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ABSTRACT  

This paper presents a design method for attitude control of an autonomous underwater vehicle(X4-AUV) based 

sliding mode control. We are interested in the dynamic modeling of X4-AUV because of its complexity. The dynamic 

model is used to design a stable and accurate controller to perform the best tracking and attitude results. To stabilize the 

overall systems, each sliding mode controller is designed based on the Lyapunov stability theory. The advantage of sliding 

mode control is it’s not being sensitive to model errors, parametric uncertainties and other disturbances. Lastly, we show 
that the control law has a good robust and good stability through simulation. 

 
Keywords: X4-AUV, sliding mode control, nonlinear. 

 

INTRODUCTION 

In recent years, underwater vehicles have been 

widely used for scientific inspection of deep sea, long 

range survey, oceanographic mapping, underwater 

pipeline tracking, exploitation of underwater resources and 

so on [1-2]. Underwater vehicles are difficult to control, 

due to nonlinearity, time variance, unpredictable external 

disturbances such as the environmental force generated by 

the sea current fluctuation and the difficulty in accurately 

modeling the hydrodynamic effect [3]. The well-

developed linear controllers may fail in satisfying 

performance requirements, especially when changes in the 

system and environment occur during the AUV operation. 

Therefore, it is highly desirable to have a robust control 

system that has the capacities of learning and adopting to 

the unknown nonlinear hydrodynamic effects, parameter 

uncertainties, internal and external perturbations such as 

water current or sideslip effect. In order to deal with 

parametric uncertainty and highly nonlinearity in the 

AUV's dynamics, many researchers concentrated their 

interests on the applications of robust control for 

underwater vehicles [4]. 

Sliding mode control (SMC) is a type of robust 

control design, has been successfully applied for dynamic 

positioning and motion control of underwater vehicles, 

because of its performance insensitivity to model 

mismatches and disturbances. Yoerger and Slotine [5] 

introduced the basic methodology of using sliding mode 

control for AUV application, and later Yoerger and Slotine 

[6] developed an adaptive sliding mode control scheme in 

which a nonlinear system model is used. They have 

investigated the effects of uncertainty of the hydrodynamic 

coefficients and negligence of cross coupling terms. 

Goheen et al. [7] have proposed multivariable self tuning 

controllers as an autopilot for underwater vehicles to 

overcome model uncertainties while performing auto 

positioning and station-keeping. Cristi et al. [8] proposed 

an adaptive sliding mode controller for AUV's based on 

the dominant linear model and the bounds of the nonlinear 

dynamic perturbations. Fossen and Satagun [9] designed a 

hybrid controller combining an adaptive scheme and a 

sliding mode term for the motion control of a remotely 

operated vehicle (ROV).  

An X4-AUV is fourthrusters AUV as shown in 

Figure-1.The control of the X4-AUV motion can be 

achieved by varying the speed of each thruster to change 

the thrust and torque produced by them. Each thruster 

produces both thrust and torque about its center of 

rotation, as well as a drag force opposite to the vehicle’s 
direction of travel. Driving the two pairs of thrusters in 

opposite directions removes the need for tail rudders. 

Consequently, longitudinal rotation is achieved by creating 

an angular speed difference between the two pairs of 

thrusters. Increasing or decreasing the speed of the four 

thrusters simultaneously permits forward acceleration. 

Rotation about the vertical and the lateral axis and 

consequently horizontal or vertical motion is achieved by 

tilting the vehicle. This is possible by conversely changing 

the thruster speed of one pair of thrusters as described in 

Figure-1. In spite of the four thrusters, an X4-AUV 

remains an under actuated and dynamically unstable 

system.  

 

 
 

Figure-1. X4-AUV thrusters (back view). 

 

This concept offers better payload and is simpler 

to build and control, which is a decisive advantage [10].If 

all thrusters are spinning at the same speed, with thrusters 
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1 and 3 rotating counterclockwise and thrusters 2 and 4 

clockwise, the net hydrodynamic torque, and hence the 

angular acceleration about the roll axis is exactly zero, 

which implies that any roll stabilizing rudders of 

conventional vehicles are not needed. Angular 

accelerations about the pitch and yaw axis can be caused 

separately without impacting the roll axis. Each pair of 

thrusters rotating in the same direction controls one axis, 

either yaw or pitch, and increasing thrust for one thruster 

while decreasing thrust for the other will maintain the 

torque balance needed for roll stability and induce a net 

torque about the yaw or pitch axis. 

In this paper, we present X4-AUV attitude 

control with sliding mode control method. The paper is 

organized as follows: the X4-AUV dynamic model, the 

proposed controller design, simulation results and 

conclusion. 

 

DYNAMIC MODEL OF AN X4-AUV 

There are 2 main reference frames: the earth fixed 

frame {E} attached to the earth, relative to the fixed origin 

and the body fixed frame {B} attached to the center of 

mass. Figure-2 shows the coordinate systems of an AUV, 

which consist of a right-hand inertial frame {E} in which 

the downward vertical direction is to be positive, and a 

right-hand body frame {B}. 

Letting � = ݔ] ݕ  T denote the centre of [ݖ

mass of the body in the inertial frame, and defining the 

rotational angles of the X, Y, and Z axes as � = [� � ߰]T 
, the rotational matrix R from the body 

frame {B} to the inertial frame {E} is reduced as: 

 




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R          (1) 

where cα denotes cos α and sα is sin α. 

 
Figure-2. Coordinate systems of AUV. 

 
Following a Lagrangian method, this section 

describes the dynamic model of the X4-AUV with the 

assumption of balance between buoyancy and gravity. The 

kinetic energy formula is: 

 ܶ = ௧ܶ௥௔௡௦ + ௥ܶ௢௧    (2) 

 

where ௧ܶ௥௔௡௦  and ௥ܶ௢௧  are the translational 

kinetic energy and the rotational kinetic energy is defined 

by: 

 

௧ܶ௥௔௡௦ = ͳʹ �ሶ�ܯ�ሶ  (3) 

௥ܶ௢௧ = ͳʹ �ሶ ሶ�ܬ �   (4) 

in which M is the total mass matrix of the body, 

and J is the total inertia matrix of the body. From the 

characteristics of added mass, it can be written as: 

  � = diag ሺ݉ଵ, ݉ଶ, ݉ଷሻ  = ݉௕ܫ + �ܯ ܬ   (5)  = diag (ܫ௫ , ௬ܫ , (௭ܫ  = ௕ܬ + �ܬ  (6) 

 

Here, ݉௕ is a mass of the vehicle, ܬ௕  is an inertia 

matrix of the vehicle and ܫ is a ͵ × ͵ identity matrix. 

Letting ߩ denote a density of the fluid and using 

the formulation of the added mass and inertia under the 

assumption of ݎଵ = ͷݎଶ and rଶ = ଷݎ  =  ଶݎ ,ଵݎ where ,ݎ

and  ݎଷthe added mass matrix ܯ�  and the added  inertia matrix ܬ� are: ܯ� = diag ሺͲ.͵ͻͶݎߨߩଷ, ͷ.ͻ͸ݎߨߩଷ, ͷ.ͻ͸ݎߨߩଷሻ (7)  ܬ� = diag ሺͲ, ʹͶ.ʹ͸Ͷͺݎߨߩହ, ʹͶ.ʹ͸Ͷͺݎߨߩହሻ (8) 

 

From the assumption of the balance between the 

buoyancy and the gravity, i.e., the potential energy ܷ = Ͳ, the Lagrangian can be written as: ܮ = ܶ –ܷ 

    = ௧ܶ௥௔௡௦ + ௥ܶ௢௧  

(9) 

The dynamic model of X4-AUV summarized as:  ݉ଵݔሷ = cos � cos߰ �ଵ ݉ଶݕሷ = cos � sin߰ �ଵ ݉ଷݖሷ = − sin � �ଵ ܫ௫�ሷ = �ሶ ሶ߰ ௬ܫ) − (௭ܫ + �ଶ ܫ௬�ሷ = �ሶ ሶ߰ ሺܫ௭ − ௫ሻܫ  − ௧ܬ ሶ߰Ω + ݈�ଷ ܫ௭ ሷ߰ = �ሶ�ሶሺܫ௫ − ௬ሻܫ  + + ௧�ሶΩܬ ݈�ସ 

(10) 

 

where �ଵ, �ଶ, �ଷ, ܽ݊� �ସ are the control inputs 

for the translational (x, y, and z-axis) motion, the roll (�-

axis) motion, the pitch (�-axis) motion, and yaw (߰-axis) 

motion, respectively. A detailed derivation for dynamics 

model (10) given in [11]. 

Defining that ܾ is a thrust factor, d is a drag 

factor, taken from ���  = �߱�ଶ then �, �ଵ,�ଶ, �ଷ, ܽ݊� �ସ 

are given by: 

http://www.arpnjournals.com/
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                                                                        (12) 

 Ω = ሺωଶ + ωସ − ωଵ − ωଷሻ uଵ = fଵ + fଶ + fଷ + fସ  = bሺωଵଶ  + ωଶଶ + ωଷଶ + ωସଶሻ uଶ = dሺ−ωଶଶ  − ωସଶ +ωଵଶ +ωଷଷሻ uଷ = fଵ − fଷ = bሺωଵଶ − ωଷଶሻ uସ = fଶ − fସ = bሺωଶଶ − ωସଶሻ 

(11) 

 

This X4-AUV dynamic model has 6 outputs, 

while the number of inputs is four. We are unable to 

control all states at the same time. Then, in order to track a 

desired position the controller outputs x, y, z and  are 

needed. This means we need to control the attitude, which 

is , , and  for smooth and stabilize the motions. 

 

SLIDING MODE CONTROL 
Nonlinear model may have impression or 

inaccuracies due to parametric uncertainties or choice of a 

simplification of the systems dynamic. One of the most 

approached methods to deal with the model uncertainties 

is to use robust control, and sliding mode control is one of 

it. 

A Sliding mode control is a Variable Structure 

Control (VSC). Basically, VSC includes several different 

continuous functions that map plant state to a control 

surface. The switching among these functions is 

determined by plant state which is represented by a 

switching function. 

Sliding mode control used switching control law 

to drive the nonlinear system trajectory on to a chosen 

surface and to maintain the state trajectory on the surface. 

When system state trajectory is above or below the 

surface, the switching control law should drive the 

trajectory back toward the surface as shown in Figure-3. 

This surface is called sliding surface or sliding 

manifold. Lyapunov theorem is used to determine the 

motion of state trajectory onto sliding surface. By using 

the Lyapunov function bound a chosen gain of switching 

control law so that the derivative of Lyapunov function 

must be negative definite for guarantee motion of state 

trajectory and system stability. 

 

 
Figure-3. Possible trajectories around sliding surface. 

 

 

 

CONTROLLER DESIGN 

 The model (10), can be rewritten in a state-

space form ),( UXfX  by introducing  � =ሺݔଵ⋯ݔଵଶሻ� � ℜଵଶ as state vector of the system as follows: 

 �ଵ = � �ଶ = �ሶଵ = �ሶ �ଷ = ସ� ݕ = �ሶଷ = ሶݕ  �ହ = ଺� ݖ = �ሶହ =  ሶݖ
�଻ = ∅ �଼ = �ሶ଻ = �ሶ  �ଽ = � �ଵ଴ = �ሶଽ = �ሶ           �ଵଵ = ߰ �ଵଶ = �ሶଵଵ = ሶ߰  

 

where the inputs  ܷ = ሺ �ଵ⋯�ସሻ� � ℜସ.  

 

 
 

Figure-4.  Connection of rotational and translational 

subsystems. 

 

From (10) and (12), we obtain: 

 

݂ሺ�, ܷሻ =

( 
   
   
   
   

�ଶሺcos � cos߰ሻ ଵ௠భ �ଵ�ସሺcos � sin߰ሻ ଵ௠మ �ଵ�଺ሺ− sin �ሻ ଵ௠య �ଵ�଼�ଵ଴�ଵଶ ቀ୍౯−୍౰୍౮ ቁ + ௟୍౮ �ଶ�ଵ଴�଼�ଵଶ (୍౰−୍౮୍౯ ) − ୎t୍౯ �ଵଶΩ + ௟୍౯ �ଷ�ଵଶ�଼�ଵ଴ ቀ୍౮−୍౯୍౰ ቁ + ୎t୍౰ �ଵ଴Ω + ௟୍౰ �ସ) 
   
   
   
   

      (13) 

 

with:  �ଵ = (I୷  − I୸)/I୶  �ଶ = ሺI୸  − I୶ሻ/I୷  �ଷ = Jt/I୷  �ସ = Jt/I୸  �ହ = (I୶  − I୷)/I୸ 

ܾଵ= ͳ/ I୶ ܾଶ =݈/ I୷  ܾଷ= ݈/ I୸ 
  

    �௬ = cos ଽݔ sin             ଵଵݔ

http://www.arpnjournals.com/
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            �௭ = sin          ଵଵݔ

 

It is worthwhile to note in the latter system that the angles 

and their time derivatives do not depend on translation 

components. On the other hand, the translations depend on 

the angles. We can ideally imagine the overall system 

described by (13) as constituted of two subsystems, the 

angular rotations and the linear translations, see Figure-4. 

The controller was splitted into 2 sections: sliding 

mode for attitude control, and PD controller for the 

altitude and position control. 

 

Altitude control 

 Let us consider the simple task for the X4-AUV 

to be translated to a particular position x = x
d
,   y = y

d
 and 

z = z
d
. The dynamics of the x-, y- and z-positions are 

described by lines 1 and 2, 3 and 4, and 5 and 6 in system 

(13), i.e., x-position: 

      




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





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m

u
xx
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x

x




                                    (14) 

 y-position: 

      


















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



2

1
119

4

4

3

)sin(cos
m

u
xx

x

x

x




                           (15) 

 z-position: 

      


















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



3

1
9

6

6

5

)sin(
m

u
x

x

x

x




                                     (16) 

By the previous considerations in the control for 

the subsystem of the angular rotations in [12], we ensure 

that starting from an initial condition where 2/)(  XV , 

the angles and their velocities are constrained in this 

hypersphere of
6 . In this case 0coscos

119
xx , 

0sincos
119
xx  and 0sin

9
 x for all the trajectories of 

the system under the previous control law. Systems (14), 

(15) and (16) can be linearized by simply compensating 

the weighted force by  

x-position: 

                    
119

11

1
coscos

ˆ
xx

um
u                                       (17) 

 y-position: 

                   
119

22

1
sincos

ˆ
xx

um
u                                        (18) 

 z-position: 

                    
9

33

1
sin

ˆ
x

um
u


                                                (19) 

where 
1

û , 
2

û  and 
3

û  are additional terms. By 

this partial feedback linearization [12], (14), (15) and (16) 

become 

x-position: 

                              














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2

1

û

x

x

x




                                     (20) 

or                                                        

                              







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



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1
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e
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


                                  (21) 

 y-position: 

                              



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







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x

x




                                     (22) 

or                          

                               



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
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


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e

e




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z-position: 

                               



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







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
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6
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x




                                    (24) 

or                    

                               



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








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



3

6

6

5

û

e

e

e




                                 (25) 

where , 6,,1i . Adopting a 

simple linear state feedback stabilization law

28171
ˆ ekeku  , 410392

ˆ ekeku   and 6125113
ˆ ekeku   

we can stabilize the position by placing the poles of the 

subsystem in any position in the complex left half plane. 

 

Atitude control 

 The mapping (13) is partially used to design the 

sliding-mode controller for the rotations subsystem of the 

X4-AUV. The first step in this design is similar to the one 

for the backstepping approach [13][14], except for the 

equation (11) were S2 (Surface) is used instead of z2 for 

more clearance.            ݏଶ = ଼ݔ  − –ሶ଻dݔ αଵݖଵ                                            (26) 

 

For the second step we consider tha augmented Lyapunov 

function: 

         Vሺݖଵ, ଶሻݏ = ଵଶ ሺݖଵଶ +  ଶଶሻ                                        (27)ݏ

 

The chosen law for the attractive surface is the time 

derivative of (26) satisfying   )0ss ሶଶݏ  : ଶሻݏሺ݊݃�ݏ݇− = − ݇ଶݏଶ       = ሶଶݔ − ଵ�ሷݔ − �ଵݖଵሶ                                                    (28) 

      = �ଵݔସݔ଺ + �ଶݔସ� +  ܾଵ ଶܷ − ଵ�ሷݔ + �ଵሺݖଶ+�ଵݖଵሻ   
 

As for the backstepping approach, the control U2 is 

extracted: 

 �ଶ = ଵ௕భ (− ܽଵݔଵ଴ݔଵଶ − αଵଶݖଶ– ݇ଵݏ�݃݊ሺݏଶሻ − kଶݏଶ)      (29) 

 

The same steps are followed to extract U3 and  U4. �ଷ = ଵ௕మ (− ܽଶݔ଼ݔଵଶ −  �ଷݔଵଶΩ − αଶଶݖଷ– ݇ଷݏ�݃݊ሺݏଷሻ −kସݏଷ)                                                                              (30) 
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�ସ = ଵ௕య (− ܽହݔ଼ݔଵ଴ −  �ସݔଵ଴Ω − αଷଶݖହ– ݇ହݏ�݃݊ሺݏସሻ −k଺ݏସ)                                                                              (31) 

 

with: 

ଷݖ} = − ଽdݔ ଷݏଽݔ = ଵ଴ݔ  − –ሶଽdݔ αଶݖଷݖହ = − ଵଵdݔ ଺ݏ ଵଵݔ = ଵଶݔ − ሶଵଵdݔ − αଷݖହ 

 

where αଶ, αଷ, ݇ଵ, ݇ଷ, ݇ହ  is a positive constant. 

 

 

SIMULATION RESULTS 

 The controllers have been implemented on 

MATLAB and the simulation results for stabilizing an X4-

AUV are shown in Figure-5. The system started with an 

initial state 
T

X )0,
4

,0,
4

,0,
4

,0,0,0,0,0,0(
0


 and we 

wanted the final x-positions, at 3 m with all zero 

orientation angles. As shown in Figure. 5, it is seen that all 

orientation angles, and x-positions converge to the targets, 

where α1 = 1, α2 = 1, α3 = 1, k1 = 1, k2 = 1, k3 = 1, k4 = 3, k5 

= 1.0, k6 = 2.0, k7 = 1.0, k8 = 2.0. The physical parameters 

for X4-AUV that has been used for simulating the 

dynamic model presented in Table 1. Note that the 

simulations for stabilizing the X4-AUV in x-, y- and z-

positions were implemented independently. The other 

results for y- and z-position are not included in this paper. 
 

Table-1. Physical parameters for X4-AUV. 

Parameter Description Value Unit 

mb 

ρ 
Mass 

Fluid density 

21.43 

1023.0 

Kg 

kg/m3 

l 

r 

Distance 

Radius 

0.1 

0.1 

M 

m 

b 

d 

Thrust factor 

Drag factor 

0.068 

3.617e4 

Ns2 

Nms2 

Jbx 

Jby 

Jbz 

Jt 

Roll inertia 

Pitch inertia 

Yaw inertia 

Thrust inertia 

0.0857 

1.1143 

1.1143 

1.1941e4 

kgm2 

kgm2 

kgm2 

Nms2 

 

 

 
(a) Attitude and attitude rate control for x-position 
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(b) A Position and position rate control for x-position 

 

 

 
(c) A control inputs and control inputs in rotation 

 

Figure-5.  Sliding mode controller: A case for stabilizing 

the orientation angles and x-axis position. 

 

CONCLUSION 

 This paper has considered a sliding mode control, 

a type of nonlinear control technique and a nonlinear 

unstable system, X4-AUV which has several applications. 

The control equations have been derived for X4-AUV 

dynamics. The control implementation has been exercised 

through simulation in MATLAB. The results have been 

presented here. The sliding mode control technique based 

on Lyapunov theory stabilize the position and angles of an 

X4-AUV. 
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	The dynamic model of X4-AUV summarized as:
	where ,𝑢-1,., 𝑢-2.,,  𝑢-3.,,𝑎𝑛𝑑 𝑢-4. are the control inputs for the translational (x, y, and z-axis) motion, the roll (𝜙-axis) motion, the pitch (𝜃-axis) motion, and yaw (𝜓-axis) motion, respectively. A detailed derivation for dynamics model...
	Defining that 𝑏 is a thrust factor, d is a drag factor, taken from ,𝜏-𝑀𝑖. =𝑑,𝜔-𝑖-2. then 𝛺,,𝑢-1,.,𝑢-2.,,𝑢-3.,,𝑎𝑛𝑑 𝑢-4. are given by:

