
 VOL. 10, NO. 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

10709

AN ASSEMBLY SEQUENCE PLANNING APPROACH WITH A MULTI-
STATE GRAVITATIONAL SEARCH ALGORITHM

Ismail Ibrahim1, Zuwairie Ibrahim1, Hamzah Ahmad1 and Zulkifli Md. Yusof2

1Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
2Faculty of Manufacturing Engineering, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia

E-Mail: pee12001@stdmail.ump.my

ABSTRACT

Assembly sequence planning (ASP) becomes one of the major challenges in product design and manufacturing. A

good assembly sequence leads to reduced costs and duration in the manufacturing process. However, assembly sequence

planning is known to be a classical NP-hard combinatorial optimization problem; assembly sequence planning with many

product components becomes more difficult to solve. In this paper, an approach based on a new variant of the Gravitational

Search Algorithm (GSA) called the multi-state Gravitational Search Algorithm (MSGSA) is used to solve the assembly

sequence planning problem. As in the Gravitational Search Algorithm, the MSGSA incorporates Newton’s law of gravity

and the law of motion to improve solutions based on precedence constraints; the best feasible sequence of assembly can

then be determined. To verify the feasibility and performance of the proposed approach, a case study has been performed

and a comparison has been conducted against other three approaches based on Simulated Annealing (SA), a Genetic

Algorithm (GA), and Binary Particle Swarm Optimization (BPSO). The experimental results show that the proposed

approach has achieved significant improvement in performance over the other methods studied.

Keywords: combinatorial optimization problem, assembly sequence planning, meta-heuristics, multi-state gravitational search

algorithm.

INTRODUCTION

The costs of assembly processes are determined

by assembly plans. Assembly sequence planning, which is

an important part of assembly process planning, plays an

essential role in the manufacturing industry. Given a

product-assembly model, assembly sequence planning

(ASP) determines the sequence of component installation

to shorten assembly time or save assembly costs [1]. ASP

is regarded as a large-scale, highly constrained

combinatorial optimization problem because it is nearly

impossible to generate and evaluate all assembly

sequences to obtain the optimal sequence, either with

human interaction or through computer programs.

Historically, the typical combinatorial explosion

problem requires experienced assembly technicians to

determine assembly plans. This manual assembly planning

approach thus requires significant time investments and

does not allow quantitative analysis of assembly costs

before production begins. Thus, many studies in the last

two decades have focused on geometric reasoning

capabilities and full automatism to locate more efficient

algorithms for automated ASP. The approaches used for

assembly sequence planning can be categorized into four

groups, which are graph-based representation [2-6],

lingual representation [2], an ordered list representation

[7], and meta-heuristics based representation [8-10].
The implementation of meta-heuristics in solving

discrete optimization problems, particularly in the ASP

problem, lead to significant reductions in computation

times, which in turn sacrifices the guarantee of finding

exact optimal solutions [7, 11]. However, these

approaches typically obtain acceptable performance at

acceptable costs in a large number of possible assembly

sequences; thus, these approaches have a capacity to find

good solutions to large-sized problems.

In the past few years, there has been increasing

interest in algorithms inspired by Newton’s Law of

Universal Gravitation, which states that all objects attract

each other with a force of gravitational attraction. Rashedi

et al. [12] proposed a stochastic population-based meta-

heuristic algorithm based on Newton’s law called the

Gravitational Search Algorithm. The conventional GSA

was originally designed to solve problems in continuous-

value space. The GSA was successfully applied to a

variety of problems including feature selection [13], data

clustering and classification [14], image processing [15],

data clustering and classification [14], power system [16],

filter design [17], and machining process [18]. Later,

Rashedi et al. [19] reworked the conventional GSA to

create the binary gravitational search algorithm (BGSA) to

allow the GSA to operate in discrete binary variables.

In this paper, a new variant of the GSA called the

multi-state GSA (MSGSA) that represents each agent’s

vector as a state is introduced to solve discrete

combinatorial optimization problems. The MSGSA is

applied to generate and optimize assembly sequences of

mechanical products. The purpose is to investigate the

applicability of an alternative intelligent approach to the

ASP.

Gravitational search algorithm

The computation of the GSA requires a set of N

agents that are randomly positioned in the search space

during initialization. The position of agents, which are the

candidate solutions to the problem, are represented as:

http://www.arpnjournals.com/
mailto:pee12001@stdmail.ump.my

 VOL. 10, NO. 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

10710

NindX iiii ,...,,xxx 321for))()...,((1),...,(
 (1)

where)(dix presents the position of the ith agent in the

dth dimension, and n is the space dimension. Figure-1

portrays the principle of the GSA. Initially, all agents are

assigned a velocity),(dtiv that is equal to zero, where t

represents the iteration number. Next, the fitness of agent i

at t,)(tfit i for each agent is evaluated with respect to

),(dtix . The gravitational constant G(t) is then updated

using:

Figure-1. General principle of GSA.

Figure-2. Burma14 benchmark instance of the travelling

salesman problem (TSP).

  T

t

eGtG
-

0 (2)

where T is the number of maximum iteration, 0G and β

are constant values. The gravitational constant is a

decreasing function of time where it is valued to 0G at the

beginning and it is exponentially decreased towards zero

as the iteration increases to control the search accuracy.

Next, best(t) and worst(t) are calculated. For the

minimization problem, the definition of best(t) and

worst(t) are given in Equation (3) and Equation (4):

     tfittbest jNj ,....,1∈min
 (3)

     tfittworst jNj ,....,1∈max
 (4)

For the maximization problem, the definition of

best(t) and worst(t) are modified to Equation (5) and

Equation (6):

     tfittbest jNj ,....,1∈max
 (5)

     tfittworst jNj ,....,1∈min
 (6)

The gravitational and inertial mass are then updated as:

 
   
   tworsttbest

tworsttfit
tm i

i
-

-
 (7)

 
 
 ∑ 1

N

j j

i

i
tm

tm
tM



 (8)

where)(tM i
 is the inertial mass of the ith agent. The

acceleration, α, of mass i at t in the dth dimension is

calculated as:

 
 

)(

,F
,α

tM

dt
dt

i

i
i  (9)

where the force acting),(F dti
is calculated as:

   dtranddt ij
N

jj ji ,F,F ,
∑

1≠1 (10)

   
   
 

    dtdt
tR

tMtM
tGdt ij

ij

ij

ij ,x,x,F -


 (11)

where  is a small constant,)(tRij is the Euclidean

distance between agent i and j, and jrand is a random

number uniformly distributed between 0 and 1.

Afterwards, the next velocity of the agents, as

given in Equation (12), are calculated as a fraction of their

associated current velocity added to their associated

acceleration and their next position of the agents are

calculated by using Equation (13)

),(),(),1(dttdtranddt iiii αvv  (12)

),1(),(),1(dttdtdt iii  vxx (13)

where the time step ∆t between the distinct time instants is

assumed to be equal to unity and irand is a random

number selected from a uniform distribution between 0

and 1. The algorithm iterates until the stopping condition

is met: usually the maximum number of iterations is

reached or a sufficiently good fitness is obtained.

http://www.arpnjournals.com/

 VOL. 10, NO. 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

10711

MULTI-STATE GRAVITATIONAL SEARCH

ALGORITHM

The MSGSA follows a similar general principle

to the original GSA with a few modifications in updating

the velocity and position of each agent and formulating the

calculation of force for each agent. The MSGSA is

proposed to solve discrete combinatorial optimization

problems.

Each agent’s vector in the MSGSA is represented

by a state, which is neither a continuous nor discrete value.

To elaborate this state representation, the Burma14

benchmark instance of the Travelling Salesman Problem

(TSP) is used as an example, as shown in Figure-2. All

cities in the Burma14 benchmark instance can be

represented as a collective of states, in which the states are

represented by small black circles, as presented in Figure-

3. A centroid of the circle shows the current state, and the

radius of the circle represents the next velocity of the

current state. These three elements occur in each

dimension for each agent. The updating velocity and

position in form of state in the MSGSA are performed

after the inertial mass M and acceleration α are calculated.

Figure-3. Illustration of the multi-state representation in

the MSGSA for the Burma14 benchmark instance of TSP.

Each agent’s vector shows a similar representation.

Figure-4. Example of a solution that consists of the

repeated states.

In the MSGSA once the velocity is updated, the

process of updating the current state to the next state for

each dimension of each particle is executed. We define the

current state as a centroid and the updated velocity as a

radius, thus creating a circle. Any state that is located in

the area of the circle is defined as a member of the inner

states (IS) group. Given a set of j IS members,

.,I,...,,I,I)))()((()(
1

dtdtdt
jiii  Any state that is

located outside of the area of the circle is then defined as a

member of the outer states (OS) group. Given a set of l OS

group members is)(dti ,O =))()((
1

dtdt
lii ,O,...,,O .

Based on the current state and the new velocity of the

current state, the next state can be selected as:

 )))()(((random1
1

dtdtdt
jiii ,I,...,,I,x  (14)

To update each position that is a state in the

MSGSA, a random function as derived in Equation (14) is

applied. This equation may lead to the existence of many

repeated states in the updated solution. Let us consider a

solution for an agent at a particular iteration that consists

of 11-dimensional vector which is {s5, s3, s11, s2, s8, s9, s10, s1,

s4, s6, s7}. This solution has no any repeated state. Each

dimension of this solution is then updated, for instance, to

be a 11-dimensional vector which is {s4, s7, s8, s11, s5, s10, s8,

s7, s2, s3, s1}, as illustrated in Figure-4. It seems that the

state in the 2nd, 3th, 7th, and 8th dimension occurs more than

once. However, each state should occurs just once in each

solution as in the combinatorial optimization problems

such as the TSP and ASP.

To overcome the limitation of the MSGSA, an

additional procedure is implemented after the velocity and

state for each dimension of each agent is updated to ensure

that each agent is represented by the unrepeated states. An

archive is used to store components that were not used

during this evolution period of the updated solution of

each agent that consists of the unrepeated states. The

maximum archive size is a fixed value according to how

many dimensional vectors should be considered. The

archive is updated by removing each state that has been

previously selected.

A subtraction operation, as presented in Equation

(11), is executed to calculate the difference of the vector

value between the positions of two agents),(dtjx

and),(dtix for each vector and iteration, resulting in a

numerical value. However, in the MSGSA, each vector’s

position of each agent is represented as a state. Because a

state is not associated with any value, the subtraction

operation in Equation (11) cannot be used to find the

difference between these two positions. To accommodate

the calculation of force,),(dtijF in the MSGSA, a cost

function C(.) is introduced and incorporated into the force

formulation as derived in Equation (15):

   ),(,),(
)(

)()(
),(dtdtC

tR

tMtM
tGdt ij

ij

ij

ij xxF


 (15)

 Cost may be defined as the distance and time for

the ASP and TSP, respectively [10, 20]. The cost between

the two states is a positive number given

by  ),(),(dtdtC ij x,x . In this force formulation,)(tRij is

the difference in fitness between agents i and j.

http://www.arpnjournals.com/

 VOL. 10, NO. 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

10712

ASSEMBLY SEQUENCE PLANNING (ASP)
The primary objective of the ASP is to generate a

feasible assembly sequence in which it will take less time
to assemble, thereby reducing assembly costs. The most
important factor in reducing assembly time and costs
include setup time, which includes transfer time, the
number of tool changes, and proper fixture selection.

In this paper, assumptions for the ASP include;

1. The setup time and the actual assembly time for each

part and component are given.

2. The transfer time between workstations is included in

the setup time.

3. The downtime of machines and workstations is

negligible.
A precedence matrix (PM) is used to show the

relationships between the components in the assembly
using precedence constraints. These relationships include
the nature of the connection (i.e., free or assembled
components) and the relative assembly precedence
between two components (i.e., a and b). If component a
must be assembled after component b,)PM(ba , PP = 1;
otherwise)PM(ba , PP =∅, where)(ba , PP

is a pair of
components with geometric information in which

aP must
be assembled without interfering with

bP . To decide
which pair is feasible, precedence constraints for a product
should be described using a PM. Assuming that γ is the set
of components that have been assembled before
component a, and the union of the PM is a feasible
assembly sequence) ,(FAS ba PP

with constraints, then:

Figure-5. Outline of the proposed approach.

Figure-6. Assembly precedence diagram for the case

study.

Figure-7. Example of an assembly sequence represented

by an agent.

 ∈PM(∪) (AS bbaba P), PPPPF ,,  (16)

The generation of feasible assembly sequences is

explained in [10] for details.

SOLVING ASSEMBLY SEQUENCE PLANNING

PROBLEM USING MULTI-STATE GSA

 Figure-5 shows the outline of the proposed

approach based on the MSGSA. To search an optimal

solution, each agent must be evaluated to measure its

fitness value. The evaluation of fitness is performed after

the initial population is generated and the PM, coefficient

table and actual assembly times are loaded. The

gravitational constant G, the best and the worst of the

population are then updated. The mass and acceleration

for each agent is then calculated. Next, the velocity and

position for each agent is updated. The updated assembly

sequence of each agent is then evolved to feasible

assembly sequence. Occasionally, some respective

assembly components cannot be integrated into a feasible

assembly sequence. The determination of the assembly

components that do not correspond to a feasible assembly

sequence is achieved by satisfying all PM constraints

between the components in the assembly, which are

determined earlier, either from CAD or a disassembly

analysis [4]. As a result, each agent produces a feasible

assembly sequence. The optimum sequence is then

selected from the feasible assembly sequences by

evaluating the fitness of each agent using Equation (3)

because the ASP is a minimization problem. The best of

the population is the sequence that is more optimal up

until the stopping condition is met. After the stopping

condition is met, the performance of the proposed

approach based on the MSGSA can be investigated.

The assembly of a hypothetical product with 19

components is considered according to [8-9] and its

associated coefficient table is outlined in [10]. Figure-6

shows the precedence diagram. In this diagram, the

components that are free to be assembled are the

http://www.arpnjournals.com/

 VOL. 10, NO. 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

10713

components that can be placed regardless of any part of a

sequence.

During initialization, the initial population is

randomly generated. Second, the generated initial

population is subjected to a validity check using the PM

described in the previous section to ensure the initial

population is valid and feasible. The vector representation

corresponding to the assembly components of an agent is

represented in Figure-7; in this case, the sequence is 2-3-1-

5-4. The length of a string depends on the total number of

components used in the assembly process.

The evaluation procedure is performed to

improve the objective value. Hence, for each iteration,

each agent represented by a feasible assembly sequence is

evaluated. The agent with the highest objective value for

current iteration is then compared with the agent with the

highest objective value for previous iterations. If the agent

with the highest objective value for the current iteration is

better than the agent with the highest objective value for

previous iterations, the agent with the highest objective

value for the current iteration is updated to be the agent

with the highest objective value for all iterations.

To evaluate the fitness for each agent, the total

assembly time should be found. The total assembly time is

the combination of the setup time and the actual assembly

time. It is assumed that regardless of the assembly

sequence, the actual assembly time is constant, and a

proper tool and setup for each component to be assembled

is required. These two items depend on the geometry of

the component itself and the components assembled up to

that point. The setup time for a component can be

predicted using Equation (17) [9]:

 ∑)(ime
1

0Setup

c

b
ababa qppaT



 (17)

where (a) is the component to be assembled; 0ap is the

setup time with product (a) being the first component;

abp is the contribution to the setup time due to the

presence of part (b) when entering part (a); and 1abq if

component (b) has already been assembled and 0abq

otherwise for a = 1, 2,…, c. where c is the number of

components in the ASP.

The total assembly time is the summation of the

setup time and the actual assembly time. Because the

objective in this work to minimize assembly costs and

time, the fitness function for minimizing the assembly

time should be calculated by:

  ∑)(ime imeMin
1

SetupAssembly

c

b
aAaTT



 (18)

where aA is the assembly time for component a. The

calculation of time is in time units.

To confirm the production of a feasible assembly

sequence of each agent, the updated assembly sequence of

each agent produced by the updating position process is

evolved to a feasible assembly sequence. To assemble the

components of the product in a valid manner, only the

feasible assembly sequences should be used. The

feasibility of the sequences can be determined by referring

to the PM.

The PM gives information which position of each

sequence should be swapped randomly (an infeasible

component and a feasible component). For instance, the

updated assembly sequence and the swap position between

two components are shown in Figure-8. The swapping

process ends when each component occurs in an assembly

sequence in which the sequence is now feasible.

EXPERIMENTAL RESULTS

Table-1 demonstrates the best results and theirs

associated assembly sequences of the proposed approach

based on the MSGSA and the approach based on SA [8],

GA [9], and BPSO [10]. To simplify the understanding of

this work, fitness or objective value is now called total

assembly time and feasible assembly sequence is the

solution.

The success of the MSGSA is heavily depend on

setting of control parameters namely; constant β, initial

gravitational constant G0, number of agents NOA and

number of iteration T. These control parameters should be

carefully selected when using the MSGSA in order to

know the best parameters, so a successful implementation

of the algorithm can be achieved. A series of experiments

are carried out to tune the MSGSA best parameters for the

assembly sequence planning problem. It is clear from

results shown in Table-1 that the best parameters for

constant β, initial gravitational constant G0, number of

agents NOA and number of iteration T are β = 20, G0 =

100, NOA = 30, T = 500 respectively. The best objective

value obtained for these parameters is 508.3. The

assembly sequence generated for the best objective value

using these parameters is 1-2-4-3-9-12-13-5-16-15-18-11-

6-7-8-14-10-17-19. The result clearly shows that the

MSGSA successfully provides the best assembly sequence

compared to SA, GA, and BPSO. Convergence pattern of

the best assembly sequence obtained by the MSGSA is

then portrayed in Figure-9. It seems that the MSGSA

converges fast at iteration 228.

Figure-8. Swap position between two components in a

sequence.

http://www.arpnjournals.com/

 VOL. 10, NO. 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

10714

Table-1. Best results and their associated assembly

sequences of the proposed approach based on the MSGSA

and the approach based on SA, GA, and BPSO.

Figure-9. Convergence pattern of the best assembly

sequence for the MSGSA in solving the ASP.

CONCLUSIONS

This paper presents an approach based on the

multi-state gravitational search algorithm to solve the

assembly sequence planning problem. Three new

modifications of the original GSA (i.e., updating the

velocity, updating the position, and the force formulation)

work efficiently together with the general principle of the

original GSA to find the optimal or nearly optimal

assembly sequence of a mechanical product. To show the

relations between components in the ASP, the PM

assembly has been used. To evaluate the performance of

the proposed approach, a case study of the ASP consisting

of 19 components is examined, and the performance of the

proposed approach based on the MSGSA is evaluated

against three different approaches that use SA, GA, and

BPSO. The experimental results obtained shows that the

proposed approach outperforms the three other approaches

in obtaining the best assembly sequence. In the future, we

may examine the performance of this approach with other

constraints in assembly sequence planning, including

assembly stability, machine and workstation assignment,

and workload.

ACKNOWLEDGEMENTS

This work is financially supported by the

Ministry of Higher Education Malaysia through the

Fundamental Research Grant Scheme (RDU140114) and

Universiti Malaysia Pahang’s Post Graduate Research

Scheme (GRS140364).

REFERENCES

[1] Lv H. G. and Lu C. 2010. An assembly sequence

planning approach with a discrete particle swarm

optimization algorithm. The International Journal of

Advanced Manufacturing Technology. Vol. 50, pp.

761–770.

[2] L. S. H. d. Mello and C. D. Arthur. 1990. And/ or

graph representation of assembly plans. IEEE

Transaction on Robotics and Automation. Vol. 6, pp.

188–199.

[3] W. Zhang. 1989. Representation of assembly and

automatic robot planning by petri net. IEEE

Transaction on System, Man, and Cybernetics. Vol.

19, pp. 418–422.

[4] S. Lee and Y. G. Shin. 1990. Assembly planning

based on geometric reasoning. Computers and

Graphics. Vol. 14, No. 2, pp. 237–250.

[5] E. K. Moore, G. As¸ kıner and M. G. Surendra. 2001.

Petri net approach to disassembly process planning

for products with complex and/or precedence

relations. European Journal of Operational Research.

Vol. 135, No. 2, pp. 428–449.

[6] X. F. Zha. 2000. An object-oriented knowledge

based petri net approach to intelligent integration of

design and assembly planning. Artificial Intelligence

in Engineering. Vol. 14, No. 1, pp. 83–112.

[7] W. Garrod and L. J. Everett. 1990. A.S.A.P.:

automated sequential assembly planner. In:

Computers in Engineering Conference. G. L. Kinzel

Smrophe (Ed.). pp. 139–150.

[8] S. Motavalli and A. Islam. 1997. Multi-criteria

assembly sequencing. Computers and Industrial

Engineering. Vol. 32, No. 4, pp. 743–751.

[9] Y. K. Choi, D. M. Lee and Y. B. Cho. 2008. An

approach to multi-criteria assembly sequence

planning using genetic algorithms. International

Journal of Advanced Manufacturing Technology.

Vol. 42, pp. 180–188.

[10] J. A. A. Mukred, Z. Ibrahim, I. Ibrahim, A. Adam, K.

Wan, Z. M. Yusof and N. Mokhtar. 2012. A binary

particle swarm optimization approach to optimize

http://www.arpnjournals.com/

 VOL. 10, NO. 22, DECEMBER, 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

10715

assembly sequence planning. Advanced Science

Letter. Vol. 13, No. 1, pp. 732–738.

[11] C. Blum and A. Roli. 2003. Metaheuristics in

combinatorial optimization: overview and conceptual

comparison. ACM Computing Surveys. Vol. 35, No.

3, pp. 268–308.

[12] E. Rashedi, H. Nezamabadi-pour and S. Saryazdi.

2009. GSA: a gravitational search algorithm.

Information Sciences. Vol. 179, No. 13, pp. 2232–

2248.

[13] M. Sheikhan and M. S. Rad. 2012. Gravitational

search algorithm–optimized neural misuse detector

with selected features by fuzzy grids–based

association rules mining. Neural Computing and

Applications. Vol. 7, No. 23, pp. 2451–2463.

[14] Y. Kumar and G. Sahoo. 2014. A review on

gravitational search algorithm and its applications to

data clustering and classification. International

Journal of Intelligent Systems and Applications. Vol.

6, No. 6, pp. 79–93.

[15] V. Kumar, J. K. Chhabra and D. Kumar. 2014.

Automatic cluster evolution using gravitational

search algorithm and its application on image

segmentation. Engineering Applications of Artificial

Intelligence. Vol. 29, pp. 93–103.

[16] R. K. Sahu, U. K. Rout and S. Panda. 2013.

Automatic generation control of multi-area power

system using gravitational search algorithm. In:

Swarm, Evolutionary Memetic Computing: 4th Joint

International Conference. B. K. Panigrahi, P. N.

Suganthan, S. Das and S. S. Dash (Eds.). pp. 537-

546.

[17] S. K. Saha, R. Kar and D. Mandal. 2013. Design and

simulation of FIR band pass and band stop filters

using gravitational search algorithm. Memetic

Computing. Vol. 4, No. 5, pp. 311–321.

[18] M. Hrelja, S. Klancnik, J. Balic and M. Brezocnik.

2014. Modelling of a turning process using the

gravitational search algorithm. International Journal

of Simulation Modelling. Natural Computing. Vol.

13, No. 1, pp. 30–41.

[19] E. Rashedi, H.Nezamabadi-pour and S. Saryazdi.

2010. BGSA: Binary gravitational search algorithm.

Natural Computing. Vol. 9, No. 3, pp. 727–745.

[20] A. Stentz. 1994. Optimal and efficient path planning

for partially-known environments. In: Robotics and

Automation: IEEE International Conference. M. H.

Hebert, C. Thorpe, and A. Stentz (Eds.). pp. 3310–

3317.

http://www.arpnjournals.com/

