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ABSTRACT  

Nonholonomic underactuated systems are typically modelled as highly nonlinear ones, which becomes obvious as 
the dimension of the system increases. Since this system cannot be stabilized by a static continuous feedback with constant 
gains, there are several control methods by using a canonical form up to now such as a chained form, a power form, a 
goursat normal form and a double integrator model. In this paper, we consider extended nonholonomic double integrator 
systems obtained by extending the Brockett nonholonomic integrator in order to expand the application of underactuated 
control to control the system using invariant manifold approach.  
 
Keywords: invariant manifold, nonholonomic double integrator, extended double integrator. 
 
INTRODUCTION  

Control of nonholonomic systems is theoretically 
challenging and practically interesting. Due to Brockett’s 
Theorem [1], these systems cannot be stabilized to a point 
with pure smooth (or even continuous) state feedback 
control. As a consequence, the classical smooth theory and 
design mechanism of nonlinear control systems cannot be 
applied. This challenging problem becomes even more 
difficult when the system is underactuated, that is 
possesses fewer actuators than configuration degrees of 
freedom.  

Various researches about the control technique of 
underactuated systems have been achieved up to now. 
Among them, it is very often to use canonical models such 
as a chained form, a power form, a double integrator 
model, etc. Astolfi [2] made a canonical model 
discontinuous, and then he proposed the technique of 
performing continuous feedback control. Khennouf et al. 
[3] carried out well use of the structure of a chained form, 
and proposed the switching control that performs two 
steps of control by an invariant manifold. By this 
technique, attractive control to an invariant manifold is 
performed first in the 1st step, and each state on the 
invariant manifold is stabilized in the 2nd step. Watanabe 
et al. [4][5][6][7][8][9][10] also proposed the invariant 
manifold techniques to control underactuated systems.  
Furthermore, Khennouf et al. [11] also proposed the 
technique called quasi-continuous exponential 
stabilization control. Such a technique is implemented 
after summarizing the control methods, which were 
divided into two steps as mentioned above, to one step. 
Note however that among them major research is for 
controlled object with two-inputs [12] and therefore there 
is restricted research for controlled object with three or 
more inputs [13][14][15]. One of causes is that there is no 
definite method of transforming the original model into a 

canonical model to the case of the controlled system with 
three or more inputs.  

In this paper, in order to extend the application of 
underactuated control, we consider the transformation of 
extended nonholonomic double integrator model in case of 
two-inputs and four-inputs systems obtained by extending 
the Brockett nonholonomic integrator to control 
underactuated systems using invariant manifold approach. 
 
RELATED WORK 

In his pioneering paper, Brocket [1] introduced 
the system 
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where   3

321 ,, Txxx is the state vector and 

  2

21 , Tuu is a two-dimensional input. This system, 

quoted in the literature as the nonholonomic integrator 
system or Heisenberg system, has been pointed out as a 
benchmark example of a first-order nonholonomic 
underactuated system. It mimics the kinematic model of 
wheeled mobile robot of the unicycle type and displays all 
the basic properties of first-order nonholonomic systems. 

It is easy to see that, under transformation of 
coordinates, system (1) can be transformed into one of the 
following chained forms  
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under the transformations of coordinates given, 
respectively by 
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 2133 2

1~ xxxx   and  2133 2

1~ xxxx 
 

 

In [2][3][4], conditions have been found in order 
to check if a given first-order nonholonomic system can be 
transformed, via feedback and coordinate transformations, 
into the form 
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where   nT

nxxxx ,,, 321 is the state of the 

system and 1u and 2u are inputs. Such form is referred to in 

the literature as the first-order chained form or Goursat 
normal form. 

In contrast to systems with first-order 
nonholonomic constraints, systems with second-order 
nonholonomic constraints include the drift-term (that is, a 
vector field describing the evolution not subject to 
controls) which complicates the analysis, but makes it 
more challenging. Many researchers have been working 
on the stabilization problem and on the tracking control 
problem for this class of systems (see for example, in 
[16][17][18]. A key procedure in some works is to convert 
the second order nonholonomic system under 
consideration, via feedback and coordinate 
transformations, into a special canonical system of the 
form 
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where   3

321 ,, Txxx is the configuration of the system 

and 1u , 2u are the inputs. (see, for instance, [19][20][21]). 

Such canonical forms, known in the literature as the 
second-order chained forms, simplify considerably the 
dynamical equations of the system, so being much more 
suitable to deal with than the original dynamical equations.  

We observe that the two forms in Equation. (4) 
can be seen as the analogues of the first-order chained 
forms in the 3-dimensional case (see Equation. (2)), 
reflecting similarities between the first-order 
nonholonomic constraints, respectively, 

123 xxx   and 213 xxx   , and the second-order nonholonomic 

constraint, respectively, 123 xxx    and 213 xxx   ,. In this 

spirit, it would be natural to consider also the system 
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reflecting similarities between the first-order 
nonholonomic constraint 12213 xxxxx   in system (1) and 

the second-order nonholonomic constraint 

12213 xxxxx   in (5). 

 
Extended nonholonomic double integrator (ENDI) 

It is observed in [22] that the Brockett 
nonholonomic integrator (1) fails to capture the case 
where both the kinematics and dynamics of a wheeled 
robot must be taken into account. To tackle this realistic 
case, the authors propose to extend the nonholonomic 
integrator model. Actually, it is shown in that paper that 
the dynamic equations of motion of a mobile robot of the 
unicycle type can be transformed into the system 
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            where x    5

21321 ,,,, Txxxxx  is the state 

vector and u    2

21 , Tuu is a two-dimensional control 

vector. This system, which can be viewed as an extension 
of the Brockett nonholonomic integrator (1), is quoted in 
the literature as the Extended Nonholonomic Double 
Integrator (ENDI). It is locally strongly accessible for 
any 5x , controllable and small time local controllable 
(STLC) at any equilibrium  0: 21

5  xxxe
 [9]. 

 
Converting systems to the form (ENDI) 

As already observed, it is shown in [23] that the 
dynamic equations of motion of a mobile robot of the 
unicycle type can be transformed into the system (ENDI) 
(see Equation. (6)). Rewriting that system as a first-order 
system in 5 we obtain the first-order system 
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with state   5

21321 ,,,, Tyyxxx .  

 
INVARIANT MANIFOLD FOR NONHOLONOMIC 
DOUBLE INTEGRATOR SYSTEM 

Let the controlled object be described by the 
following nonholonomic double integrator system: 
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and consider a stabilizing control problem such that x(t) = 
[x1  x2  x3]T becomes zero as t→∞. Here, all the states are 
assumed to be measurable. 

To derive an invariant manifold, the feedback law 
given by 
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is assumed to be applied to Equation. (8). 
Then, solving the time response of the closed-

loop system gives 
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Therefore, )(3 tx  is given by 
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it follows that 
 

)0()( 33 xtx                                                                    (12) 

 
From the constant term of this x3(t), it is possible to select 
 

)()( 3 txS x                                                        (13) 
 

as one candidate of an invariant manifold. 
Under the above conditions, let the feedback law 

given by 
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be applied to Equation. (8). Differentiating S(x) with 
respect to time yields 
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and under the feedback law given by Equation. (14), it 
holds that 
 

.Const)( xS                                                      (16) 

 
so it is seen that S(x) is reduced to one invariant manifold. 

From these, since if S(x) = 0 can be assured at 
time t = T, then it can hold that S(x) = 0 for t ≥ T, applying 
Equation. (14) to Equation. (8) gives 

2211 )(,)( kxtxkxtx    

so that x1(t) and x2(t) are asymptotically stable, i.e., x1 → 0 
and x2 → 0 as t→∞. Of course, it is seen from Equation. 
(13) that x3 → 0, because it has been already assured that 
S(x) = 0. 
 
INVARIANT MANIFOLD FOR ENDI SYSTEMS 
Case 1: 2-inputs system 

Let the controlled object be represented by the 
following extended nonholonomic double integrator 
system: 
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and consider a stabilizing problem such that )(tx [x1 x2 

x3]T is converged to zero as t . Here, all the states are 
assumed to be measurable. 

To derive an invariant manifold for this system, 
assume that the following state feedback law 
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is applied to Equation. (17).                    
Now, defining the state vector of the linear partial 

system in (17) as           
 

)(tsx [x1 x2 y1 y2 ]T                                                      (19) 
 

Its closed-loop linear partial system becomes 
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so that its time response is written by 
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Therefore, the closed-loop linear partial system is reduced 
to 
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Furthermore, it is easy to derive that 
 

 

 1
2

)0()0(

1
2

)0()0(
)0()(

221

221
33









kt

kt

e
k

xy

e
k

yx
xtx

                           (23) 

   
From this constant term, it is found that 
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can be derived as one candidate for the invariant manifold. 
Applying the following feedback law 
 

0,2

2

22

2

2

11

2

1





kkyxku

kyxku
                                        (25) 

 

to the original system (8) and then taking its time 
derivative to examine the behavior of S(x), it follows that 
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and moreover it holds under the above feedback control 
that 
 

.Const)( xS                                                      (27) 
 

subsequently, S(x) becomes one invariant manifold. 
Thus, for a switching method in two-step control, 

if it holds that S(x) = 0 at any time t = T , then it keeps that 
S(x) = 0 for t ≥ T . On the other hand, when the above 
feedback law is adopted at t ≥ T , it is easily found that 
x1(t), x2(t), y1(t) and y2(t) are all asymptotically stable, i.e., 
x1 → 0, x2 →0, y1 → 0, y2 → 0 as t→∞. Then, it can be 
also seen that x3 → 0 because S(x) = 0 has been already 
satisfied. 
 
Case 2: 4-inputs system 

Let the controlled object be represented by the 
following extended nonholonomic double integrator 
system: 
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and consider a stabilizing problem such that )(tx [x1 x2 

x3 x4 x5 x6 x7 x8 x9 x10 y1 y2 y3 y4]T is converged to zero as 
t .  

To derive an invariant manifold for this system, 
assume that the following state feedback law 
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is applied to Equation. (28). 
 Now, defining the state vector of the linear partial 
system in (29) as )(tsx [x1 x2 x3 x4 y1 y2 y3 y4]T its closed 

loop linear partial becomes 
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Then, the time response of Equation. (30) is described by 
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Therefore, the closed-loop linear partial system is reduced 
to 
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The time response of nonlinear term becomes 



                             VOL. 10, NO. 22, DECEMEBER 2015                                                                                                          ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
10677

 1
2

)0()0(

2

)0()0(
)0(

)0()0()0()0()0()(

22121
5

0

2

212155








 
















kt

t

k

e
k

xy

k

yx
x

dexyyxxtx 

      (33) 

 

Utilizing constant term of Equation. (33), 
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are selected to the candidate of invariant manifold. The 
differentiation of Equation. (34) is 
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Then it is found that )(1 tS is an invariant 

manifold. From other nonlinear terms, invariant manifolds 
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The differentiation of Equation. (36) is 
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Then, )(tS i is invariant manifold because )(tS i converges 

to zero. 
 
CONCLUSIONS 
 In this paper, we study an invariant manifold for 
double integrator and extended double integrator 
nonholonomic systems with two and more control inputs. 
In future, we will develop a switching control technique 
based on the invariant manifold theory to stabilize 
nonholonomic underactuated systems. 
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