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ABSTRACT 

In the present paper, a new analytical technique is introduced for obtaining approximate periodic solutions of 

Helmholtz-Duffing oscillator. Modified Harmonic Balance Method (MHBM) is adopted as the solution method. A 

classical harmonic balance method does not apply directly for solving Helmholtz-Duffing oscillator. Generally, a set of 

difficult nonlinear algebraic equations is found when MHBM is applied. Investigating analytically for such kinds of 

nonlinear algebraic equations is a tremendously difficult task and cumbersome especially for large oscillation. In this 

study, the offered technique eradicates this aforementioned limitation and avoids numerical complexity. Using iterative 

homotopy perturbation method, only two or three iteration produces desired results even for large oscillation. It is 

remarkably important that a second-order approximate solution gives excellent agreement compared to exact ones. 

 
Keywords: helmholtz-duffing oscillator, harmonic balance method, iterative homotopy perturbation method. 

 

INTRODUCTION 

The nonlinear Helmholtz oscillator has received 

considerable attention especially in the last decade in 

nonlinear sciences and engineering. The interest arises 

from large number of applications in the mathematical 

interpretation of the engineering problems such as ship 

dynamics, oscillation of the human eardrum, dynamics of 

a particle moving in a cubic potential and oscillations of 

one dimensional structural system with an initial 

curvature. Along with the rapid progress of nonlinear 

sciences, an intensifying interest among with scientists and 

researchers has been already proposed varieties of 

approximate and numerical solution methods to solve 

Helmholtz-Duffing oscillator. The harmonic balance 

method was employed by Thywle [1] to analyze the forced 

oscillation of a Helmholtz-Duffing oscillator. Based on the 

Jacobi elliptic function, an analytical solution was 

obtained by Cveticanin for a hardening and softening 

Helmholtz oscillator [2]. The symmetry breaking 

phenomenon for a general forced Helmholtz-Duffing 

oscillator was studied by Cao et al. [3]. More recently, the 

Homotopy perturbation method was employed by Leung 

and Guo [4-5] to obtain approximate solutions of the 

Helmholtz-Duffing oscillator. A large variety of 

variational and perturbative methods commonly used for 

nonlinear oscillatory systems especially for strongly 

nonlinear oscillators have been recently extended mostly 

by He for instance, one can refer to the Modified He’s 
Homotopy Perturbation Method [6-8], He’s Modified 
Lindsted-Poincare Method [9], He’s Max-Min Approach 

Method [10], He’s Energy Balance Method [11-14], He’s 
Frequency Amplitude Formulation Method [15-16] and 

other classical perturbative and non-perturbative 

techniques including Homotopy Perturbation Method [17], 

Residue Harmonic Balance Method [18], Algebraic 

Method [19], Rational Energy Balance Method [20], 

Iteration Method [21-24], Harmonic Balance Method [25-

31], Rational Harmonic Balance Method [32] and so on. 

However, most of these methods have been considered 

only first-order approximation solution which leads to low 

accuracy. In addition, the aforementioned methods also do 

not have this ability to gain the solution in high precision. 

Furthermore, the solution procedures are tremendously 

difficult task and cumbersome especially for obtaining 

higher order approximation.  

In this situation, the approximate periodic 

solutions for the Helmholtz-Duffing oscillator are studied 

employing MHBM. Generally, a set of difficult nonlinear 

algebraic equations are found when MHBM is formulated. 

Sometime analytical solutions of these algebraic equations 

fail especially for large amplitude. In article Alam et al. 

[30], such nonlinear algebraic equations are solved in 

powers of a small parameter. The solutions derived (Alam 

et al. [30]) for Duffing equation agree with numerical 

solutions when ]0)0(,)0([
0

 xax  , )1(
0

a . 

Sometimes, higher approximations also fail to measure the 

desired results when 1
0
a . In present study, this 

limitation is removed. The second-order analytical 

approximate periodic solution has been obtained for 

nonlinear Helmholtz-Duffing oscillator. Considering the 

interesting property that the proposed technique not only 

provides accurate results but also it is more convenient and 

effective for solving more complex nonlinear problems. 

 The asymmetric nonlinear Helmholtz-Duffing 

oscillator is separated into two auxiliary equations 

applicable in positive and negative directions. Analytical 

expressions are then shown for the natural frequency of 

the oscillation. Dynamic responses are compared in time 

domain and also accuracy of the approximate solutions is 

evaluated. Error analysis is 

then carried out and performances of the different solution 

techniques are compared. 
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SOLUTION PROCEDURE  

A nonlinear second-order differential equation is 

of the form 

)(2

0
xfxx    and the initial condition 

 

]0)0(,)0([
0

 xax  ,                                  (1) 
 

where )( xf  is a nonlinear function such that 

)()( xfxf  , 0
0
  and   is a constant. 

Consider a second-order periodic solution of 

Equation (1) is in the form 
 

))3cos()cos((
0

tutax   ,                           (2) 
 

where 
0

a ,   and   are constants. If u1  and the 

initial phase 0
0
 , solution Equation (2) readily satisfies 

the initial conditions ]0)0(,)0([
0

 xax  . 

Substituting Equation (2) into Equation (1) and 

expanding )( xf  in a Fourier series, it converts to an 

algebraic identity 
 

)]3cos(),,()cos(),,([

)]3cos()9()cos()([

0301

22

0

22

00

tuaFtuaF

tuta




 


    

(3) 

 

Now equating the like coefficients of equal harmonic 

terms of Equation (3), the following nonlinear algebraic 

equations are found 
 

3

22

01

22

0
)9(,)( FuF           (4) 

 

Applying the first equation of Equation (4), 
2  is 

eliminated from other equation of Equation (4).  Substitute 

u1 , and simplification, second equations of 

Equation (4) reduce to the following form 
 

),,,,,(
0001
 uaGu  ,                       (5) 

 

where 
1

G  exclude respectively the linear terms of u . 

Now applying the iterative homotopy perturbation 

method (See Appendix) to obtained the value of u  is  
 


3210

uuuuu           (6) 
 

At long last, substituting the estimations of u  from 

Equation (6) into the first equation of Equation (4), the 

frequency   is determined. This completes the 

determination of all related unknowns for the proposed 

periodic solution as given in Equation (2). 

 

EXAMPLE 

 

The Helmholtz-Duffing oscillator 

The Helmholtz-Duffing oscillator is considered in 

this section with the governing equation given by 
 

0)1( 32  xxxx  , 0)0(,)0(
0

 xax  .            (7) 

 

Since the behavior of an asymmetric nonlinear 

oscillator is different in positive and negative directions, 

the equation can be conveniently studied in two parts [4-5] 
 

,0)()1( 32  xxsgxxx   for ,0x         (8) 
 

,0)()1( 32  xxsgxxx   for ,0x                 (9) 
 

  is an asymmetric parameter representing the 

extend of asymmetry. For 0  the equation governs 

motion of a Helmholtz oscillator and for 1  it denotes a 

Duffing differential equation. The system is assumed to 

oscillate between an asymmetric limit zone  ab, , for 

positive and b . Both ax   and bx   represent the 

turning points in which 0x , a  and b  are an unknown 

amplitude to be determined.   

We observed that, the application of classical 

harmonic balance method directly in Equation (8) does not 

work. For applicable of classical harmonic balance 

method, the quadratic term of Equation (8) ..ei 2)1( x  

can be expanded in a Fourier series as  
 



 





)3cos(

)cos()1()1(

3

1

0

2

12

2

tb

tbxbx
n

n




   (10) 

 

Herein ,,
31

bb  are calculated by the integration  
 

 

2/

0

2

12
])12cos[()1(

4





dnxb
n

,    (11) 

 

setting t  . Now let us consider the first-order 

approximate solution of Equation (8) is 
 

)cos(
0

tax
aa

        (12) 
 

From Equation (11) and Equation (12) we obtained 

1
b , ,

3
b ,   

 

,
3

)1(8 2

0

1 
 


a

b        (13) 

 




15

)1(8 2

0

3




a
b ,        (14) 

and so on. 

Now applying Equation (12) and Equation (10) along 

with Eqs. (13)-(14) into the Equation (8) and equating the 

coefficient of )cos( t
a

  the accompanying mathematical 

expression is acquired  
 

0
3

)1(8

4

3
1 02

2

0 




 aa

a
     (15) 

 

After simplification of Equation (15), the 

approximate natural frequency is the following 
 




3

)1(8

4

3
1 0

2

0



aa

a
     (16) 
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Without repeating the solution process, we can 

obtain for negative direction for the trial function 

)cos(
0

tbx
bb

  as 
 





3

)1(8

4

3
1 0

2

0



bb

b
    (17) 

 

Also let us consider the second-order approximate 

solution of Equation (8) is  
 

))cos()3(cos()cos(
00

ttuatax
aaaa

      (18) 
 

From Equation (18) and Equation (10) we obtained 

1
b , ,

3
b ,   

 

,
105

)485635)(1(8 22

0

1 
 uua

b


      (19) 

 




315

)17612021)(1(8 22

0

3

uua
b


 ,     (20) 

 

and so on.  

Now substitute Equation (18) and Eqs. (19)-(20) into the 

Equation (8) and then equating the coefficients of 

)cos( t
a

  and )3cos( t
a

  to zero are the following 
 

 

0
105

)485635)(1(8

)1(
4
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23211

2

0

2

2
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
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

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u
a
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a

      (21) 
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0
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9
4
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2

0

2

2
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











uua

u
a

uuuu
a

   (22) 

 

After disentanglement, Equation (21) diminish to 

 

 

)1(105

)485635)(1(8

)1(4

3
23211

2

0

2

0322

u

uua

u

a
uuu

a














    (23) 

 

By omitting of 2

a
  from Equation (22) by using 

Equation (23) and some modification, the following 

nonlinear algebraic equation of u  is 

0
2

23
)1(

9

256
16

2

21
)1(

315

9728
8

)1(
35

752

4

25
8

4
)1(
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8
:)(
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
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


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
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







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




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



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


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u

a
a

u
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u
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uf

  (24) 

 

Now applying the iterative homotopy perturbation method 

(See Appendix) to obtained the value of u  from Equation 

(24) is  

 


3210

uuuuu ,      (25) 
 

where 
0

u  is an initial approximation and the unknowns 


321

,, uuu  are  

)(

)(

0

0

1
uf

uf
u




 
 

2
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0

0

0

2
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
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






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0

0

0

0

0
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0

0

0

3
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6

1
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1

uf
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uf

uf

uf

uf
uf

uf

uf

uf
u

 

and so on. 

Now putting the value of u  from Equation (25) into 

Equation (23), the approximate natural frequency is 

determined the following 

 

 
)1(105

)485635)(1(8

)1(4

3
23211

2

0

2

032

u

uua

u

a
uuu

a 









         

       (26) 
 

Without repeating the solution process, we can 

obtain for negative direction for the trial function 

))cos()3(cos()cos(
00

ttuatbx
bbbb

   as 
 

0
2

23
)1(

9
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2
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)1(
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8
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4
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8

4
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





 






































ub
u

b
b

u
bb

u
bbbb

uf

   (27) 

 

Now applying the same iterative homotopy 

perturbation method (See Appendix) to obtain the value 

of u  from Equation (27) and substitute into Equation (23) 

the approximate natural frequency for negative direction 

as the following. 
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 
)1(105

)485635)(1(8

)1(4

3
23211

2

0

2

032

u

uub

u

b
uuu

b 











(28) 

Table-1. Comparison the obtained frequencies between the previously existing frequencies 

and the exact frequencies for 9.0 . 
 

 
 

 
 

Figure-1. A Comparison between the first-order 

approximate solutions of Equation (7) for 9.0  and 

10
0
a  together with corresponding previously existing 

solutions and numerical solutions. 

 

 
 

Figure-2. Relative error (%) for first-order approximate 

solutions of Equation (7) for 9.0  and 10
0
a . 
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Figure-3. A Comparison between the second-order 

approximate solutions of Equation (7) for 9.0  and 

10
0
a  together with corresponding numerical solutions. 

 

 
 

Figure-4. Relative error (%) for second-order approximate 

solutions of Equation (7) for 9.0  and 10
0
a . 

 

RESULTS AND DISCUSSIONS 

The approximation solutions and their relative 

errors (%) have been obtained by applying MHBM for the 

Helmholtz-Duffing oscillator. Comparing all 

approximation results with previously existing results and 

their corresponding numerical values are shown in Table-1 

and Figures 1-4. It can clearly be seen that the accuracy of 

the results obtained by offered technique (second-order 

approximation) is almost similar to exact solutions and 

better than those obtained previously by several authors. 

Moreover, it is mentioned in [4, 5, 11] that the relative 

error (%) of approximate natural frequencies have been 

increased with increasing initial amplitude. In addition, the 

solution procedures of many existing methods are 

tremendously difficult task and cumbersome especially for 

obtaining the higher approximations. On the other hand, 

the offered method gives excellent agreement even for 

large amplitude. It is noted that the solution procedure of 

the proposed method is simple, straightforward, quite easy 

and highly efficient. The advantages of this method 

include its analytical simplicity and computational 

efficiency, and the ability to objectively find better results 

for many other oscillatory problems arising in nonlinear 

sciences and engineering.  

 

CONCLUSIONS 

In this paper, an efficient analytical technique has 

been introduced based on a MHBM to determine 

approximate periodic solutions of the Helmholtz-Duffing 

oscillator. In comparison with corresponding numerical 

results, we have seen that the approximate solutions show 

a good agreement with exact solutions. Moreover, in 

compared with previously published methods the 

determination procedure of approximate solutions is 

straightforward and simple. The high accuracy and 

validity of approximate solutions assured as about the 

results and reveal this method can be used easily for 

strongly nonlinear oscillators. To entirety up, we can say 

that the technique introduced in this study for solving 

strongly nonlinear Helmholtz-Duffing oscillator can be 

considered as powerful, an efficient alternative of the 

previously existing methods.  
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APPENDIX 

A higher-order nonlinear algebraic equation is of 

the form 

0)( xf    (A1) 

Consider the nonlinear algebraic equation Equation 

(A1), and we construct a homotopy RRH  ]1,0[:  

which satisfy  

]1,0[,

,0)()()(),(
00




pRx

xpfxfxfpxH
 (A2) 

where p  is embedding parameter, 
0

x  is an initial 

approximation of Equation (A1). Hence, it is obvious that   

0)()()0,(
0
 xfxfxH  (A3) 

0)()1,(  xfxH   (A4) 

and the changing process of p from 0 to 1, refers to 

),( pxH from )0,(xH to )1,(xH . Applying the 

perturbation technique Javidi, [24], due to the fact that 

10  p  can be considered as a small parameter, we can 

assume that the solution of Equation (A2) can be express 

as a series in p  

 3

3

2

210
pxpxpxxx      (A5) 

When 1p , Equation (A2) corresponds to Equation 

(A1) and Equation (A5) becomes the approximate solution 

of equation (A1), that is [24]. 
 


 3210

1
xxxxxLimx

p
   (A6) 
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and in [24] the unknowns are  
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