
 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10486

MEMORY REQUIREMENTS FOR HARDWARE IMPLEMENTATION OF
THE H.264 DECODER MODULES

Karthikeyan. C1 and Rangachar2

1Department of Electronics and Communication Engineering, MNM Jain Engineering College, Chennai, India
2Dean for School of Electrical Science, Hindustan University, Chennai, India

E-Mail: karthikeyancmap@gmail.com

ABSTRACT

To address the increasing demand for higher resolution and frame rates, processing speed (i.e. performance) and
area cost need to be considered in the development of next generation video coding. Context-based adaptive binary
arithmetic coding (CABAC) is the major entropy-coding algorithm employed in H.264/AVC. In this paper, subinterval
reordering is proposed for the arithmetic decoder to increase the processing speed and to lower the frequency of memory
access. Modification of the motion vector difference (MVD) context selection is proposed to reduce memory requirements
and speed up the memory access. These above two methods and architecture optimizations are non-standard compliant and
this proposed work is incorporated using buffers and registers for temporary storage and processing of the data. The speed
of operation is improved by more than 50% with respect to normal operation.

Keywords: H.264, Video Codec, CABAC, MVD.

1. INTRODUCTION

H.264/AVC [1] has been the state of the art video
compression standard of the ITU-T Video Coding Experts
Group and ISO/IEC Moving Picture Experts Group
(MPEG) in current video applications. It promises to
outperform the earlier MPEG-4 and H.263 standard,
employing many better innovative technologies such as
multiple reference frame, variable block size motion
estimation, in-loop de-blocking filter and context-based
adaptive binary arithmetic decoding. H.264/AVC system
can save the bit-rate up to 50% compared to the previous
video standard such as H.263 and MPEG-4 under the same
quality. Traditionally, the focus of video coding
development has been primarily on improving coding
efficiency. However, as processing speed requirements
and area cost continue to rise due to growing resolution
and frame rate demands, it is important to address the
architecture implications of the video coding algorithms.
The standard specifies two types of entropy coding
algorithm: CABAC and Context-based Adaptive Variable
Length Coding (CAVLC). CABAC entails an access
frequency increase from 25% to 30% with bit rate
reduction up to 16% [2], therefore, researches on CABAC
hardware implementation have been done in recent years
[3, 4, 5]. CABAC achieves high compression ratio but
bringing greater complexity and cost in implementation.
Because of frequent memory (ROM and RAM) access, it
spends large time in CABAC decoding process. Although
the DSP implementation of CABAC decoder decreases the
working time, it also needs 30~40 cycles to decoding a bit.
So it is not an appropriate choice for real-time CABAC
decoding applications, however, FPGA (or ASIC), as a
good hardware implementation manner, is being
increasingly used in this field.

Algorithm in [3] illustrates a solution to class all

SEs to two categories according to their occurring
frequency to improve the decoding efficiency. The
architecture for CABAC decoding in [4] is claimed the
first hardware architecture in the open literature.
Architecture in [5] handles all the context information
needed by CABAC and rate distortion optimization
together. However, in [3], only the bin decoding efficiency
is emphasized and improved. Prediction-based pipelined
architectures [6, 7] have been proposed to achieve high-
throughput. Some methods, such as syntax element
prediction, redundant circuits, and forwarding techniques,
can be adopted to void pipeline stalls. However, the design
of [6] does not utilize the memory bandwidth well and
each pipeline stage contains at least one memory access,
which greatly increases the frequency of memory access.
Moreover, the decoder has to load two context models and
store one in every cycle. Thus, memory access conflicts
occur frequently and two dual-port static random access
memory (SRAM) devices have to be used to solve them,
which increases the cost of hardware. Although the design
of [7] can decode in high-rate mode, almost all context
models are stored on chips and both dual-port SRAM and
registers are used, which impose heavy hardware costs on
the gate count. [8] proposed an area-efficient architecture,
but only a single-bin engine is used and the throughput is
low.

This paper presents a new architecture design of
an H.264/AVC CABAC decoder which rearranges the
context table memory to improve memory efficiency and
reduce hardware cost, and which optimizes both the
decode decision and decode bypass engines to increase
parallelism with a reduced timing penalty. We have

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10487

reorganized the context table into 29 groups to ensure that
each group is loaded only once during the decoding
process of one MB, and have adopted a 112-bit circular
buffer to cache the context models. Both of these changes
reduce memory bandwidth dramatically. Furthermore, we
have divided the decode decision engine into two half
branches: the most possible symbol (MPS) decode
decision branch and the least possible symbol (LPS)
decode decision branch. The MPS branch is much simpler
than the LPS branch. Therefore, two MPS branches are
sophisticatedly concatenated to decode two bins in one
cycle and the critical path is kept almost the same as that
of the decode decision engine.

2. CABAC DECODER ARCHITECTURE
In this we discuss about the building block for

CABAC decoder and the flow chart for the decoder
algorithm. In the encoder side the syntax element (SE) of
the H.264/AVC will be transferred into the bits of binary
code called ‘bin’ except flag type of SE. The bin string is
decoded by two levels of decoder namely binary
arithmetic decoder and de-binarization. The binary
arithmetic decoders have three different types such as
regular, bypass and terminal decoding processes. The
basic block diagram is shown in Figure-1.

Figure-1. Block diagram of CABAC decoding flow.

At the beginning, when a new slice data occur the
probabilities of the context model has to be initialized by
the context model initial table. The 459 kinds of context
model values are calculated and written to the context
model RAM. The bitstream module provides input
bitstream to the decoder and 459 context models are stored
in mxn ROM. To simplify the calculation range of least
probable symbol (rLPS) is stored in ROM. The core
decoder module consists of two regular decoding engines
and two bypass decoding process. The cache memory is
used in between the RAM and core decoding unit to
reduce memory access and it saves the decoding cycle
evidently. The first decoding flow is the arithmetic
decoder which is the first stage of decoding one syntax
element. It produces the bin value depending on the
current range (codlRange) and the current value
(codlOffset). The second decoding flow is the binarization
engine. It reads the bin values to judge if the bin string
forms the meaningful data. If not, the binarization engine
requests the arithmetic decoder to decode one bin again

and re-judges the bin string until identifying the value of
the current syntax element.

There are four kinds of SEs including slice data,
MB layer, (sub) MB pred and residual block cabac. The
Slice data and MB layer produce once time per macro
block. (sub) MB pred and residual block cabac are
produced according to block size. Therefore, we may often
change our decoding order because of variable macro
block type.

In slice data, we have three syntax elements such
as mb_skip_flag, mb_field_decoding_flag and
end_of_slice_flag. The mb_field_decoding_flag is used to
recognize frame and field MB, and we produce once per
MB pair. The end_of_slice_flag is always symbolized
final syntax element of MB, and the slice will be finished
when end_of_slice_flag equal to one. Besides, if the
mb_skip_flag equal to one, we directly jump to
end_of_slice_flag and skip this MB.

In MB layer, we have four syntax elements such
as mb_type, transform_size_8x8_flag,
coded_block_pattern and mb_qp_delta. We can recognize

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10488

current block in which block size by mb_type and
transform_size_8x8_flag. The mb_qp_delta is a parameter
for inverse-quantization, and coded_block_pattern are
represented zero distribution of residual block.

After decoding value of mb_type, we can depend
on block size to judge the following status which will be
mb_pred or sub_mb_pred. If we decode in sub_mb_pred,
we may produce sub_mb_type to recognize sub-block
size. And then, we may decode one or more predictor
modes such as prev_intra NxN_pred_mode_flag,
rem_intra NxN_pred_mode, intra_chroma_pred_mode,
ref_idx_lX and mvd_lX for Intra or Inter predictor. (N4א,
8; X 1 ,0א)

Finally, we would decode the coefficient (coeff.)
block in residual block cabac. The coeff. block size can be
categorized into 4x4 and 8x8. So, we can get sixteen or
four coeff. blocks in macro block.

The coded_block_pattern may describe situation
of each 8x8 block, and the coded_block_flag may describe
that current 4x4 block contains all zero or not. After that
significant_coeff_flag and last_significant_coeff_flag will
scan all coeff. positions, and the coeff_abs_level_minusl
and coeff_sign_flag produce the value of coeff. position
which isn’t equal to zero.

2.1 Design challenges
However, the bottleneck of CABAC decoder

design is the throughput for the H.264/AVC system. The
next range and value depend on current range and offset,
and the table is controlled by outputted bin. So, it has
notably strong data dependency to restrict throughput. The
RAM-based context model scheduling for fetching and
write-back becomes important issue. The table-base
CABAC reduce complexity significantly, but it also raises
large table which have to include memory.

2.2 Cabac decoding flow

When CABAC decoder is invoked, it schedules
the timing related to the context model of reading-to and
writing-back and selecting the arithmetic decoding flows
and binarization flows. Figure-10 shows the finite state
machine (FSM) of the traditional CABAC decoding flow
[9]. The first state (state 0) is the stand-by state. The
decoder waits for the request of the syntax element parser
until activating the CABAC decoder system, and jumps to
state 1. State 1 is required to check the type of AD. If it is
the regular decoding, the binarization reads the neighbour
information from the SRAM, and generates the context
model index and reads the context model form the context
model. And then, FSM jumps to state 2.

Figure-2. Traditional CABAC decoding flow.

State 2 is a binary tree where we have defined in
Section 2.1.2. Based on the binindex (binIdx), the
binstring is compared with the binary tree. If binstring
can’t find the mapped binary, the binarization engine
increases binIdx and requests AD producing the next bin
value to map again until the mapped binary and the
suitable value of syntax element instate 3. If it finds the

mapped binary value, the value of binIdx is initialized as
“0” and waits for the request of the next syntax element

2.3 Context model index calculating flow

The values of the context model offer the
probability value of MPS (pStateIdx) and the historical
value of bin (MPS) in order to achieve the adaptive
performance. In the regular decoding process of the

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10489

arithmetic decoder, we have to prepare the 459 locations
of the context model to record all decoding results in high
profile.

ctxIdx=ctxIdxOffset + ctxIdxInc (1)

ctxIdx=ctxIdxOffset + ctxIdxBlockCatOffset + ctxIdxInc (2)

It divides into two kinds of the context model
index (ctxIdx) methods to allocate the context model. (Eq.
1 is one of the index methods. Besides residual data
decoding, the context model index is equal to the sum of
ctxIdxOffset and ctxIdxInc. (Eq. 2 is the index method for
residual data decoding). The equation contains
ctxIdxBlockCatOffset term which is depending on the type
of coefficient block.

3. MEMORY SYSTEM REQUIREMENT

In order to improve the decoding efficiency the
storage structures of Context models RAM, rLPS_ROM
module and storage of neighbouring pixels are modified.
These memories are closely related to the Core decoder
module during decoding process.

3.1 Proposed context models RAM structure

The first clock cycle is used to read the
corresponding context model from the Context Models
RAM and one more clock cycle is required to write back
the updated context model while decoding a bin. Due to
read and write operation there is needed for at least two
cycles to maintain one context model and it will reduce the
speed of operation. It is necessary to insert a cache
between the Core decoder module and the Context models
RAM module, so that fetching models and renewing
models are implemented in the cache. If the cache is
organized as inner register group, the Core decoder
module does not consume any cycle while accessing the
Context renewing cache module.

Considering the cache characteristics, we divide
context models into 25 groups according to the order of
being called. In this group only one group contains 44

context models and others contain maximum of 14 context
models. It is required to organize 44x7 bit registers for the
cache memory. In this architecture the entire 459 context
models are stored in 64 x105 bits RAM. In our design
each row contains 15 context models (105 bits) and it is
called one group. In each group some of them contain less
than 15 context models. The only group with 44 context
models are placed in three rows and it requires three
clocks cycle to read and three clock cycles to write. The
other group can be loaded and written back in one cycle.

3.2 Range of least probable symbol Read only memory

During arithmetic decoding there is a need for
look up fixed tables namely 2 Range of least probable
symbol Read only memory (rLPS_ROM) and other is to
get transIdxLPS that is the updated pStateIdx (probability
state index).

For low complexity the subinterval range values
of rLPS are pre-stored in a fixed table of 4x64 normally.
The values of pStateIdx and transIdxLPS are also stored in
a fixed table. During encoding each bin it is required to
look up the above tables and update the pStateIdx value.
The above tables are stored in ROM and to access a ROM
it costs one cycle time. During decoding process
consumes two cycles to look up two fixed tables.

In order to speed up the operation we are
proposing two tables into one table and the width of the
Table is 112 bits. The storage structure is shown below
and it contains 64x112 bits.

The width of current rLPS, next rLPS and last
rLPS is 32 bits each. The variable transIdxLPS has 8 bits
representing the renewed pStateIdx of the least probable
symbol (LPS). The variable transIdxMPS is not stored in
the table and it can be calculated as follows:

If(pStateIdx!=62 && pStateIdx!=63)
transIdxMPS=pstateIdx+1;
else
transIdxMPS=pstateIdx
end if;

Figure-3. Storage structure for rLPS and pStateIdx.

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10490

 The main objective of the above storage
requirements are

a) prefetching mechanism of rLPS for the next bin

b) In order to have parallelism rLPS values to two

regular engines

Using this approach, it does not cost any cycle to load

the rLPS and the renewed pStateIdx from the rLPS_ROM.
when the ctxIdxInc value of current bin is either equal to
the former bin or one greater than former bin’s in most of
decoding process. Therefore the structure characteristic of
the rLPS_ROM module is beneficial to improve decoding
efficiency.

3.3 Neighbouring pixel value storage

The other parts to be considered is neighbour
information storage. When we access data from external
memory for the neighbour information will increase the
latency. When we access the data through system bus, the
latency will exceed the timing requirement. This is due to
system clock; other modules occupy the memory
bandwidth etc. This leads to problem when we decode in
real time application even though less storage is used.

Figure-4. Neighbouring pixel requirement.

In this work we are proposing a method to store
row of MB neighbour information in an internal memory.
This will require about 20 Kbits SRAM for CABAC
decoder. The best way for the above problem to reduce the
stored neighbour information. The most efficient way to
pre-calculate syntax element for neighbour macroblock
and provide a concentrated buffer to reduce redundant
hardware cost.

To store one motion vector difference (mvd) we
require 10 bits. Each MB has 16 mvd for worst case. To
calculate ctxIdx for mvd, we need left and top neighbour
mvd. To calculate ctxIdxInc we are not using entire 10
bits for the most of the cases. From the analysis we find
the most of mvd can be represented by two bits only. By
this approach we can reduce each mvd from 10 to 2 bits.
To store extra mvd we use extra 5 bits. To access
neighbour mvd, first 2 bits for each mvd and several extra
mvd from memory are accessed. By this method we can
reduce about 65 to 70 % storage area.

Figure-5. In the end of top and left buffer (b) After decoding MB process.

When we decode first bin of SE, we are accessing
the same SE at the neighbour, which is present in current
MB or neighbour MB. For this we require two buffers one
buffer is used to store the data from neighbour MB and the
other to store the current MB. Both of them occupy largest
buffers, so we are combine these two buffers to raise the
buffer efficiency.

The neighbour data will not available always
from memory for variable block size. During decoding,
the neighbour block may be changed from neighbour to
current MB. By this way we can reuse the buffer for
storage. At the beginning, current block 0, the neighbour

information left and top buffer are read. The buffer is
cleared and updated by the pre-calculated information.

RESULT AND DISCUSSIONS

The motion vector storage and calculation of the
current data is updated from the neighbouring vector. The
above memory requirement and current data updation are
written in VHDL code. The simulation result is shown in
Figure-6 and device utilization summery is shown in
Table-1.
Selected Device: 5vlx110tff1738-3

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10491

Figure-6. Simulation result of mvd memory.

Figure-7. RTL View mvd memory.

Table-1. Device utilization summary.

S. No. Name of logic Used Available Utilization in %

1 Number of slice Registers 114 69120 0%

2 Number of slice LUTs 147 69120 0%

3 Number of fully used LUT-FF pairs 77 191 40%

4 Number of bonded IOBs 58 680 8%

Maximum frequency of operation: 313.834MHz

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10492

The simulation result of context ram shown in Figure-8 after writing code for the same using VHDL. The synthesis result
and RTL view is shown in Figure-9.

Figure-8. Simulation result of context ram.

Figure-9. RTL view of context ram.

Selected Device: 5vlx110tff1738-3

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10493

Table-2. Device utilization summary.

S. No. Name of logic Used Available Utilization in %

1 Number of slice Registers 168 69120 0%

2 Number of slice LUTs 7 69120 0%

3 Number of BUFG/BUFGCTRLs 1 32 3%

4 Number of bonded IOBs 349 680 51%

Maximum Frequency of operation: 263.435MHz

The rLPS memory requirement is coded in VHDL and the simulation and synthesis report is shown in Figure 10 and 11.

Figure-10. simulation result rLPS memory.

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10494

Figure- 11. RTL view.

Selected Device: 5vlx110tff1738-3

Table-3. Device utilization summary.

S. No. Name of logic Used Available
Utilization in

%

1 Number of slice Registers 58 69120 0%

2 Number of slice LUTs 8 69120 0%

3
Number of

BUFG/BUFGCTRLs
1 32 3%

4 Number of bonded IOBs 120 680 17%

Maximum Frequency of operation: 422.476MHz

CONCLUSIONS

This paper presents the memory requirement and
the architecture for the same. We have presented a new
reorganized decode decision engine with look-ahead
ctxIdx calculation logic to improve performance. Using
this optimal memory requirement and accessing the data
which are required for the next update is stored in cache
inorder to improve the speed of operation. Using this
method there will be increase processing speed by 14 to
22% and reduce memory size by 50%. It demonstrates the
benefits of accounting for implementation cost when
designing video coding algorithms. We recommend that
this approach be extended to the rest of the video codec to
maximize processing speed and minimize area cost, while

delivering high coding efficiency in the next generation
video coding standard. The future work of this project is
further reduction of external memory and implementing
this architecture in ASIC environment.

REFERENCES

[1] 2007. Joint Video Team (JVT) of ISO/IEC MPEG

and ITU-T VCEG. Joint Draft ITU-T Rec. H.264 |
ISO/IEC 14496-10/Amd.3 Scalable video coding.

[2] S. Saponara, C. Blanch, K.denolf and J.Bormans.
2003. The JVT advanced video coding standard:

 VOL. 10, NO 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 10495

Complexity and performance analysis on a tool by
tool basis. In IEEE Packet Video.

[3] Wei Yu, Yun He. 2005. A high performance CABAC
decoding architecture. IEEE Transaction on
Consumer Electronics. 51(4).

[4] Jian-Wen Chen, Cheng-Ru Chang, Youn-Long Lin.
2005. A Hardware Accelerator for Context-Based
Adaptive Binary Arithmetic Decoding in H.264/AVC.
Circuits and Systems. ISCAS, IEEE International
Symposium on. 23-26, Vol. 5: 4525-4528.

[5] Nunez-Yanez Y.L., Chouliaras V.A., Alfonso D.,
Rovati F.S. 2006. Hardware assisted rate distortion
optimization with embedded CABAC accelerator for
the H.264 advanced video codec. Consumer
Electronics, IEEE Transactions on. 52(2): 590-597.

[6] Bing Shi, Wei Zheng, Hoang-Son Lee, Dong-Xiao Li
and Ming Zhang, 2008 Pipelined Architecture Design
of H.264/AVC CABAC Real-Time Decoding. IEEE
International Conference on Circuits and Systems for
Communication. 8, pp. 492-496.

[7] Liao Y.H., Li, G.L., Chang, T.S. 2012. A highly
efficient VLSI architecture for H.264/AVC level 5.1
CABAC decoder. IEEE Trans. Circ. Syst. Video
Technol. 22(2): 272-281.

[8] Kuo M.Y., Li Y., Lee C.Y. 2011. An Area-Efficient
High-Accuracy Prediction-Based CABAC Decoder
Architecture for H.264/AVC. IEEE Int. Symp. on
Circuit and Systems. pp. 160-163.

