occupy largest 
buffers, so we are combine these two buffers to raise the 
buffer efficiency. 

The neighbour data will not available always 
from memory for variable block size. During decoding, 
the neighbour block may be changed from neighbour to 
current MB.  By this way we can reuse the buffer for 
storage.  At the beginning, current block 0, the neighbour 

information left and top buffer are read.  The buffer is 
cleared and updated by the pre-calculated information.  
 
RESULT AND DISCUSSIONS 

The motion vector storage and calculation of the 
current data is updated from the neighbouring vector.  The 
above memory requirement and current data updation are 
written in VHDL code.  The simulation result is shown in 
Figure-6 and device utilization summery is shown in 
Table-1. 
Selected Device: 5vlx110tff1738-3  
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Figure-6. Simulation result of mvd memory. 
 

 
 

Figure-7. RTL View mvd memory. 
 

Table-1. Device utilization summary. 
 

S. No. Name of logic Used Available Utilization in % 

1 Number of slice Registers 114 69120 0% 

2 Number of slice LUTs 147 69120 0% 

3 Number of fully used LUT-FF pairs 77 191 40% 

4 Number of bonded IOBs 58 680 8% 
 

Maximum frequency of operation: 313.834MHz 
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The simulation result of context ram shown in Figure-8 after writing code for the same using VHDL. The synthesis result 
and RTL view is shown in Figure-9. 
 

 
 

Figure-8. Simulation result of context ram. 
 

 
 

Figure-9. RTL view of context ram. 
 
Selected Device: 5vlx110tff1738-3 
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Table-2. Device utilization summary. 
 

S. No. Name of logic Used Available Utilization in % 

1 Number of slice Registers 168 69120 0% 

2 Number of slice LUTs 7 69120 0% 

3 Number of BUFG/BUFGCTRLs 1 32 3% 

4 Number of bonded IOBs 349 680 51% 
 

Maximum Frequency of operation: 263.435MHz 
 
The rLPS memory requirement is coded in VHDL and the simulation and synthesis report is shown in Figure 10 and 11. 
 

 
 

Figure-10. simulation result rLPS memory. 
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Figure- 11. RTL view. 
 
Selected Device: 5vlx110tff1738-3  
 

Table-3. Device utilization summary. 
 

S. No. Name of logic Used Available 
Utilization in 

% 

1 Number of slice Registers 58 69120 0% 

2 Number of slice LUTs 8 69120 0% 

3 
Number of 

BUFG/BUFGCTRLs 
1 32 3% 

4 Number of bonded IOBs 120 680 17% 
 

Maximum Frequency of operation: 422.476MHz 
 
CONCLUSIONS 

This paper presents the memory requirement and 
the architecture for the same.  We have presented a new 
reorganized decode decision engine with look-ahead 
ctxIdx calculation logic to improve performance. Using 
this optimal memory requirement and accessing the data 
which are required for the next update is stored in cache 
inorder to improve the speed of operation. Using this 
method there will be increase processing speed by 14 to 
22% and reduce memory size by 50%.  It demonstrates the 
benefits of accounting for implementation cost when 
designing video coding algorithms. We recommend that 
this approach be extended to the rest of the video codec to 
maximize processing speed and minimize area cost, while 

delivering high coding efficiency in the next generation 
video coding standard.  The future work of this project is 
further reduction of external memory and implementing 
this architecture in ASIC environment.  
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