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ABSTRACT 

Metamodelling approach is now widely used to automate development of software for the general purposes. This 
paper expands a “classical” metamodeling approach to the design of software for mathematical modelling. Paper defines 
the metamodel to solve different problems in computed tomography. The proposed approach was applied for the 
reconstruction of the structure of three-dimensional objects on a system of their traces on mutually perpendicular planes. It 
was also used for generation of software, intended for the search of illegal items during customs control. 
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INTRODUCTION 

In [1] the methodology for Domain-Specific 
Mathematical Modelling (DSMM) is proposed. It 
enhances Domain-Specific Modelling [2], used for the 
model driven software systems development. 

DSMM allows us development of metamodels in 
the different mathematical semantics, which becomes 
possible due to introduction of an additional level of the 
metamodelling architecture [3]. DSMM tools [4] allow 
their users to define mathematical metatypes and apply 
them for the development of domain specific types. 

One of the prominent examples is a geometrical 
meta-metamodel, which defines in the terms of sets the 
basic (corresponding to the dimensions of the space) 
geometrical metatypes (point, line, surface and 3D region). 
Geometrical meta-metamodel was used for the design of 
cyber-physical systems [5] and mathematical modelling 
surfaces of celestial bodies on the base of radiolocation 
data [6]. Its application for the design of software tools for 
physical modelling and simulation was considered in [7]. 

Formally, we define metamodel as a triple, which 
include an alphabet of types, a grammar, used to combine 
instances of the types, and applicable operations. 
Geometrical meta-metamodel includes alphabet of the 
metatypes, being the common result of abstraction from the 
geometrical structure of the physical objects. In this paper 
on the base of geometrical meta-metamodel we define 
Metamodel for Tomography (MT). Alphabet of MT 
includes the type of geometrical plane, created on the base 
of the metatype of a geometrical surface. To produce 
domain specific types, instances of the plane are attributed 
by specific data (functions of distribution of physical 
properties) obtained in the process of tomographic scan. 

Operations of the geometrical meta-metamodel 
are built on the base of the methods of interpolation, 
interlination and interflatation [8]. In this paper, to restore 
a structure of three-dimensional objects we propose new 
interpolation operators, build on the base on interflatation 

of functions. Paper considers a practical implementation of 
the approach - computer tool Brain Reconstruction, which 
builds a three-dimensional image of brains by the system 
of their parallel sections. Conclusion and references list 
finalize the paper. 
 
MATERIAL AND METHODS 

In tomographic research there is often a problem 
arose by the set of given sections to obtain an image of a 
body in its any intersection [9]. This problem, for 
example, occurs in medicine and biology, at the study of 
the human or experimental animal’s cerebral cortex. 

Typically, the data, containing properties of a 
body, are obtained in the form of photographic images of 
the sections that are carriers of the flat distribution of 
intensity of the light wave. From it follows the 
appropriateness of the geometrical plane as a basic type to 
produce instances of computer objects as carriers of 
distribution of some physical property (density, light 
intensity, etc.). 

The type of the plane in the metamodel MT is 
based on the metatype of geometric surface of the meta-
metamodel G [5]. In terms of analytical geometry, we 
define the type of the plane by setting restrictions on the 
equation of the surface: 
 

( , , ) 0x y z                                                                (1) 

 
The equation of a plane surface is of the first 

order. In Cartesian coordinates 
 

0Ax By Cz D                                                   (2) 

 

where , , ,A B C D  are some constants. 
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To define the type of the plane we put restrictions 
on the possible values of , ,x y z . It is sufficient to set 

restrictions on two from the three variables, e.g. 
 

1 2

1 2

x x x

y y y

 
  

                                                              (3) 

 
Here the mathematical part of the type definition 

is done. Next stage is to develop a domain specific type. 
The idea is to combine the mathematical type with domain 
specific properties, e.g. a function of a distribution of 
physical values. Such the distributions typically come 
from a tomograph as images in raster format, e.g. bitmap. 
Let us use this format due to the mathematical simplicity 
of the definition of function of distribution of physical 
data. To do it, each point of the plane with coordinates (x, 
y) we will consider as a parameter of the function, 
representing colour in some model (RGB, CMYB, HSB). 

Let us develop the method to study distribution of 
a physical property )z,y,x(u  of an internal structure of a 

three-dimensional body (e.g., density) in any section. 
Without loss of generality we assume the body is fully 

located in the unit cube  31,0D  . 

The source of information about the function
)z,y,x(u , i.e. the internal structure of the body, is its 

traces on the system of mutually perpendicular planes: 
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i.e. the set of functions 
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To restore the internal structure of a body we 

develop operators of spline interpolation 321 O,O,O  of 

the function u  by the variables z,y,x , correspondingly 
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where  xSp iM ,1

 are the basic splines of degree 

 3,2,1mm   having the properties  
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Similarly we define splines j,M2
Sp , k,M3

Sp . 

 
Interlination (interflatation) of a function of many 

variables is recovery (possibly, approximate) of this 
function by the help of its traces and traces of its 
derivatives up to the given order on the system of lines (or 
surfaces, respectively) [8]. 

The operator of spline-interflatation is defined as 
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It has the following properties: 
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In the real case, if experimental data are given 

with some accuracy, the following theorem can be 
formulated. 
Theorem. If the experimental data 
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Are given with maximum error  , and   is a 

random variable uniformly distributed in D , i.e.  
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the operator 
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will have error      z,y,xu~Lz,y,xuz,y,xRu  , 

satisfying the following relationship 
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Proof. 
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From it follows inequality

     DCDCDC
LLuuRu  , giving the proof. 

 
PRACTICAL IMPLEMENTATION 

Practical implementation of MT was done in the 
software tool Brain Reconstruction. Note, that the software 
framework, considered in [4; 7] includes Brain 
Reconstruction as a partial case. DSMM tools allows their 
users to define arbitrary metamodel within a general meta-
metamodel G, including that for solving problems of 
computed tomography. 

Figure-1 illustrates the interface of Brain 
Reconstruction, where we use the method of spline 
interflatation to reconstruct the three-dimensional image of 
human brains by the system of its parallel sections. Brain 
Reconstruction uses one type of the metamodel – a plane - 
to specify the distribution of physical properties (here, 
intensity of colours). The distribution a user does by 
attributisation of the plane by the function )z,y,x(u . This 

attributed plane is used for subsequent instantiation of 
objects that are directly used to build the model, i.e. the 
three-dimensional image of the cerebral cortex. 

At the level of the metamodel, the attributing is a 
method that assigns to each element of the set of 
geometrical points on the plane the value of the function

)z,y,x(u . 

The input for Brain Reconstruction is a set of 
raster images (files in bitmap format), depicting the 
sections of a cerebral cortex on a system of mutually 

perpendicular planes kji zz,yy,xx  , 

321 M..1k,M..1j,M..1i  . Names of files indicates 

their belonging to one of three parallel sections (for 
example, «x1.bmp», «x2.bmp», «x3.bmp» are the names 
of images, representing brain sections in a plane, 
perpendicular to the axis OX). 
 Brain Reconstruction reads the files that meet the 
following criteria: 
 
a) The file format corresponds to the BMP standard. 

b) The name begins with Latin letters x, y or z, reflecting 
a section belonging to one of mutually perpendicular 
planes. 

c) The next (after Latin letters) characters are Arabic 
numbers, which are used to determine the serial 
number of the Figure in the corresponding system of 
planes. 

 All correct files are recorded in the array of 
figures - instances of the geometrical type plane, and their 
number - in the relevant internal variables М1, М2, М3. 

Thus, the structure of the model is automatically 
built by analysing the input information (files of images). 
Under the structure of the model, we refer to the 
dimension of the space and the number of elements in the 
array of images. Based on this information the model of 

the space  31,0D   is defined and the distances between 

separate planes are calculated. 
Our method allows a user to recover the three-

dimensional structure of the body in arbitrary distances 
between its parallel sections. For simplification of 
explanations and to be close to the practice of scanning 
tomographic images (technically it is easier to obtain 
intersections with a constant step), let us assume that the 
distance between intersections is the same for any of the 
systems of planes. 

Operators of spline-interflatation (6) are 
implemented as software functions O1, O2, O3, O12, O13, 
O23, O123, parameters of which are variables x, y, z of 
high accuracy (the long double type of C++). Functions 
O12, O13, O23, O123 use the values that return operator 
functions O1, O2, O3. Functions O1, O2, O3 compute the 
closest to the point with coordinates (x, y, z) layers i, j, k 
and using them refer to specific elements of the array of 
images. 
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Figure-1. Interface of the program “Brain Reconstruction”. 
 

For example, if the calculated number of the layer 
is i and this is OZ intersection, then the reference to the 
element of the array Images is as follows:  
Images[1][i]->Pixels[x][y] 

Every image is a two-dimensional array of pixels 
(picture elements), storing an attribute - colour. We use 
RGB colour model, according to which any colour can be 
represented as a superposition of three basic colours - Red, 
Green and Blue. 

Each component of the colour - Red, Green or 
Blue is given by one byte, that can reflect 28=256 shades 
of the colour (the intensity varies from 0 to 255, the 255 
reflects the largest intensity of the colour). The total 
number of colours that can be set by 3 bytes is 
2563=16 777 216, which is close to the colour recognition 
possibility of a human eye (so called True Colour model). 

For further discussion let us use hexadecimal 
number system, which sign in C++ is a combination of 
characters 0x. Fully set bytes (FF) show the highest 
intensity of the corresponding colours’ component (Table-
1). 
 

Table-1. The value of bytes in the RGB colours’ model. 
 

Colour 1 byte 2 byte 3 byte Value 

Red 00 00 FF 0x0000FF 

Green 00 FF 00 0x00FF00 

Blue FF 00 00 0xFF0000 

 
Thus, 0xFFFFFF is the value with the highest 

intensity of all colours’ components and so giving white, 
the value 0x000000 is black. The range between 0x000000 

and 0xFFFFFF having equal values of each colour’ 
component allows us operate with shades of the grey 
colour (e.g., 0x111111 or 0xAAAAAA). 

Software implementation of operators O1, O2, 
O3 allocate each of the RGB colours components 
separately. The functions O1, O2, O3 perform a selection 
of individual colours’ component at this point. E.g. 
 
R = Images[1][i]->Pixels[x][y]&0x0000FF 
 
performs selection of the red colour component of a pixel 
that belongs to the perpendicular to the axis OZ plane i 
and has coordinates (x, y). 

To separate individual colours components we 
use bitwise and operation (&), which clears all other bits 
besides given by the second operand (in above sample it is 
0x000000FF). To explain this operation let us use binary 
system. For example, we have the following colour value 
in the binary form 101010101010101010101010. 
Taking that 000000FF16 = 0000000000000000111111112 

(each byte is set by 8 binary digits, i.e. to set the colour as 
a combination of three components we need 24 bits). To 
set a single number in hexadecimal format we need 4 bits. 

Using bitwise “and” (&) operation we allocate a 
separate component of a colour 
 
101010101010101010101010 
000000000000000011111111 
000000000000000010101010 
 

In such a way, the selection of components of a 
colour is made (in this example the right byte, which 
corresponding to red colour).  
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For the green colour component we may use 
 
G= Images[1][i]->Pixels[x][y]&0x0000FF00 
 
After calculation of all separate components, we can form 
the colour again 
 
Color = R + G + B 
 
METHODS OF 3D GRAPHICS 

The metamodel MT also includes methods of 
three-dimensional graphics to support visualisation and 
analyses. To build a three-dimensional perspective view 
the set of coordinates of the real object are transformed 
into the screen coordinates. This process is carried out in 
two stages: 
a) Real (world) coordinates of each point (x, y, z) of an 

object are transformed into specific coordinates (xv, 
yv, zv). 

b) Specific coordinates (xv, yv, zv) of each point of an 
object using a perspective transformation are 
converted into screen coordinates (xe, ye). 

 
 To support a user in solution of this problem, the 
metamodel MT gives the software functions (API), 
defining relationship between sets of the real and specific 
coordinates. Geometrically, to build an image of a three-
dimensional object, we need make its projection on the 
plane of a screen. For this purpose, we introduce a specific 
coordinate system in which an object is projected on a 
plane Xv0vYv, and axis Ze0e determines the direction of 
observation (see Figure-2). 

 
Figure-2. 3D to 2D transformation. 

To perform the specific transformation the 
observation point also to be set. Metamodel defines a point 
of observation in the spherical coordinate system by 
following parameters: 
 
θ = angle of the axis OX with projection of the observation 
line on the plane XOY; 
φ = polar angle of the observation line with OZ axis; 
ρ = distance to the observation point. 

 
Setting the triple of parameters (θ, φ, ρ) allows us 

to make a 3D transformation of a geometrical object. Let 
the position of a point in three-dimensional space set by 
coordinates (x, y, z). Then the specific transformation we 
can write in the form: 
 
|xv yv zv 1| = |x y z 1|·V                                             (10) 
 
where 
 

100

0cossin0

0sinsinsincoscos

0cossincoscossin

V







  (11). 

 
Coordinates xv and yv of a point of an object we 

can already use to build a screen image. In this case we 
will obtain the orthogonal projection, where each point P 
of an object is projected into the point P' by drawing the 
line, perpendicular to the plane XOY (i.e. parallel to the 
observation line).  

Such type of projection has place at moving the 
observation point into infinity, where parallel lines of a 
three-dimensional object remain parallel at its projection 
as well. 
 
OTHER APPLICATIONS OF THE METAMODEL 

The metamodel MT was also used for the 
development of software tools for solving problems in 
other domains of computed tomography. Figure-3 
illustrates this approach for search of unauthorized items 
during customs control.  

The geometrical plane is here the basic type of 
the metamodel, used to build the data models in a 
software. The plane is a carrier of physical properties - 
obtained from a tomograph roentgen images of 
distribution of density of a car, which serves as an input 
for applications of a mathematical method (fixed in the 
patent [10]). 

z 

y 

x 

zv 

xv

yv 

φ 

θ 
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Figure-3. Use of metamodel to generate software for search of illegal items during customs control. 
 
CONCLUSIONS 

Based on the geometrical meta-metamodel the 
metamodel MT was defined, allowing design of software 
for solving problems of computed tomography. Alphabet 
of MT includes the type of geometrical plane, which 
inherits the metatype of the surface. Instances of the plane 
are attributed by functions of distribution of physical 
properties obtained in the process of tomographic 
scanning. 

The approach was proven by development of a 
software tool that reconstructs a three-dimensional image 
of a brain by the system of its mutually perpendicular 
sections. The method restores the structure of three-
dimensional objects using interpolation operators, based 
on interflatation of functions. The proposed metamodel 
MT was also used to generate software for the search of 
illegal items during customs control. 
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