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ABSTRACT  

Multi Robot System (MRS) is one of the most important research areas in the field of Robotics and Artificial 

Intelligence. The study of Multi Robot Systems may take many aspects; therefore, it is useful to study the Multi Robot 

Systems from a specific point of view to get a more focused idea. In this paper, we present a review of the recent trends in 

Multi Robot Systems research by focusing at the collaborative aspect. Furthermore, we address the structure of Multi 

Robot Systems, their applications and the techniques and algorithms used in the collaborative MRS. 
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INTRODUCTION 

Multi robot system has been discussed in the 

literature in the recent past in a variety of settings and 

applications. More emphasize has been given to MRS 

operates in dynamic environment, where unexpected 

changes can happen due to robots or the surrounding 

environment [1-4]. MRS has the potential to be far more 

useful and more efficient than a single robot. Furthermore, 

a team of robots is more robust to failure and can achieve 

tasks that are impossible for a single robot. Reaching that 

potential can be extremely difficult, especially in the case 

where multiple robots make task achievement possible, 

rather than simply better [5]. Including mapping, search 

and rescue; many applications cannot be achieved without 

the collaboration of agents in multi robot systems. 

In collaborative MRS (Figure-1), several robots 

have one or more common goals and each robot has its 

own individual goal. Robots are aware of their teammates, 

whilst their actions do help achieving the goals of others. 

Example: a collaborative team is a group of robots that 

each must reach a unique position. Robots could work 

together by sharing sensory capabilities to help all team 

members to reach their individual goals [6]. 

 

 
 

Figure-1. MRS in a general 2D environment [7]. 

 

In order to control the interaction among agents 

in collaborative MRS, three main problems need to be 

considered; localization, task allocation and path planning. 

Localization is needed to determine the location and 

orientation of each robot in the workspace, while task 

allocation is used to assign jobs to each member of the 

team. Finally, path planning is guiding robots through 

obstacles on their way to a final destination. For this 

purpose, many techniques and algorithms were proposed 

in the literature. In this paper, we discuss some of these 

techniques and algorithms based on recent research trends 

in collaborative MRS. The rest of this paper is divided as 

follows: Section 2 describes the architecture of MRS 

including distribution and relation among all agents in the 

collaborative system. Common techniques and algorithms 

used in collaborative MRS are discussed in Section 3. In 

that section, we addressed several techniques and 

algorithms that have been used for interaction among the 

collaborative robots in order to achieve a final goal. These 

techniques and algorithms usually aim to achieve the 

optimal solution among several propositions. The main 

purpose of using such techniques and algorithms is to 

minimize the cost of system resources such as time and 

number of involved agents. Section 4 discusses some 

applications of collaborative MRS in the real life, such as 

industrial and social tasks. 

 

ARCHITECTURE OF MRS 

 The architecture for the MRS team extremely 

affects the robustness and scalability of the system. 

Several different philosophies of MRS architecture are 

proposed in the literature [8]. Some of these philosophies 

have shared categories. Here, we illustrate two of the most 

common categories: 

 

Type of control: (Centralized / Decentralized) 

In centralized architecture, a single robot can 

controls all robots in the field. In this situation, only one 

controller is needed and all calculations are centralized 
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which reduce the cost and the complicity of system. In this 

architecture, any failure of the central controller can cause 

the whole system to fail. On the other hand, decentralized 

system is more flexible and fault tolerant. A failure of a 

single robot will not affect the whole system. But, this will 

lead to extra cost since every robot in the system behaves 

as an independent controller. 

Despite its well-known drawbacks, centralized 

control can be used in situations where the controller has a 

clear vantage viewpoint to observe robots and can easily 

broadcast messages for all [9]. An example of centralized 

control can be found in [10, 26]. On the other hand, most 

of researchers used decentralized control for its 

advantages. Khan et al. [11] proposed a decentralized 

method for collaborative MRS. In that method; robots can 

achieve collaboration using basic behaviour with a little or 

no indirect communication. Another example of 

decentralized control is proposed in [12] for local 

path‐ planning of MRS. Decentralized control is most 

suitable in distributed systems as demonstrated in [6]. 

 

Capabilities: (Homogeneous / Heterogeneous) 

 Homogeneous robots have similar capabilities so 

they have the advantage of being exchangeable (Figure-2). 

Besides, the control process will be easier when dealing 

with identical robots. On the contrary, the team members 

of heterogeneous system have different capabilities and 

less similarity. In this case, tasks are not exchangeable and 

the control process will be more complicated. While most 

of MRS researchers considered the homogeneous system, 

we can find several papers that consider heterogeneous 

system. Wang et al. [13] for instance, proposed a multi 

robot system approach based on the collaboration between 

heterogeneous robots. The system included humanoid 

robot, wheeled robots, cameras, and remote computer.  

Many other studies have also discussed heterogeneous 

system like [14-16, 35]. 

 

 
 

Figure-2. Homogeneous robots [17]. 

 

 However, selection of the proper architecture 

(either homogeneous or heterogeneous) is not arbitrary, 

but depends on the nature of workspace environment, the 

objective of MRS and the availability of resources. 

 

TECHNIQUES AND ALGORITHMS USED IN 

COLLABORATIVE MRS 

As mentioned in the previous section, most of 

researches on collaborative MRS focused on three main 

common topics: localization, path planning and task 

allocation.  The trends of recent research, that cover these 

topics, showed more concern about artificial intelligence 

based techniques and algorithms. In this section, we 

demonstrate the most common techniques and algorithms 

discussed in the literature of MRS in the past few years. 

 

Localization 

Localization is the most important process in 

MRS; it is used to determine the location and orientation 

of each robot in the target area. This will help each robot 

to be aware of other robots and emphasize coordination 

among the team. At the same time, this will help the 

system to use robots’ locations for task allocation purpose. 

Localization was discussed in the literature with more 

focus on the methods and algorithms used to determine the 

status of each robot in the system. Wu et al. [18] proposed 

an intelligent method to improve the accuracy of 

localization in wireless sensor network. The proposed 

algorithm uses wireless sensor network to calculate the 

position of the tracked robot. The received signal strength 

indicators were used for distance measurement.  In another 

research, Gasparri et al. [19] presented what they called a 

bacterial colony growth framework for multi-robot 

localization problem. In the proposed algorithm, 

collaboration can be set-up between two robots when they 

are within their range of visibility. The sensory data along 

with relative distance and orientation are exchanged 

among the communicated robots. According to the 

authors, the integration of the exchanged information into 

the proposed framework enhanced the sensorial and 

localization capabilities of the robots. Bori et al. [20] used 

genetic algorithm based on a “collaborative” fitness-

sharing technique to deal with the multi-robot localization 

problem. They used fitness-sharing technique, one of 

niching methods, to minimize the effect of genetic drift by 

reducing the payoff in densely-populated regions; and that 

will allow parallel investigation of many solutions in the 

population. Genetic algorithm also used by Gasparri et al. 

[21]. They proposed a framework based on a spatially 

structured genetic algorithm for multi-robot localization 

problem. The complex network theory is used for 

modeling the search space to achieve a more effective 

exploration. 
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Path planning 

Robots in MRS need a road map to assist them to 

reach the target location and avoid collision with obstacles 

or other robots in the field. Dynamic environment adds 

more challenges to the interacting team. Here the role of 

path planning becomes essential to guide the robots to 

their target location through the surrounding environment. 

Path planning has been discussed by many researchers like 

Belkhouche and Jin [22]. They proposed a model-based 

strategy for path planning in multi robot system by 

integrating collision detection and navigation algorithm. 

The proposed collision detection algorithm is an improved 

version of the swept volume method. Ulusoy et al. [23, 24] 

presented a method for planning robust optimal paths for a 

team of robots subject to temporal constraints. The 

proposed method uses a weighted transition system to 

model the robot’s motion, and gives the mission a linear 

temporal logic formula over a set of propositions that must 

be repeatedly satisfied. Xu et al. [12] presented a 

decentralized method for local path‐planning of multi 

robot system. In this method, each robot calculates its path 

planning using the optimal way representative point to 

find the shortest path. The artificial moments are used in 

that study as follows: The motion controller uses attractive 

and repulsive moments to move robots closer to the 

optimal path and to avoid obstacles.  On the other hand, 

the coordinated moments are used to resolve any conflict 

between robots. However, according to the authors, the 

proposed method has a disadvantage of difficulty of 

solving conflicts between robots in dynamic environment 

or narrow passages. Otte et al. [25] presented algorithm 

called “Any-Com intermediate solution sharing” for multi-

robot path planning. The algorithm finds a suboptimal 

solution quickly and then refines that solution subject to 

communication constraints. The main focus of the study is 

to find a coordinated set of collision-free paths for all 

robots in a common area. In the proposed algorithm, the 

computational load of calculating a solution is distributed 

among all robots. The main idea of the proposed algorithm 

is that the agents share intermediate solutions in a 

collaborative way, so that the whole team can focus 

remaining effort on finding better solutions. Path planning 

may require the robots to coordinate their actions to avoid 

any interference among the team members. Coordination 

in MRS has been studied by many researchers, and several 

methods have been proposed in this context. For example, 

Fan et al. [26] proposed a method that combines the role 

transformation and reinforcement learning to improve the 

learning ability of MRS coordination. The authors used a 

coordination policy based on maximum behavior value to 

plan the collision avoidance action. Particularly, Q-

Learning method was used to optimize the weights of the 

robot behavior through interacting with environment. 

Another study done by Pereda [27] also used reinforcement 

learning for MRS coordination. He used Q-Learning to 

identify the actions that the robots need to apply in each 

state in order to perform the given task. The proposed 

system in that study used a central camera to determine the 

positions of robots and object without using any sensors. 

However, this means that the system is fully dependent on 

that camera.  

 

Task allocation 

 Task allocation plays an important role in MRS; 

it is related to assigned job for each robot in the system. 

Based on the algorithm used for task allocation, jobs will 

be distributed among the team of robots. So, it is possible 

that some robots may be assigned more jobs than the 

others based on some conditions like robot position or 

capabilities. Task allocation systems can be classified 

according to the following criteria:  

 

Time of computations (Online/Offline) 

In an online allocation system, tasks are identified 

while the system is functioning. The allocation process 

takes place after initialization, and new tasks are 

introduced after that time. Basilico et al. [28] used Multi-

Criteria Decision Making to define exploration strategies 

in the domain of search and rescue. Online algorithm was 

also introduced by Jolly et al. [29], this time in the domain 

of Robot Soccer Systems. They used fuzzy neural network 

in order to plan tasks and select actions. Korsah et al. [30] 

used the offline approach. They introduced the XBOTS 

system architecture, where tasks are known a priori.  

 

Architecture 

In a centrally managed system we can make 

optimal decisions as the coordinator has global knowledge 

of the environment. A fault in the coordinator however, 

makes them team members unable to operate. A 

Centralized task allocation can be found in [31] where a 

market-based approach is proposed to solve task allocation 

problem in surveillance systems. On the other hand, 

decentralized systems can distribute the load of required 

processing. Furthermore, they are scalable and more 

effective in communication. Most recent proposals used 

the latter approach. For instance, Dasgupta et al. [32] 

proposed a market-based algorithm, along with swarm-

based coordination. Agents that encounter new tasks 
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communicate their task lists to nearby robots, and use a 

dynamic pricing algorithm in order to sell them the task.  

 

Type of interaction 

 Types of interaction in multi-robot system can be 

categorized as follows [6]: 

Collective: robots are not aware of each other, but they 

share goals, and their actions are helpful to their 

teammates. 

Cooperative: robots are aware of each other, they have 

shared goals, and their actions are helpful to their 

teammates. Example: group of robots working together to 

push a box in a specific direction. 

Collaborative: robots have their individual goals, but also 

they are aware of each other, and their actions are helpful 

to achieve the goals of others. Example: a collaborative 

team of robots in which every single robot must reach a 

unique position. Robots could work together by sharing 

sensory capabilities to help all robots to achieve their 

individual goals. 

Coordinative: robots are aware of each other, but they do 

not have a common goal, and their actions are not helpful 

to their teammates. Example: robots who share a common 

workspace need to coordinate their actions to minimize the 

interference among team members.  

 

 Zhang et al. [33] presented a multi-robot task 

allocation method for exploring unknown environments. 

The authors used the virtual pheromone self-organizing 

logic, inspired by the ant colony, to indicate the difficulty 

of the explored areas. Xu et al. [34] presented a Modified 

Ant Colony System algorithm to solve a constrained 

multiple traveling salesman problem and applied to the 

multi-robot dynamic task allocation problem. The 

proposed algorithm put all ants on the starting or ending 

depots of robots randomly. Besides, the pheromone and 

the cost from one depot to all targets are calculated and 

stored. In the proposed algorithm an initial task allocation 

is run by a leader robot, while the result of allocation is 

sent to each robot in the system. Task reallocation is 

performed in case of conduct failures. Shi et al. [35] 

presented a reputation-based task allocation model to solve 

the task allocation problem in collaborative multi-robot 

system. The study considered the “reputation” of a robot 

by assigning a specific task to the robot with high 

reputation. According to the authors, this will improve the 

success rate of implementation of its mandate, thereby 

reducing the time of the system task recovery and 

redistribution. However, in this method, the robots with 

the highest reputation values will handle most of the load. 

As a result, the low contribution of the other robots may 

decrease the efficiency of the system. Tolmidis et al. [36] 

proposed a solution for the multi-robot dynamic task 

allocation problem. In their study, the authors used multi-

objective optimization for estimation and making offer for 

task assignment. The study aims to better utilize resources 

like time and energy. Many factors were taken in account 

in the proposed algorithm, such as: the distance traveled 

and the efficiency of a robot in a specific task. In the 

proposed algorithm, genetic algorithm and Pareto 

optimality are used for task allocation purpose.  

 

APPLICATIONS OF COLLABORATIVE MRS 

The fast development of robot technology made 

MRS more applicable and increasingly desired in various 

aspects of life. Consequently, researchers are motivated to 

develop new techniques and algorithms that are applicable 

to MRS. The result of this development can be noticed in 

many applications where MRS is used. These applications 

include industrial, social, military, and many other fields. 

Industry is a good example of MRS application where 

both collaboration and high performance are required; 

such as in assembly, welding, and laser cutting (see 

Figure-3). The application of MRS from an industrial 

perspective is discussed in [37]. The author focused on the 

control development of industrial robots such as: model-

based, cost/performance-driven and application-driven 

control development. According to the author, such 

control development improves the quality of the robot-

based manufacturing and increase the productivity of robot 

automation.  

 

 
 

Figure-3. Collaborative robots performing a team task 

[37]. 

 

Exploration is another well-known application of 

collaborative MRS. In this type of systems, a team of 

robots is used for exploration of unknown environment. 

Usually, each robot is supplied with sensors for detecting 

the surrounding environment. The collected data from 

attached sensors may be used by robots to avoid obstacles 

or for mapping purpose, etc. Exchanging sensors data 

among robots will enhance the efficiency of the 

collaborative system. The problem of estimating the robot 

pose and the surrounding environment representation is 

usually defined as simultaneous localization and mapping 

(SLAM). This problem has been studied by many 
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researchers such as [38, 39] especially for exploration 

purpose. 

Like exploration, mapping is one of the important 

tasks of MRS. Mapping aims at obtaining the space model 

of mobile robot’s physical work environment. For this 

purpose, robot may use camera, laser range finder, sonar 

and other vehicle sensors to build the environmental map 

after data processing. Mapping needs localization, and 

localization depends on the environment maps, so 

localization and mapping are usually simultaneous. Using 

a single robot for mapping showed some significant 

progress in some cases. But, using collaborative MRS has 

the advantages of high efficiency, high precision, high 

fault tolerance and re-configurability [40]. Map-merging is 

another topic related to mapping. In order to improve the 

accuracy of map merging, Lee et al. [41] proposed a grid 

map-merging technique based on virtual emphasis for 

multi robot systems. The proposed technique uses one-

way observation instead of mutual observation, curvature-

based map matching and particle swarm optimization. 

Collaborative MRS may also be very beneficial 

in rescue missions where robots have the advantage of 

performing exploration over a disaster area looking for 

survivors. An example of this application is proposed in 

[42] where robots explore the disaster area searching for 

victims while they have communication with human 

operator. Another study on using MRS for rescue mission 

is proposed in [43]. The authors used genetic algorithm to 

optimize the cost function that determines the most 

suitable robot that can perform a particular task or help 

another teammate to do the same task. 

Finally, social robot is now considered as one of 

the most interesting applications of MRS where robots 

interact with human. Service robot is a well-known type of 

social robots where multi robots work together to provide 

service for human or surrounding environment. An 

example of collaborative service robots is described in 

[44]. Some of the recent research on long-term interaction 

between users and social robots are reviewed in [45]. 

 

CONCLUSIONS 

In this paper, we discussed different aspects of 

MRS as reflected in the recent research with more focus 

on the collaborative aspect. Furthermore, we addressed the 

structure and the applications of MRS, besides the 

techniques and algorithms used for collaboration purpose. 

Distributed systems are preferred for their advantages over 

the centralized ones, yet the latter still inevitable in some 

applications. The general trend observed from the recent 

research is towards the artificial intelligent based 

algorithms, like Genetic Algorithm, Ant Colony and 

Reinforcement Learning for their potency to improve the 

efficiency of the collaborative behaviour of MRS. 

However, some robots such as snake robots may have 

various shapes while operating and that leads to a new 

challenge for future research. Robots inspired from natural 

creatures, such as spider, fish, worms, etc. have more 

complex features than the traditional robots. 

Consequently, the collaboration process among these bio-

inspired robots becomes more difficult, and that opens a 

new avenue for research.  

Finally, it is noticed that the results presented in 

many studies in the literature of MRS were obtained by 

simulation and not verified experimentally. This opens 

another challenge for future work to apply the proposed 

techniques and algorithms using field experiments in real 

life environment. 
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