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ABSTRACT  

Assembly sequence planning (ASP) becomes one of the major challenges in product design and manufacturing. A 

good assembly sequence leads to reduced costs and duration in the manufacturing process. However, assembly sequence 

planning is known to be a classical NP-hard combinatorial optimization problem; assembly sequence planning with many 

product components becomes more difficult to solve. In this paper, an approach based on a new variant of the Gravitational 

Search Algorithm (GSA) called the multi-state Gravitational Search Algorithm (MSGSA) is used to solve the assembly 

sequence planning problem. As in the Gravitational Search Algorithm, the MSGSA incorporates Newton’s law of gravity 

and the law of motion to improve solutions based on precedence constraints; the best feasible sequence of assembly can 

then be determined. To verify the feasibility and performance of the proposed approach, a case study has been performed 

and a comparison has been conducted against other three approaches based on Simulated Annealing (SA), a Genetic 

Algorithm (GA), and Binary Particle Swarm Optimization (BPSO). The experimental results show that the proposed 

approach has achieved significant improvement in performance over the other methods studied. 

 
Keywords: combinatorial optimization problem, assembly sequence planning, meta-heuristics, multi-state gravitational search 

algorithm. 

 

INTRODUCTION  

The costs of assembly processes are determined 

by assembly plans. Assembly sequence planning, which is 

an important part of assembly process planning, plays an 

essential role in the manufacturing industry. Given a 

product-assembly model, assembly sequence planning 

(ASP) determines the sequence of component installation 

to shorten assembly time or save assembly costs [1]. ASP 

is regarded as a large-scale, highly constrained 

combinatorial optimization problem because it is nearly 

impossible to generate and evaluate all assembly 

sequences to obtain the optimal sequence, either with 

human interaction or through computer programs. 

Historically, the typical combinatorial explosion 

problem requires experienced assembly technicians to 

determine assembly plans. This manual assembly planning 

approach thus requires significant time investments and 

does not allow quantitative analysis of assembly costs 

before production begins. Thus, many studies in the last 

two decades have focused on geometric reasoning 

capabilities and full automatism to locate more efficient 

algorithms for automated ASP. The approaches used for 

assembly sequence planning can be categorized into four 

groups, which are graph-based representation [2-6], 

lingual representation [2], an ordered list representation 

[7], and meta-heuristics based representation [8-10].  
The implementation of meta-heuristics in solving 

discrete optimization problems, particularly in the ASP 

problem, lead to significant reductions in computation 

times, which in turn sacrifices the guarantee of finding 

exact optimal solutions [7, 11]. However, these 

approaches typically obtain acceptable performance at 

acceptable costs in a large number of possible assembly 

sequences; thus, these approaches have a capacity to find 

good solutions to large-sized problems.  

In the past few years, there has been increasing 

interest in algorithms inspired by Newton’s Law of 

Universal Gravitation, which states that all objects attract 

each other with a force of gravitational attraction. Rashedi 

et al. [12] proposed a stochastic population-based meta-

heuristic algorithm based on Newton’s law called the 

Gravitational Search Algorithm. The conventional GSA 

was originally designed to solve problems in continuous-

value space. The GSA was successfully applied to a 

variety of problems including feature selection [13], data 

clustering and classification [14], image processing [15], 

data clustering and classification [14], power system [16], 

filter design [17], and machining process [18]. Later, 

Rashedi et al. [19] reworked the conventional GSA to 

create the binary gravitational search algorithm (BGSA) to 

allow the GSA to operate in discrete binary variables. 

In this paper, a new variant of the GSA called the 

multi-state GSA (MSGSA) that represents each agent’s 

vector as a state is introduced to solve discrete 

combinatorial optimization problems. The MSGSA is 

applied to generate and optimize assembly sequences of 

mechanical products. The purpose is to investigate the 

applicability of an alternative intelligent approach to the 

ASP. 

 

Gravitational search algorithm  

The computation of the GSA requires a set of N 

agents that are randomly positioned in the search space 

during initialization. The position of agents, which are the 

candidate solutions to the problem, are represented as: 
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NindX iiii ,...,,xxx 321for  ))()...,((1),...,( 
    (1) 

 

where )(dix  presents the position of the ith agent in the 

dth dimension, and n is the space dimension. Figure-1 

portrays the principle of the GSA. Initially, all agents are 

assigned a velocity ),( dtiv  that is equal to zero, where t 

represents the iteration number. Next, the fitness of agent i 

at t, )(tfit i  for each agent is evaluated with respect to 

),( dtix . The gravitational constant G(t) is then updated 

using: 
 

 
 

Figure-1. General principle of GSA. 

 

 
 

Figure-2. Burma14 benchmark instance of the travelling 

salesman problem (TSP). 
 

  T

t

eGtG
-

0          (2) 
 

where T is the number of maximum iteration, 0G  and β 

are constant values. The gravitational constant is a 

decreasing function of time where it is valued to 0G  at the 

beginning and it is exponentially decreased towards zero 

as the iteration increases to control the search accuracy. 

Next, best(t) and worst(t) are calculated. For the 

minimization problem, the definition of best(t) and 

worst(t) are given in Equation (3) and Equation (4): 
 

     tfittbest jNj ,....,1∈min
     (3) 

 

     tfittworst jNj ,....,1∈max
     (4) 

 

For the maximization problem, the definition of 

best(t) and worst(t) are modified to Equation (5) and 

Equation (6): 
 

     tfittbest jNj ,....,1∈max
     (5) 

 

     tfittworst jNj ,....,1∈min
     (6) 

 

The gravitational and inertial mass are then updated as: 
 

 
   
   tworsttbest

tworsttfit
tm i

i
-

-
       (7) 

 

 
 
 ∑ 1

N

j j

i

i
tm

tm
tM



       (8) 

 

where )( tM i
 is the inertial mass of the ith agent. The 

acceleration, α, of mass i at t in the dth dimension is 

calculated as: 

 
 

)(

,F
,α

tM

dt
dt

i

i
i         (9) 

 

where the force acting ),(F dti  
is calculated as: 

 

   dtranddt ij
N

jj ji ,F,F ,
∑

1≠1    (10) 
 

   
   
 

    dtdt
tR

tMtM
tGdt ij

ij

ij

ij ,x,x,F -


    (11) 

 

where   is a small constant, )(tRij  is the Euclidean 

distance between agent i and j, and  jrand  is a random 

number uniformly distributed between 0 and 1.  

Afterwards, the next velocity of the agents, as 

given in Equation (12), are calculated as a fraction of their 

associated current velocity added to their associated 

acceleration and their next position of the agents are 

calculated by using Equation (13) 
 

),(),(),1( dttdtranddt iiii αvv     (12) 
 

),1(),(),1( dttdtdt iii  vxx    (13) 
 

where the time step ∆t between the distinct time instants is 

assumed to be equal to unity and irand  is a random 

number selected from a uniform distribution between 0 

and 1. The algorithm iterates until the stopping condition 

is met: usually the maximum number of iterations is 

reached or a sufficiently good fitness is obtained. 

http://www.arpnjournals.com/


                             VOL. 10, NO. 22, DECEMBER, 2015                                                                                                           ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
10711 

MULTI-STATE GRAVITATIONAL SEARCH 

ALGORITHM 

The MSGSA follows a similar general principle 

to the original GSA with a few modifications in updating 

the velocity and position of each agent and formulating the 

calculation of force for each agent. The MSGSA is 

proposed to solve discrete combinatorial optimization 

problems. 

Each agent’s vector in the MSGSA is represented 

by a state, which is neither a continuous nor discrete value. 

To elaborate this state representation, the Burma14 

benchmark instance of the Travelling Salesman Problem 

(TSP) is used as an example, as shown in Figure-2. All 

cities in the Burma14 benchmark instance can be 

represented as a collective of states, in which the states are 

represented by small black circles, as presented in Figure-

3. A centroid of the circle shows the current state, and the 

radius of the circle represents the next velocity of the 

current state. These three elements occur in each 

dimension for each agent. The updating velocity and 

position in form of state in the MSGSA are performed 

after the inertial mass M and acceleration α are calculated. 

 

 
 

Figure-3. Illustration of the multi-state representation in 

the MSGSA for the Burma14 benchmark instance of TSP. 

Each agent’s vector shows a similar representation. 

 

 
 

Figure-4. Example of a solution that consists of the 

repeated states. 

 

In the MSGSA once the velocity is updated, the 

process of updating the current state to the next state for 

each dimension of each particle is executed. We define the  

current state as a centroid and the updated velocity as a 

radius, thus creating a circle. Any state that is located in 

the area of the circle is defined as a member of the inner 

states (IS) group. Given a set of j IS members, 

.,I,...,,I,I )))()((()(
1

dtdtdt
jiii   Any state that is 

located outside of the area of the circle is then defined as a 

member of the outer states (OS) group. Given a set of l OS 

group members is )( dti ,O = ))()((
1

dtdt
lii ,O,...,,O . 

Based on the current state and the new velocity of the 

current state, the next state can be selected as: 
 

  )))()((( random1
1

dtdtdt
jiii ,I,...,,I,x    (14) 

 

To update each position that is a state in the 

MSGSA, a random function as derived in Equation (14) is 

applied. This equation may lead to the existence of many 

repeated states in the updated solution. Let us consider a 

solution for an agent at a particular iteration that consists 

of 11-dimensional vector which is {s5, s3, s11, s2, s8, s9, s10, s1, 

s4, s6, s7}. This solution has no any repeated state. Each 

dimension of this solution is then updated, for instance, to 

be a 11-dimensional vector which is {s4, s7, s8, s11, s5, s10, s8, 

s7, s2, s3, s1}, as illustrated in Figure-4. It seems that the 

state in the 2nd, 3th, 7th, and 8th dimension occurs more than 

once. However, each state should occurs just once in each 

solution as in the combinatorial optimization problems 

such as the TSP and ASP. 

To overcome the limitation of the MSGSA, an 

additional procedure is implemented after the velocity and 

state for each dimension of each agent is updated to ensure 

that each agent is represented by the unrepeated states. An 

archive is used to store components that were not used 

during this evolution period of the updated solution of 

each agent that consists of the unrepeated states. The 

maximum archive size is a fixed value according to how 

many dimensional vectors should be considered. The 

archive is updated by removing each state that has been 

previously selected. 

A subtraction operation, as presented in Equation 

(11), is executed to calculate the difference of the vector 

value between the positions of two agents ),( dtjx  

and ),( dtix  for each vector and iteration, resulting in a 

numerical value. However, in the MSGSA, each vector’s 

position of each agent is represented as a state. Because a 

state is not associated with any value, the subtraction 

operation in Equation (11) cannot be used to find the 

difference between these two positions. To accommodate 

the calculation of force, ),( dtijF  in the MSGSA, a cost 

function C(.) is introduced and incorporated into the force 

formulation as derived in Equation (15): 
 

   ),(,),(
)(

)()(
),( dtdtC

tR

tMtM
tGdt ij

ij

ij

ij xxF


  (15) 

 

               Cost may be defined as the distance and time for 

the ASP and TSP, respectively [10, 20]. The cost between 

the two states is a positive number given 

by  ),(),( dtdtC ij x,x . In this force formulation, )(tRij  is 

the difference in fitness between agents i and j. 
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ASSEMBLY SEQUENCE PLANNING (ASP) 
The primary objective of the ASP is to generate a 

feasible assembly sequence in which it will take less time 
to assemble, thereby reducing assembly costs. The most 
important factor in reducing assembly time and costs 
include setup time, which includes transfer time, the 
number of tool changes, and proper fixture selection.  

In this paper, assumptions for the ASP include; 

1. The setup time and the actual assembly time for each 

part and component are given.  

2. The transfer time between workstations is included in 

the setup time.  

3. The downtime of machines and workstations is 

negligible. 
A precedence matrix (PM) is used to show the 

relationships between the components in the assembly 
using precedence constraints. These relationships include 
the nature of the connection (i.e., free or assembled 
components) and the relative assembly precedence 
between two components (i.e., a and b). If component a 
must be assembled after component b, )PM( ba , PP = 1; 
otherwise )PM( ba , PP =∅, where )( ba , PP  

is a pair of 
components with geometric information in which 

aP must 
be assembled without interfering with 

bP . To decide 
which pair is feasible, precedence constraints for a product 
should be described using a PM. Assuming that γ is the set 
of components that have been assembled before 
component a, and the union of the PM is a feasible 
assembly sequence ) ,( FAS ba PP  

with constraints, then: 
 

 

 
 

Figure-5. Outline of the proposed approach. 

 

 
 

Figure-6. Assembly precedence diagram for the case 

study. 

 

 
 

Figure-7. Example of an assembly sequence represented 

by an agent. 

 

 ∈PM( ∪) ( AS bbaba P), PPPPF ,,   (16) 
 

The generation of feasible assembly sequences is 

explained in [10] for details. 

 

SOLVING ASSEMBLY SEQUENCE PLANNING 

PROBLEM USING MULTI-STATE GSA 

 Figure-5 shows the outline of the proposed 

approach based on the MSGSA. To search an optimal 

solution, each agent must be evaluated to measure its 

fitness value. The evaluation of fitness is performed after 

the initial population is generated and the PM, coefficient 

table and actual assembly times are loaded. The 

gravitational constant G, the best and the worst of the 

population are then updated. The mass and acceleration 

for each agent is then calculated. Next, the velocity and 

position for each agent is updated. The updated assembly 

sequence of each agent is then evolved to feasible 

assembly sequence. Occasionally, some respective 

assembly components cannot be integrated into a feasible 

assembly sequence. The determination of the assembly 

components that do not correspond to a feasible assembly 

sequence is achieved by satisfying all PM constraints 

between the components in the assembly, which are 

determined earlier, either from CAD or a disassembly 

analysis [4]. As a result, each agent produces a feasible 

assembly sequence. The optimum sequence is then 

selected from the feasible assembly sequences by 

evaluating the fitness of each agent using Equation (3) 

because the ASP is a minimization problem. The best of 

the population is the sequence that is more optimal up 

until the stopping condition is met. After the stopping 

condition is met, the performance of the proposed 

approach based on the MSGSA can be investigated.  

The assembly of a hypothetical product with 19 

components is considered according to [8-9] and its 

associated coefficient table is outlined in [10]. Figure-6 

shows the precedence diagram. In this diagram, the 

components that are free to be assembled are the 

http://www.arpnjournals.com/
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components that can be placed regardless of any part of a 

sequence. 

During initialization, the initial population is 

randomly generated. Second, the generated initial 

population is subjected to a validity check using the PM 

described in the previous section to ensure the initial 

population is valid and feasible. The vector representation 

corresponding to the assembly components of an agent is 

represented in Figure-7; in this case, the sequence is 2-3-1-

5-4. The length of a string depends on the total number of 

components used in the assembly process. 

The evaluation procedure is performed to 

improve the objective value. Hence, for each iteration, 

each agent represented by a feasible assembly sequence is 

evaluated. The agent with the highest objective value for 

current iteration is then compared with the agent with the 

highest objective value for previous iterations. If the agent 

with the highest objective value for the current iteration is 

better than the agent with the highest objective value for 

previous iterations, the agent with the highest objective 

value for the current iteration is updated to be the agent 

with the highest objective value for all iterations.  

To evaluate the fitness for each agent, the total 

assembly time should be found. The total assembly time is 

the combination of the setup time and the actual assembly 

time. It is assumed that regardless of the assembly 

sequence, the actual assembly time is constant, and a 

proper tool and setup for each component to be assembled 

is required. These two items depend on the geometry of 

the component itself and the components assembled up to 

that point. The setup time for a component can be 

predicted using Equation (17) [9]: 
 

  ∑)(ime
1

0Setup

c

b
ababa qppaT



     (17) 

where (a) is the component to be assembled; 0ap  is the 

setup time with product (a) being the first component; 

abp  is the contribution to the setup time due to the 

presence of part (b) when entering part (a); and 1abq  if 

component (b) has already been assembled and 0abq  

otherwise for a = 1, 2,…, c. where c is the number of 

components in the ASP. 

The total assembly time is the summation of the 

setup time and the actual assembly time. Because the 

objective in this work to minimize assembly costs and 

time, the fitness function for minimizing the assembly 

time should be calculated by: 
 

  ∑  )(ime imeMin 
1

SetupAssembly

c

b
aAaTT



   (18) 

 

where aA  is the assembly time for component a. The 

calculation of time is in time units. 

To confirm the production of a feasible assembly 

sequence of each agent, the updated assembly sequence of 

each agent produced by the updating position process is 

evolved to a feasible assembly sequence. To assemble the 

components of the product in a valid manner, only the 

feasible assembly sequences should be used. The 

feasibility of the sequences can be determined by referring 

to the PM.  

The PM gives information which position of each 

sequence should be swapped randomly (an infeasible 

component and a feasible component). For instance, the 

updated assembly sequence and the swap position between 

two components are shown in Figure-8. The swapping 

process ends when each component occurs in an assembly 

sequence in which the sequence is now feasible.  

 

EXPERIMENTAL RESULTS 

Table-1 demonstrates the best results and theirs 

associated assembly sequences of the proposed approach 

based on the MSGSA and the approach based on SA [8], 

GA [9], and BPSO [10]. To simplify the understanding of 

this work, fitness or objective value is now called total 

assembly time and feasible assembly sequence is the 

solution.  

The success of the MSGSA is heavily depend on 

setting of control parameters namely; constant β, initial 

gravitational constant G0, number of agents NOA and 

number of iteration T. These control parameters should be 

carefully selected when using the MSGSA in order to 

know the best parameters, so a successful implementation 

of the algorithm can be achieved. A series of experiments 

are carried out to tune the MSGSA best parameters for the 

assembly sequence planning problem. It is clear from 

results shown in Table-1 that the best parameters for 

constant β, initial gravitational constant G0, number of 

agents NOA and number of iteration T are β = 20, G0 = 

100, NOA = 30, T = 500 respectively. The best objective 

value obtained for these parameters is 508.3. The 

assembly sequence generated for the best objective value 

using these parameters is 1-2-4-3-9-12-13-5-16-15-18-11-

6-7-8-14-10-17-19. The result clearly shows that the 

MSGSA successfully provides the best assembly sequence 

compared to SA, GA, and BPSO. Convergence pattern of 

the best assembly sequence obtained by the MSGSA is 

then portrayed in Figure-9. It seems that the MSGSA 

converges fast at iteration 228. 

 

 
 

Figure-8. Swap position between two components in a 

sequence. 
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Table-1. Best results and their associated assembly 

sequences of the proposed approach based on the MSGSA 

and the approach based on SA, GA, and BPSO. 
 

 

 

 
 

Figure-9. Convergence pattern of the best assembly 

sequence for the MSGSA in solving the ASP. 

 

CONCLUSIONS 

This paper presents an approach based on the 

multi-state gravitational search algorithm to solve the 

assembly sequence planning problem. Three new 

modifications of the original GSA (i.e., updating the 

velocity, updating the position, and the force formulation) 

work efficiently together with the general principle of the 

original GSA to find the optimal or nearly optimal 

assembly sequence of a mechanical product. To show the 

relations between components in the ASP, the PM 

assembly has been used. To evaluate the performance of 

the proposed approach, a case study of the ASP consisting 

of 19 components is examined, and the performance of the 

proposed approach based on the MSGSA is evaluated 

against three different approaches that use SA, GA, and 

BPSO. The experimental results obtained shows that the 

proposed approach outperforms the three other approaches 

in obtaining the best assembly sequence. In the future, we 

may examine the performance of this approach with other 

constraints in assembly sequence planning, including 

assembly stability, machine and workstation assignment, 

and workload.  
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