
                               VOL. 10, NO 22, DECEMBER, 2015                                                                                                          ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                    17232 

CORRELATION IMMUNITY AND RESILIENCY OF BOOLEAN 
FUNCTIONS FROM HAAR DOMAIN PERSPECTIVE 

 

H. M. Rafiq and M. U. Siddiqi 
 ECE Department, Faculty of Engineering, IIUM, Jalan Gombak, Kuala Lumpur, Malaysia 

E-Mail: umarsiddiqi@iium.edu.my  

 

ABSTRACT  

The strength of any conventional cipher system relies on the underlying cryptographic Boolean functions 

employed in the system. The design of such systems requires that the employed Boolean functions meet specific security 

criteria. Two of such criteria are the correlation immunity and resiliency of a given Boolean function. To determine 

whether such criteria are met, a designer needs the help of spectral transform tool and in this case the Walsh spectral 

transform. Most of the cryptographic criteria have been generalized in terms of the Walsh transform. In this paper, we 

present an alternative view of such criteria from the Haar spectral transform point of view. The Haar along with the Walsh 

are the two methods considered suitable for representing Boolean functions. The paper exploits the analogy between the 

two transforms to derive the Haar general representation of the correlation-immunity and the resiliency security criteria. 

The paper presents the Haar-based conditions on which a given Boolean function should meet to be considered correlation-

immune of order k (𝐶𝐼(𝑘)) or resilient of order k (𝑅(𝑘)). In addition, the paper presents a Haar-based algorithm for testing 

correlation-immunity of an arbitrary Boolean function including experimental results related to the algorithm. The results 

in this presentation are based on a simulation study of the Haar-based algorithm in comparison to its Walsh-counterpart. 

The results portray the computational advantage of the Haar method over the Walsh approach for the correlation-immunity 

measure. The paper includes as well, a discussion on the worst-case scenario with advantages and flexibility of the Haar 

method in conjunction with the lower order Walsh transform. A summary of the work is then presented in the conclusion 

of the paper.    

 

Keywords: boolean functions, haar transform, haar spectrum, spectral coefficients, cryptographic security criteria, correlation-immunity, 

and resiliency. 

 

INTRODUCTION  

The design of strong conventional cipher systems 

requires that the employed cryptographic Boolean 

functions meet specific security criteria. Two of such 

criteria are the correlation immunity and resiliency of a 

given Boolean function. To determine whether such 

criteria are met, a designer needs the help of spectral 

transform tool and in this case the Walsh spectral 

transform. The Walsh spectral transform has been mostly 

employed for analysis and generalization of desired 

cryptographic Boolean functions [1, 2, 4, 5, 11, 12, 13]. 

The Haar spectral transform along with the Walsh 

transform, are the two transforms considered suitable for 

representations of Boolean functions [3, 7, 8]. The Haar 

method has gained wide spread usage in various fields of 

engineering and computer science [7]. In cryptography, 

only the Walsh transform has been employed for analysis 

of such systems. The motivation of this paper is based on 

the works of [3, 7]. The contribution of this work is 

towards cryptographic Boolean functions and their Haar-

based characterization; specifically a Haar alternative view 

of two significant cryptographic criteria is presented. The 

Haar provide a local-based spectral view of functions 

satisfying such criteria. This view is significant especially 

when it comes to construction of such functions. The 

paper presents the correlation-immunity and resiliency 

security criteria from the Haar domain perspective. The 

paper answers the following significant questions; given 

an arbitrary Boolean function then what are the conditions 

on its Haar spectrum for it to satisfy the two security 

criteria? How can such a function be tested using the Haar 

transform to see if it satisfies the two criteria? How does 

the Haar-based method compared to the existing Walsh 

method? What are the advantages of employing the Haar 

transform in this context? 

The paper is organized as follows. Section 2 

presents an overview of Boolean functions including the 

spectral transforms and existing significant results. In 

section 3, the Haar spectral characterization of correlation-

immunity and resiliency is derived and presented.  The 

Haar-based algorithm for testing correlation-immunity of 

an arbitrary Boolean function is given in section 4. The 

section presents as well, simulation results of the 

conducted experiments in comparison between the Haar-

based algorithm and its Walsh counterpart. Moreover, the 

section explores the significance of employing the Haar 

transform along with the Walsh transform as hybrid 

method. Finally, in section 5, we present the conclusion of 

the paper and discussion on future work. 
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PRELIMINARIES 

In this section, we present a review on Boolean 

functions and results from earlier research works that 

relate to correlation immunity and resiliency. 

 An n-variable Boolean function 𝑓(𝑥1, … , 𝑥𝑛), is a 

mapping of n binary inputs ((𝑥1, … , 𝑥𝑛) ∈ 𝔽2
𝑛) to a single 

binary output (𝑓(𝑥) ∈ 𝔽2) [1, 2]. The input argument is an 

n-dimensional binary vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝔽2
𝑛 

(𝑥𝑖 ∈ 𝔽2). The set of all Boolean functions is denoted 

by  𝐵𝑛. Any 𝑓 ∈ 𝐵𝑛 has a unique representation in each of 

the following forms [2]: 

 

 The ordered tuple  𝑇𝑓 = (𝑓(𝑥(0)), 𝑓(𝑥(1)), … , 𝑓(𝑥(2𝑛−1))) 

is called the binary truth table of f (𝑓 ∈ 𝔽2}). The truth 

table lists the outputs of the function for all the 

possible 2𝑛 input combinations, where 𝑥(0) =

(0,… ,0) (the all-zeroes vector), 𝑥(2𝑛−1) = (1,… ,1) 

(the all-ones vector), and generally 𝑥(𝑘) as the binary 

vector representation of the integer 𝑘, for 0 ≤ 𝑘 ≤
2𝑛 − 1. The relationship between 𝑥 and 𝑘 is given 

by 𝑥 = ∑ 2𝑛−𝑖𝑥𝑖
𝑛
𝑖=1 . 

 Sometimes instead of  𝑇𝑓, it is more advantageous to 

use the real valued function of f, which is called the 

sign function 𝜉 or the polarity truth table (𝜉 takes 

values from the set {−1,1}). It is defined as  𝜉(𝑥) =
(−1)𝑓(𝑥) ≡ 1 − 2𝑓(𝑥), ∀𝛼 ∈ 𝔽2

𝑛. The truth table of 

the sign function is called the sequence of f. Some 

literature use 𝑓 as equivalent notation of  𝜉. 

 The polynomial representation (ANF); the algebraic 

normal form can be written uniquely as a sum (XOR) 

of products (AND) 

 

𝑓 = 𝑎0 ⊕ 𝑎1𝑥1 ⊕ ⋯⊕ 𝑎12𝑥1𝑥2 ⊕ ⋯⊕ 𝑎12⋯𝑛𝑥1𝑥2 ⋯𝑥𝑛 

Where  𝑎𝑖 , 𝑥𝑖 ∈ 𝔽2 

The highest number of variables in the product 

terms of the ANF gives the degree of 𝑓 and is denoted 

by deg (𝑓). Other representations for the Boolean function 

such as NNF can be found in [1, 2]. The weight of a 

function is defined as the number of nonzero entries in 𝑇𝑓 

and is denoted by 𝑤𝑡(𝑓). If the weight of a function 

is 2𝑛 − 1, meaning that the number of zeroes and ones in 

the truth table are equal, then the function is balanced. 

Linear and Affine Boolean functions: A linear Boolean 

function, selected by 𝜔 ∈ 𝑍2
𝑛  is denoted by 𝐿𝜔 with the 

general expression 𝐿𝜔 = 𝜔1𝑥1 ⊕ 𝜔2𝑥2 ⊕ ⋯⊕ 𝜔𝑛𝑥𝑛. 

Any function of the form 𝑓 = 𝑐 ⊕ 𝐿𝜔 where 𝑐 ∈ 𝐹2 is 

called Affine function. The set of affine functions contain 

all the linear functions. 

Walsh-hadamard transform: The Walsh transform 

(𝜉𝑊𝐻) of a function 𝜉 on 𝔽2
𝑛 is given by [1, 2]:  

 

𝜉𝑊𝐻(𝑢) = ∑ (−1)𝑓(𝑥)⊕𝑥∙𝑢
𝑥,𝑢∈𝑉𝑛

             (1) 

 

Haar functions: The set of Haar functions (𝐻𝑙
𝑞
′𝑠 or 

simply as 𝐻𝑗) forms a complete set of orthogonal 

rectangular basis functions [3,4]. They are defined on the 

interval [0, 2𝑛) as un-normalized taking the values of 0 

and ±1 as follows: 

𝐻0
(0)(𝑥) = 𝐻0(𝑥) = 1, ∀𝑥 ∈ [0, 2𝑛) 

 

𝐻𝑗(𝑥) = 

 

{

1, (2𝑞) ∙ 2𝑛−𝑙−1 ≤ 𝑥 < (2𝑞 + 1) ∙ 2𝑛−𝑙−1

−1, (2𝑞 + 1) ∙ 2𝑛−𝑙−1 ≤ 𝑥 < (2𝑞 + 2) ∙ 2𝑛−𝑙−1

0, 𝑒𝑙𝑠𝑒 𝑖𝑛 [0, 2𝑛)

       (2) 

 

Where: l and q are degree (zone of the spectrum 

resp.) and order of the Haar functions respectively. With 

 𝑗 = 2𝑙 + 𝑞 and for each value of  𝑙 = 0, 1, … , 𝑛 − 1, we 

have  𝑞 = 0, 1, … , 2𝑙 − 1. 

 

Haar transform: the Haar transform (𝜉𝐻) of  𝜉 is defined 

by [3,4]: 

 

𝜉𝐻(𝑗)   = ∑ 𝐻𝑙
𝑞
(𝑥) ∙ 𝜉(𝑥)𝑥=2𝑛−1

𝑥=0          (3) 

 

Another definition of the Haar functions was 

given in [3], where the Haar functions are expressed 

directly in terms of the input variables (based on the 

degrees and order of the functions). The definition is 

derived through the connection between the Haar, 

Rademacher, and the Walsh-Paley functions. In this sense, 

the Haar functions are sub-sets of the Walsh-Paley 

functions. The Haar functions  𝐻𝑙
𝑞(𝑥) depending on the 

degrees 𝑙 ∈ [0, 𝑛), and orders  𝑞 ∈ [0, 2𝑙) are alternatively 

given by [3]: 

 

𝐻𝑙
𝑞(𝑥) = {

(−1)𝑥𝑙+1 , 𝑥 ∈ 𝑆𝑞
𝑙

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,      (4) 

 

Where, 𝑆𝑞
𝑙 = {𝑥|𝑥 ∈ [𝑞 ∙ 2𝑛−𝑙 , (𝑞 + 1) ∙ 2𝑛−𝑙) is 

the restriction of 𝑥 to the respective sub-interval/subset 

defined by the corresponding degree and order. For each 

of the degrees and the respective orders, the spectral 

domain interval of [0, 2𝑛) is partitioned into disjoint 

subintervals defined by  𝑆𝑞
𝑙 . In turn, an equivalent 

definition of the Haar spectrum 𝐹̂𝐻𝑙

𝑞
(𝑥) is given as: 

 

𝐹̂𝐻𝑙

𝑞
(𝑥) = ∑ (−1)𝑓(𝑥) ⊕ 𝑥𝑙+1

𝑥∈𝑆𝑞
𝑙 ,      (5) 

 

Correlation immunity (𝐶𝐼): Given an n-variable Boolean 

function 𝜉, then it is correlation immune of order k (𝐶𝐼(𝑘), 
1 ≤ 𝑘 ≤ 𝑛) if and only if all of its Walsh spectral 

coefficients satisfy the following condition [1,2, 4,5].  
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𝜉𝑊𝐻(𝜔) = ∑ (−1)𝑓(𝑥) ⊕ 𝑥∙𝜔
𝑥∈𝑉𝑛

= 0,      (6) 

∀ 𝜔 ∋ 1 ≤ 𝑤𝑡(𝜔) ≤ 𝑘  

 

Resiliency:  An n-variable Boolean function 𝜉 is resilient 

of order k if and only if it satisfies 𝐶𝐼(𝑘) and is balanced. 

That is, it is 𝐶𝐼(𝑘) and  𝜉𝑊𝐻(0) = 0 [1,2, 4,5,11-15]. 

The next results based on [9] are significant for 

distinguishing between resiliency and linearity within the 

Haar domain. The work has presented the Haar spectral 

characterization of linear and affine functions. In this 

work, the distribution of the Haar spectral coefficients for 

linear functions was derived and presented. Each zone 

(defined by the degree 𝑙) of the Haar spectral coefficient 

represents a correlation to a specific set of 2𝑙 sub-linear 

functions ( 𝐿𝑙
𝜔(𝑞) = 𝜔1𝑞1 ⊕ 𝜔2𝑞2 ⊕ ⋯⊕ 𝜔𝑙𝑞𝑙;   𝜔, 𝑞 ∈

𝔽2
𝑙 ) and their complements. Suppose that the Haar 

transform is applied to a given n-variable linear Boolean 

function (𝐿𝛼(𝑥) = 𝛼1𝑥1 ⊕ 𝛼2𝑥2 ⊕ ⋯⊕ 𝛼𝑛𝑥𝑛;   𝛼, 𝑥 ∈
𝔽2

𝑛), then the Haar nonzero spectral coefficients will be 

restricted to within a specific zone (depending on the 

transformed function).  The general Haar representation of 

linear functions is defined as follows [9]: 

Haar spectral definition of linear functions: For the 

sake of simplicity in notations, let the linear function be 

given as 𝐿𝛼(𝑥) ≡ 𝐿(𝑥) = 𝛼𝑖𝑥𝑖 ⊕ 𝑥𝑙+1  ∋  𝛼𝑖 ∈ 𝔽2, 𝑖 ∈
[1, 𝑙 + 1), 𝑙 ∈ [1, 𝑛) and  𝑥 = (𝑥1, … , 𝑥𝑛) ∈ 𝔽2

𝑛 in Paley 

ordering (bit-reverse representation). The Haar spectrum 

(𝐿̂𝐻(𝑥)) of the linear function in polarity form (𝐿̂ ) is given 

by: 

 

𝐿̂𝐻(𝑥) = {
±2𝑛−𝑙 , 𝑥 ∈ [2𝑙 , 2𝑙+1)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
       (7)  

 

It was shown in [9] that, as the absolute Haar 

spectrum of the linear functions is flat within the 

respective zone (taking the maximum value of 2𝑛−𝑙) then, 

the “2𝑛−𝑙"  term can be factored out. Once the factored 

term is out, the resulting spectral coefficients within the 

zone assume a unique linear distribution corresponding to 

the transformed function. The resulting coefficients 

represent a specific Walsh function in  𝔽2
𝑙 . In turn, the 

Equation. 7 can be written equivalently as:  

 

𝐿̂𝐻(𝑥) = 2𝑛−𝑙 ∙ {
𝐿𝑙

𝜔(𝑞), 𝜔, 𝑞 ∈ 𝔽2
𝑙 , 𝑥 = 2𝑙 + 𝑞

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (8) 

 

The following section presents the Haar study on 

correlation immunity and resiliency. 

 

CORRELATION IMMUNITY AND RESILIENCY 

FROM HAAR PERSPECTIVE 

In this section, the Haar spectral characterization 

of Correlation-Immune (𝐶𝐼) functions is examined. The 

section presents a study on the general representation of 

correlation-immunity for a given Boolean function within 

the Haar spectral domain. The generalization is carried out 

for both cases; when the order is one (𝐶𝐼(1)) and when the 

general order is  𝑘 (𝐶𝐼(𝑘)). The work presents derivations 

for Haar based representation of this security criterion.  

We introduce first a new data structure to be used 

in Haar generalization. Let  𝑆𝐹̂𝐻(𝑙) denote the sum of Haar 

spectral coefficients over the interval  2𝑙 ≤ 𝑥 < 2𝑙+1, that 

is  𝑆𝐹̂𝐻(𝑙) = ∑ 𝜉𝐻(𝑥)2𝑙+1−1
𝑥=2𝑙 , 𝑙 = 0,1, … , 𝑛 − 1. This sum 

represents the addition of spectral coefficients for a given 

zone within the Haar spectrum. And let  𝑆𝐹̂𝐻
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑢) be the 

vector containing all the sums (𝑆𝐹̂𝐻(𝑙), 𝑙 ∈ [0, 𝑛)) for a 

given spectrum including the spectrum’s global coefficient 

(𝜉𝐻(0)). The vector containing all the sums will be 

referred to as the Haar-Sum-Vector (HSV) from now 

onwards. It is obvious from its definition the HSV is a 

 1 × (𝑛 + 1) vector consisting of the first two global Haar 

spectral coefficients, and the rest of its elements consist of 

the sums over the zones defining the local coefficients (see 

Example 3.1 below). 

Example 3.1 Consider a Haar spectrum for a 

given four-variable Boolean function, then the HSV for 

the respective spectrum is given by  𝑆𝐹̂𝐻
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑢) =

[𝜉𝐻(0), 𝑆𝐹̂𝐻(0), 𝑆𝐹̂𝐻(1), 𝑆𝐹̂𝐻(2), 𝑆𝐹̂𝐻(3)]. 

Consider the variable 𝜔⃗⃗ = 〈𝜔1, 𝜔2, … , 𝜔𝑛〉 ∈ 𝔽2
n 

then, the following will be taken into account: 

Let 𝜔⃗⃗ 𝑘1
= 〈0,0, … ,0, 𝜔𝑘 = 1, 0, … ,0〉 : An n-

dimensional unit vector with one at the  𝑘𝑡ℎ position and 

zeroes elsewhere.  

Let  𝜔⃗⃗ 𝑘0
= 〈𝜔1, 𝜔2, … , 𝜔𝑘−1, 𝜔𝑘 = 0,𝜔𝑘+1, … , 𝜔𝑛〉: 

The vector 𝜔⃗⃗  with zero at the  𝑘𝑡ℎ position. 

Note that, the following properties hold 

 

1. 𝜔⃗⃗ = 𝜔⃗⃗ 𝑘1
+ 𝜔⃗⃗ 𝑘0

, 

2. 𝑤𝑡(𝜔) = 1 ⇒ 𝜔⃗⃗ = 𝜔⃗⃗ 𝑘1
, 𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑛 

3. 𝑥 ∙ 𝜔⃗⃗ 𝑘1
= 𝑥𝑘 ∙ 1 = 𝑥𝑘 

 

 Now, the correlation-immunity can be 

characterized from the Haar spectral domain point of view. 

The following proposition gives the Haar general 

characterizations of the correlation-immunity of order one. 

Proposition 3.1 A given n-variable Boolean 

function f (with sign function 𝜉 ), satisfies correlation-

immunity of order one (𝐶𝐼(1)) provided that the following 

condition on its HSV ( 𝑆𝐹̂𝐻
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑢)) holds: 

 

 𝑆𝐹̂𝐻
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑢) = 0,       𝑓𝑜𝑟 1 ≤ 𝑢 ≤ 𝑛 + 1                        (9) 

 

Proof: The proof follows by considering the 

L.H.S of Equation. 6 
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⇒ 𝜉𝑊(𝜔⃗⃗ ) = 𝜉𝑊(𝜔⃗⃗ 𝑘1
) = ∑ (−1)𝑓(𝑥) ⊕ 𝑥∙𝜔⃗⃗⃗ 𝑘1

𝑥∈𝔽2
𝑛

 

⇒ 𝜉𝑊(𝜔⃗⃗ 𝑘1
) = ∑ (−1)𝑓(𝑥) ⊕ 𝑥𝑘

𝑥∈𝔽2
𝑛  ,      𝑓𝑜𝑟 1 ≤ 𝑘 ≤ 𝑛 

≡ ∑ (−1)𝑓(𝑥) ⊕ 𝑥𝑘2𝑛−1
𝑥=0   

≡ ∑ (−1)𝑓(𝑥) ⊕ 𝑥𝑘
𝑥∈𝑆0

𝑙 + ∑ (−1)𝑓(𝑥) ⊕ 𝑥𝑘
𝑥∈𝑆1

𝑙   

+⋯+ ∑ (−1)𝑓(𝑥) ⊕ 𝑥𝑘

𝑥∈𝑆
2𝑙−1
𝑙

 

≡ ∑ ∑ (−1)𝑓(𝑥) ⊕ 𝑥𝑘
𝑥∈𝑆𝑞

𝑙𝑞 ,        𝑙 ∈ [0, 𝑛), 𝑞 ∈ [0, 2𝑙) 

≡ ∑ ∑ (−1)𝑓(𝑥) ⊕ 𝑥𝑙+1
𝑥∈𝑆𝑞

𝑙𝑞  ,  𝑘 = 𝑙 + 1 

≡ ∑ 𝜉𝐻𝑙
𝑞(𝑥)𝑞 = 𝑆𝐹̂𝐻

⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑢),  1 ≤ 𝑢 ≤ 𝑛   

⇒ 𝑆𝐹̂𝐻
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑢) = 0,     (LHS=RHS of Equation. 6)     

This ends the proof. 

For higher order correlation to be appropriately 

derived, a need arises for a restriction on variable space as 

follows.  

Defining a restriction on 𝔽2
𝑛: Let 𝔽2

𝑙  be a 

restriction on 𝔽2
𝑛 such that, given (𝜔1, 𝜔2, … , 𝜔𝑛) ∈ 𝔽2

𝑛, 

the following are true 

𝔽2
𝑙  ⊆   𝔽2

𝑛, ∀ 𝑙 ∈ [0, 𝑛): disjoint Subsets 

𝔽2
𝑙  ⇒  (𝜔1, 𝜔2, … , 𝜔𝑙) ∈ 𝔽2

𝑛  ∧   𝜔𝑙+1 = 1 𝑓𝑖𝑥𝑒𝑑 

(𝜔1, 𝜔2, … , 𝜔𝑙) ∈ 𝔽2
𝑙  ⇒   (𝜔1, 𝜔2, … , 𝜔𝑙 , 𝜔𝑙+1 = 1, 0,… ,0)
∈  𝔽2

𝑛 

∀ 𝑙 ∈ [0, 𝑛)  ⇒ 𝑞 ∈ 𝔽2
𝑙  

Keeping this restriction in mind and rewriting the 

Walsh transform in terms of the Haar spectrum based on 

the respective degrees and orders then, the Haar based 

definition can be derived as according to the following 

proposition. 

Proposition 3.2 An n-variable Boolean function f 

(with sign function 𝜉 ), satisfies correlation-immunity of 

order 𝑘 (𝐶𝐼(𝑘)) provided that the following condition on 

its Haar spectrum (𝜉𝐻𝑙
𝑞
) holds, ∀𝑞 ∋ 1 < 𝑤𝑡(𝑞) ≤ 𝑘 − 1 

 

∑ 𝜉𝐻
𝑙 (𝑞)

𝑞,𝜔 ∈ 𝔽2
𝑙 ∙ (−1)𝜔∙𝑞 = 0,          (10) 

 

Proof: The proof follows by considering the 

L.H.S of Equation. 6 and rewriting the Walsh function as: 

 

⇒ 𝐹̂𝑊(𝜔⃗⃗ ) = 𝐹̂𝑊(𝜔⃗⃗ 𝑙+11
⊕ 𝜔⃗⃗ 𝑙+10

),    𝑓𝑜𝑟 0 ≤ 𝑙 ≤ 𝑛 

= ∑ (−1)𝑓(𝑥) ⊕ 𝑥∙(𝜔⃗⃗⃗ 𝑙+11⊕ 𝜔⃗⃗⃗ 𝑙+10)
𝑥∈𝔽2

𝑛   

= ∑ (−1)(𝑓(𝑥) ⊕ 𝑥∙𝜔⃗⃗⃗ 𝑙+11)⊕(𝑥∙ 𝜔⃗⃗⃗ 𝑙+10)
𝑥∈𝔽2

𝑛   

= ∑ (−1)(𝑓(𝑥) ⊕ 𝑥𝑙+1)⊕(𝑥∙ 𝜔⃗⃗⃗ 𝑙+10)
𝑥∈𝔽2

𝑛   

= ∑ (−1)(𝑓(𝑥) ⊕ 𝑥𝑙+1) ∙ (−1)𝑥∙ 𝜔⃗⃗⃗ 𝑙+10𝑥∈𝔽2
𝑛   

≡ ∑(−1)(𝑓(𝑥) ⊕ 𝑥𝑙+1) ∙ (−1)𝑥∙ 𝜔⃗⃗⃗ 𝑙+10

𝑥∈𝑆0
𝑙

 

+ ∑(−1)(𝑓(𝑥) ⊕ 𝑥𝑙+1) ∙ (−1)𝑥∙ 𝜔⃗⃗⃗ 𝑙+10

𝑥∈𝑆1
𝑙

+ ⋯ 

+∑ (−1)(𝑓(𝑥) ⊕ 𝑥𝑙+1) ∙ (−1)𝑥∙ 𝜔⃗⃗⃗ 𝑙+10
𝑥∈𝑆

2𝑙−1
𝑙   

  ≡ ∑ ∑ (−1)(𝑓(𝑥) ⊕ 𝑥𝑙+1) ∙ (−1)𝑥∙ 𝜔⃗⃗⃗ 𝑙+10
𝑥∈𝑆𝑞

𝑙𝑞  

, 𝑁𝑜𝑡𝑒: 𝑤𝑡(𝜔⃗⃗ 𝑙+10
) = 𝑤𝑡(𝜔⃗⃗ ) − 1 

  ≡ ∑ (∑ (−1)(𝑓(𝑥) ⊕ 𝑥𝑙+1)
𝑥∈𝑆𝑞

𝑙 ) ∙ (−1)𝑞∙ 𝜔
𝑞,𝜔 ∈ 𝔽2

𝑙  ,   

≡ ∑ (𝜉𝐻
𝑙 (𝑞)) ∙ (−1)𝑞∙ 𝜔

𝑞,𝜔 ∈ 𝔽2
𝑙  ,   

≡ ∑ 𝜉𝐻
𝑙 (𝑞) ∙ (−1)𝑞∙ 𝜔

𝑞,𝜔 ∈ 𝔽2
𝑙  ,  ∀ 𝑞 ∋ 1 < 𝑤𝑡(𝑞) ≤ 𝑘 − 1 

⇒ ∑ 𝜉𝐻
𝑙 (𝑞) ∙ (−1)𝑞∙ 𝜔

𝑞,𝜔 ∈ 𝔽2
𝑙 = 0, (LHS=RHS of Equation. 

6) 

This ends the proof. 

 

The following example demonstrates the order 

one 𝐶𝐼(1) for a given 3-variable Boolean function. 

Example 3.2: Consider the 3-variable Boolean 

function with polarity truth table 𝜉 =
[−1,−1,−1,1,1, −1, −1,−1]. Its Haar spectrum (𝜉𝐻), 

Walsh-Hadamard spectrum (𝜉𝑊𝐻), and the Haar 

representation of the correlation immunity (𝑆𝐹̂𝐻
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑢)), are 

given in the following table (see Table-1). It can be seen 

clearly from the table that, all the variables with weight 

one (𝑤𝑡(𝑥) = 1) have the corresponding spectral 

coefficients equal to zero. This is true as well for the sum 

of the Haar spectral coefficients within the respective 

zones. 

 

Table-1. Spectrums of the function in example 3.2. 
 

x 𝒙𝟏𝒙𝟐𝒙𝟑 q 𝒒𝟏𝒒𝟐 …𝒒𝒍 𝝃 𝝃𝑾𝑯 𝝃𝑯 𝑺𝑭̂𝑯
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (𝒖) 

0 000 - - -1 -4 -4 -4 

1 001 0 0 -1 0 0 0 

2 010 0 0 -1 0 -2 0 

3 011 1 1 1 4 2  

4 100 0 00 1 0 0  

5 101 1 01 -1 -4 -2 0 

6 110 2 10 -1 -4 2  

7 111 3 11 -1 0 0  

 

Note that the different colors in the table (Table-

1) entail the different zones within the Haar spectral 

domain. The red color represents the zone defined by 𝑙 =
0, the blue represents the next zone (𝑙 = 1) within the 

spectrum, while the green represents the last zone (𝑙 = 2) 

of the spectrum. For resiliency then, in addition to the 

function being satisfying 𝐶𝐼 it must also be balanced. A 

function 𝜉 is said to be balanced given then its Haar global 

spectral coefficient is zero [10]. That is, if its Haar 

spectrum satisfies Equation. 11 (see below). The next 

proposition summarizes the Haar spectral generalization 

for order one resiliency. 
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𝜉𝐻(0) = 0                    (11)  

 

Proposition 3.3 An n-variable Boolean function f 

(with sign function 𝜉 ), is said to be resilient of order 1 

(𝑅(1)) provided that the following conditions on its HSV 

( 𝑆𝐹̂𝐻
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑢)) holds, ∀𝑢 ∋ 0 ≤ 𝑢 ≤ 𝑛 + 1 

 

𝑆𝐹̂𝐻
⃗⃗ ⃗⃗ ⃗⃗  ⃗(𝑢) = 0            (12) 

 

Proof: The proof of the proposition follows 

directly from proposition 3.1 and Equation. 11. This ends 

the proof.  

 On the other hand, the Haar generalization for 

higher order resiliency can be summarized based on the 

following proposition. 

Proposition 3.4 An n-variable Boolean function f 

(with sign function 𝜉 ), is said to be resilient of order 𝑘 

(𝑅(𝑘)) provided that the following conditions on its Haar 

spectrum ( 𝜉𝐻𝑙
𝑞
) holds, ∀𝑢 ∋ 0 ≤ 𝑢 ≤ 𝑛 + 1 

 
 

∑ 𝜉𝐻
𝑙 (𝑞)

𝑞,𝜔 ∈ 𝔽2
𝑙 ∙ (−1)𝜔∙𝑞 = 0  ∧   𝜉𝐻(0) = 0       (13) 

 

Proof: The proof of the proposition follows 

directly from proposition 3.2 and Equation. 11 by 

extending the correlation immune function to be balanced. 

This ends the proof.  

The next question at this juncture is simply: How 

does one differentiate a resilient function from being a 

linear or affine function. This has to be considered due to 

the fact that, the nonzero values of the Haar spectrum of 

such functions are restricted to a specific zone of the 

spectrum where the rest of the zones are zeroes. The 

difference is based on the magnitude of the nonzero 

coefficients presented in the preliminary section through 

Equation. 7 and Equation. 8 respectively. The following 

Lemma guarantees the resilient function to be a nonlinear 

function. We give the lemma here without a proof as the 

Haar definition of linear functions is sufficient on its own. 

Lemma 3.1 A Boolean function 𝜉 is a nonlinear 

resilient function of order k if it satisfies Equation. 13 and 

the following is true for all its Haar spectral zones 
 

 

∑ |𝜉𝐻𝑙
𝑞|𝑞 ≠ 2𝑛 , ∀𝑙 ∈ [0, 𝑛)      (14) 

 

 

The lemma simply guarantees a nonlinear 

function by restricting the transformed function from 

having maximum correlation with any given arbitrary n-

variable linear or affine function. 

The following section presents an algorithm for 

testing whether a given arbitrary Boolean function is 

correlation immune or not. The section also presents 

experimental results for the presented method. 

 

EXPERIMENTAL RESULTS 

In this section we give the results for an 

experiment conducted on the Haar-based method of 

measuring the correlation immunity of a given Boolean 

function. The results given here are related to the Haar-

based algorithm (CI-test algorithm) for testing whether a 

given arbitrary Boolean function satisfies the correlation 

immunity or not. 

The steps involved in the CI-test algorithm are 

given in the figure below (see Figure-1). The algorithm 

steps are direct as the first and second steps computes the 

Haar spectrum of the function and the corresponding sums 

over the zones respectively. The test for the CI criterion is 

performed in step 3 where the sums are tested. If all the 

zones’ sums up to zero then, the function is correlation 

immune and the algorithm sets the logical y value to 1, 

otherwise the function does not satisfy the said criterion (y 

value set to 0). The last step outputs the value of y. 

 

Experimental setup 

The Haar-based algorithm together with the 

Walsh-Hadamard (Using MatLab built-in function) 

approach to testing the 𝐶𝐼 property, were simulated in a 

comparison experiment. The simulations were run for a 

number of iterations equal to 10, and the average 

execution time for each algorithm was recorded. The 

following table (see Table-2) presents a summary of the 

average execution times. The corresponding results are 

depicted in the figure below (see Figure-2). Note that, all 

the time measurements presented here are in “seconds” as 

a unit of measurements. All the algorithms were 

implemented using the MatLab software (MATLAB 

Version: 8.0.0.783 (R2012b)) on a laptop computer with 

the following specifications;  Intel Core i5-2410M CPU @ 

2.30GHz, 4.0GB RAM, 32-bit OS. The MatLab built-in 

function is the Fast-Walsh-Hadamard transform (FWHT), 

while our implemented Haar transform is the Fast-Haar-

transform (FHT) based on the works of [3, 8]. 
  

 
 

Figure-1. Haar-based CI-test algorithm. 
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Table-2. CI-Test algorithm: Average execution 

times for 𝑛 = 3,4, … ,10. 
 

n 𝑭𝑾𝑯𝑻 𝑭𝑯𝑻 

3 0.0009 0.0002 

4 0.0010 0.0003 

5 

6 

7 

8 

9 

10 

0.0012 

0.0016 

0.0024 

0.0044 

0.0083 

0.0119 

0.0004 

0.0005 

0.0006 

0.0008 

0.0013 

0.0020 

 

 
 

Figure-2. FWHT Vs FHT – Average execution time for 

CI test. 

 

Results overview and discussion 

It is clear from the experimental results that, the 

Haar-HSV approach has a better performance simply due 

to the fact that it has less number of operations involved. 

Still, the next obvious question then is, “What is the 

advantage of using the Haar method of approach here, and 

how is it advantageous?” In addition to better 

computational complexity compared to the Walsh 

approach, the Haar approach has another advantage as 

follows; the Haar local-based behavioural properties 

makes it possible for the algorithm to quit in the middle of 

the process if the condition has been violated. In other 

words, say for instance the algorithm was scanning down 

the spectrums with increasing number of zones. Now if at 

any moment in time the condition is violated before 

getting to the last zone then, the algorithm has the 

flexibility to quit the process at that exact point in time. In 

doing so, the algorithm does not need to check any further 

down the zones. On the other hand, the Walsh-based 

approach requires the complete Walsh spectrum to be 

computed first before checking whether the condition has 

been met or not. One thing to note as well is that, the worst 

case for the Haar approach is going through all the zones 

which is still advantageous in terms of performance and 

complexity. It should be noted for the higher order 

correlation immunity (proposition 3.2) that, in essence the 

equation given in the proposition reflects applying the 

Walsh-Hadamard transform to each of the Haar spectral 

zones independently. The order of transform depends on 

the degree defining the zone. An alternative view is that, 

instead of applying the Walsh-transform to the original 

Boolean function but rather applying it to the Haar 

spectrum of such function. In terms of complexity then, 

the worst case scenario will be that both the two methods 

have the same number of operations. The positive effect of 

the Haar method is that, each spectral zone can be 

processed independently. This is significant in the sense 

that, if each of the zones is treated independently as a 

separate vector then this allows the possibility of all of 

them to be processed at the same time in parallel rather 

than sequentially one after another. This flexibility arises 

out of the fact that, the processing of one zone does not 

require the outcome of another’s and the zones can be 

considered through distributed arrays.  

The following section presents the conclusion of 

the paper. 

 

CONCLUSIONS 

The strength of any conventional cipher system 

relies on the underlying cryptographic Boolean functions 

employed in the system. The design of such systems 

requires that the employed Boolean functions meet 

specific security criteria. Two of such criteria are the 

correlation immunity and resiliency of a given Boolean 

function. In this paper, we presented an alternative view of 

such criteria from the Haar spectral transform point of 

view. The Haar along with the Walsh are the two methods 

considered suitable for representing Boolean functions. 

The paper exploited the analogy between the two 

transforms to derive the Haar general representation of the 

correlation-immunity and the resiliency security criteria.  

The paper presented the Haar-based conditions on 

which a given Boolean function should meet to be 

considered correlation-immune of order k (𝐶𝐼(𝑘)) or 

resilient of order k (𝑅(𝑘)). In addition, the paper presented 

a Haar-based algorithm for testing correlation-immunity of 

an arbitrary Boolean function including experimental 

results related to the algorithm. The presented results were 

based on a simulation study of the Haar-based algorithm in 

comparison to its Walsh-counterpart. The results portrayed 

the computational advantage of the Haar method over the 

Walsh approach for the correlation-immunity measure. 

The paper included as well, a discussion on the worst-case 

scenario with advantages and flexibility of the Haar 

method in conjunction with the lower order Walsh 

transform. The Haar method provides the flexibility to 

view the transformed function from local behaviour 
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perspective in terms of its sub-functions. This property of 

the Haar makes it more convenient as the properties of the 

sub-functions of the transformed function can be viewed 

directly from the Haar spectrum of the original function.  

Another flexibility of the Haar method as an advantage is 

that, it can be used along with the Walsh method as a 

hybrid method to analyse the respective Boolean 

functions. This property gives rise to the possibility of 

parallel processing of the Haar spectral zones in 

determining the presented cryptographic criteria. This 

hybrid approach is meant for further exploration in this 

research work. The work presented here is part of a 

research work conducted on analysis and synthesis of 

cryptographic Boolean functions. 
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