
                            VOL. 10, NO. 23, DECEMBER 2015                                                                                                             ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 

17514 

A COMPLETE INVESTIGATION OF USING WEIGHTED KERNEL 

REGRESSION FOR THE CASE OF SMALL SAMPLE PROBLEM  

WITH NOISE  

 
Zuwairie Ibrahim

1
, Mohd Ibrahim Shapiai

2
, Siti Nurzulaikha Satiman

1
, Mohd Saberi Mohamad

3
,  

and Nurul Wahidah Arshad
1
 

1Faculty of Electrical and Electronics Engineering, Universiti Malaysia Pahang, Pekan, Malaysia 
2Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia 

3Faculty of Computing, Universiti Teknologi Malaysia, Johor Bahru, Malaysia 

E-Mail: zuwairie@ump.edu.my 

  

ABSTRACT  
Weighted kernel regression (WKR) is a kernel-based regression approach for small sample problems. Previously, 

for the case of small sample problems with noise, we have done preliminary studies which investigated different learning 

techniques and different learning functions, separately. In this paper, a complete investigation of using WKR for the case 

of noisy and small training samples is presented. Analysis and discussion are provided in detail. 

 
Keywords: weighted kernel regression, small sample problem, noise, genetic algorithm, ridge regression, and LOOCV. 

 

INTRODUCTION  
There are numerous algorithms for regression 

problems, which perform well, provided the number of 

training samples is sufficient. However, the performance 

of those algorithms degrades as the size of samples 

decreases.  

Weighted kernel regression (WKR) has been 

introduced [1] to solve small sample regression problems. 

The WKR is based on Nadaraya-Watson kernel regression 

(NWKR). To do regression using WKR, one must 

estimate the weight parameters, W, before it can be used to 

predict unseen samples. The estimation of the weight 

parameters depends on the learning functions and learning 

techniques. 

Even though WKR has a good ability to perform 

accurate regression for the case of small training samples, 

its performance degrades when noisy training samples are 

considered. To extend the capability of WKR when noisy 

and small training samples, previously, we have 

investigated different learning techniques [2] and different 

learning functions [3], separately. In this paper, those 

preliminary studies are combined in order to have a 

complete algorithm of using WKR for the case noisy and 

small training samples. To obtain noisy sample, Gaussian 

noise is added to the training samples as illustrated in 

Figure-1. In this figure, it is shown that the entire noisy 

training samples deviate from the trajectory of the true 

function, which make accurate regression difficult to 

obtain. 

 

WEIGHTED KERNEL REGRESSION  

The concept of the WKR is introduced in the 

following. Given training samples, {ݔ� , �ଵ=�{�ݕ , where n is 

the number of training samples, ݔ� ∈ ℜ� is the input and ݕ� ∈ ℜ is the target output. WKR is the technique to 

regress the output space by mapping the input space ℜ� to ℜ. The existing WKR relies on the Gaussian kernel 

function as given in Equation (1). 
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where h is the smoothing parameter. The 

selection of smoothing parameter, h, is important to 

compromise between smoothness and fitness [2]. The 

Equation (2) is employed to determine the value of h. 
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 The kernel matrix K = [Kij], where i = j = 1,..., n, 

with a generalised kernel matrix based on the Gaussian 

kernel, is given in Equation (3). The matrix K transforms 

the linear observed samples to non-linear problems by 

mapping the data into a higher dimensional feature space.  
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In WKR, the most popular function for regression 

problems is used which to minimize the RSS to estimate 

the weight parameters, W, as follows: 
 

  2
minmin yKwWf                                                 (4)  

 

Once the optimum weight is estimated, the model 

is ready to predict any unseen samples (test samples). The 

test samples can be predicted by using Equation (5). 
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EXTENSION OF WKR – LEARNING FUNCTIONS 

Minimizing the error term only may lead to 

numerical instabilities and bad generalization 

performance. The instability yields a high variance model 

which potentially produces large differences of weight 

parameter values given different training samples, even 

minor perturbation of the same training samples. In 

general, this instability can be addressed by restricting the 

class of permissible solution by introducing the 

regularization term to the formulated learning function. 

Therefore, the learning functions should comprise not only 

the error term but also the regularization term as given in 

Equation (6). 

 

 
 

Figure-1. Illustration of non-noisy and noisy training 

samples. Note that for the case of noisy training samples, 

Gaussian noise has been added. 
 

tion termregulariza  error term function learning      
(6) 

 

The addition of regularization term is to avoid the 

magnitude of estimated weight parameters to be very 

large, thereby avoiding over-fitting of the regression. 

Hence, the addition of regularization term gives 

advantages to the regression quality. In general, the error 

term and regularization term can be formulated either with 

L1-norm or L2-norm function. Therefore, we formulated 

the four learning functions with combination of L1-norm 

and L2-norm as error term and regularization term based 

on the WKR concept.  

In general, the formulated learning functions can 

be categorized into two types; (1) closed form solution 

function and (2) non-closed form solution function. Closed 

form solution function can be derived analytically as 

compared to non-closed form solution function when 

estimating the weight parameters. For non-closed form 

function, there is no analytical solution can be obtained as 

the function is non-differentiable. As evolutionary 

computing offers an effective way to estimate the weight 

parameters for non-differentiable function, we employ GA 

as a learning technique for non-differentiable function. 

The formulated learning function with L1-norm term either 

in error term or regularization term is considered as non-

closed form solution function. The formulated learning 

functions which based on learning function in the existing 

WKR are given in Equation (7) to Equation (10).  
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where K is kernel matrix, W is weight parameter 

to be estimated, Y is observed output domain values, ‖. ‖ଵ 

is L1-norm function, ‖. ‖ଶ L2-norm function, and � is a free 

parameter that control the generalization of the regressed 

function. 

Cross-validation is a technique to evaluate model 

in order to generalize the predictive performance when 

predicting unseen samples. The need of cross-validation is 

important in model selection as some model’s parameters 
has to be estimated. In general, cross-validation separates 

the available training samples into two sets, called the 

training set and validation set. Training set is used to build 

the model and validation set is used to evaluate the model 

based on the selected model’s parameter with respect to 
the cross-validation error.  Typically, the cross-validation 

error is measured based on MSE performance criterion. 

The model with the lowest cross-validation error is then 

used as a final model which possibly offers a better 

generalization performance. 

There are various cross-validation techniques 

available in literatures such as hold-out method, K-fold 

cross-validation and leave-one-out cross-validation 

(LOOCV). In general, LOOCV is very expensive to 

compute but it is able to retrieve a lot of information from 

the available training samples [5]. As the focus of the 

study is to solve small and limited training samples 

problem, LOOCV is found to offer several advantages in 

terms of information retrieval and computational time. In 

general, LOOCV separates the available training samples 

into a training set of size -1 and a validation of size 1. For 

every selected model’s parameter, there are different 
combinations of training and validation set. The lowest 

cross-validation on the validation set is used as an 

indicator to select the final model.    

However, since the number of weight parameters 

in WKR is determined based on number of available 

training samples, the found model from LOOCV cannot be 

used in the final model as there are only n-1 weight 

parameters. LOOCV is introduced only to determine the  � 

value in regularization term of the employed learning 

function for final model. Hence, the h value is kept to be 

the same either for � estimation or for used in the final 

model. It is to ensure the relationship information of the 

available training samples is retained when estimating � 

value as the estimated � value will be used the final model. 

As mentioned previously, the estimated � value is chosen 

after the evaluation phase based on the lowest cross-

http://www.arpnjournals.com/
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validation error from several initialized � values. The 

same employed learning function and learning technique 

in estimating the � value will be used in the final model. 

The estimated � value is derived based on the Equation 

(11). 
 

                      (11) 
 

where �−�ሺ�−�; �ሻ = �−��−�, �̂ is the estimated � 

value to be used in final model, |�| refers to a set of 

initialized � values, n refers to number of training samples, �−� , �−� ∈ ℜଵ×ሺ�−ଵሻ is the kernel matrix (row vector) of 

input space of ith left-out training set with the defined h, �−�,�−� ∈ ℜሺ�−ଵሻ×ଵ is the estimated weight parameters 

of the corresponding training set with initialized � value, 

and ݕ−� , �−ݕ ∈ ℜ is the output domain of ith left-out 

training set.  

 

EXTENSION OF WKR – LEARNING TECHNIQUES 

Previously, iteration, ridge regression (RR), and 

genetic algorithm (GA) have been investigated in using 

WKR for the case of noise and small training samples [2]. 

The RR only can be used to solve closed-form solution 

function by differentiating Equation. (7) with respect to W. 

Prior to the differentiation, Equation. (7) is expanded to be 

Equation (12). 
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The analytic solution for the estimated weight 

parameter is given in Equation (13). 

 

Table-1. Setting parameters. 
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where I is an identity matrix of size n×n and �̂ is 

the estimated weight parameter. Examining Equation (13), 

the addition of L2-norm regularization term is simply adds 

a positive constant to the diagonals of K
T
K, to make the 

matrix non-singular.  

 

 
 

Figure-2. Graphs show the result of 100 experiments to 

predict v = u
2
 with n=5. 

 

GA was also employed in estimating weight 

parameter. As all the formulated learning functions are 

categorized as continuous search space, therefore, real-

coded GA [5] was employed in finding the optimal 

solution. 

 

EXPERIMENTS AND RESULTS 

The experiments were carried out in two sub-

problems; (1) investigation on learning techniques and (2) 

investigation on formulated learning functions. Prior to 

these two investigations, free parameter, � has firstly to be 

estimated using LOOCV and a grid of 101 test samples (l 

= 101) is generated in the interval [0,1]. In this study, three 

non-linear functions as formulated in Equation (14), 

Equation (15), and Equation (16), were used. 
 

 10: 1Test 2
,,   xxy                                                   (14) 

 

 109.002.001.0: 2Test 32
,,   xxxxy                  (15) 

 

 
 

Figure-3. Graphs show the result of 100 experiments to 

predict v = 0.01u + 0.02u
2
 + 0.9u

3
 with n=5. 
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Figure-4. Graphs show the result of 100 experiments to 

predict v = 1-exp (-2u
4
) with n= 5. 

 

    102exp1: 3Test 4
,,   xxy                                 (16) 

 

where the output space, y, is contaminated with 

Gaussian noise  1.0,0~N . Initially, all the parameter 

settings for every investigated learning technique were 

predefined except for RR technique as it is based on 

analytical solution which derived from inversion of 

matrix. The parameter settings are summarized in Table-1. 

The experiment was repeated 100 times for every problem. 

In each run only five randomly generated training samples, 

S, were used. The input space, X, is pre-defined in the 

range of domain value with the corresponding output 

space, y. Performance criterion based on MSE was used to 

validate the quality of prediction. To investigate the best 

learning technique, we limit the investigation to only one 

formulated learning function which is given in Equation 

(7) as it can be solved analytically.  

The quality of prediction for every technique for 

three different problems is shown in Figure-2, Figure-3, 

and Figure-4. In general, GA offers the lowest average 

MSE for all problems and the existing WKR with iteration 

technique fails to capture a good regression curve in all 

problems by recording the highest average MSE for all 

problems.  
 

 
(a) 

 
(b) 

 

 
(c) 

 

Figure-5. Quality of prediction (a) Type 1 (b) Type 2 (c) 

Type 3. 

 

We also demonstrate one example of regression 

quality for all non-linear function types for all techniques 

in Figure-5. The plotting results show that the existing 

WKR is trapped into over-fitting problem in all problems. 

Meanwhile, the other techniques at least can capture the 

trajectory of the non-linearity of the curve in all problems. 

 

 
(a) 
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(b) 

 
(c) 

 

Figure-6. Graphs show the result of 100 experiments to 

predict v = 1-exp(-2u
4
) with n= 5 and contaminated by 

Gaussian noise (a) N~(0,0.1) (b) N~(0,0.3), and (c) 

N~(0,0.5). 

 

To investigate the best learning function, 

Equation (7) to Equation (10) are considered. The learning 

function with L1-norm term is non-differentiable function. 

Hence, an analytic form solution when minimizing the 

corresponding learning function in estimating the weight 

parameter cannot be obtained. This drawback has led to 

the use of GA. 
 

 
Figure-7. Computational time without estimated �̂ (left) 

and with estimated �̂ (right). 

 
 

Figure-8. Example of convergence curve for Type 1 

function with noise at 0.1. 

 

 
 

Figure-9. Distribution of weight parameter for the three 

learning techniques in solving Type 1 function with noise 

at 0.1. 

 

DISCUSSION 

Generally, the results of the investigation show 

that the capability of WKR can be improved with the 

investigated learning techniques and formulated learning 

functions. The quality of the predictions for all 

investigations for all problems is significantly improved as 

compared to the existing WKR. 

There are three main features to be considered 

when selecting the learning technique; (1) simplicity, (2) 

computational time and (3) flexibility. As the name 

implies, simplicity relates to how easy the technique in 

estimating the weight parameter. Computational time is a 

measurement of how fast the technique estimates the 

weight parameters in time. Finally, the term flexibility 

refers to the capability of the technique in solving closed-

form solution and non-closed form solution functions.  

The iteration technique can be considered as simple 

technique with fast computational time. RR has fast 

computational time and slightly flexible as it only limits to 

solve closed-form solution function. Meanwhile, GA 

offers a good flexibility as it can solve closed-form 

http://www.arpnjournals.com/
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solution function and non-closed form solution function 

with longer computational time. The recorded 

computational times of the three techniques in regressing 

Type 1 function with noise at 0.1 are shown in Figure-7. 

The bar graph on the right side shows the time 

consumes by the three weight estimation techniques in 

finding the model by assuming the   value is available. It 

shows GA slightly requires longer computational time as 

compared to the RR and iteration technique. Meanwhile, 

the bar graph on the left side refers to the computational 

time of the three techniques in finding the final model 

without having value. Therefore, in finding the final model   

has first to be estimated. In practice, longer computational 

time is required for GA as   is not possibly available. It is 

shown that GA is absolutely requires longer time as 

compared to the RR and iteration technique. However, the 

computational time for GA and iteration technique 

completely depends on the iteration number, population 

size, and stopping condition as compared to the RR 

technique regardless to the size of the training samples. 

We also show the convergence curve at training phase for 

GA and iteration technique in estimating the weight 

parameters, as shown in Figure-8. As iteration technique 

does not offer a mechanism to minimize the regularization 

term, therefore, the convergence curve of the iteration 

technique reaches to very small error.  

Minimizing the error term only will cause large 

variance model. Implicitly, the large variance model refers 

to large magnitude of weight parameters values. The 

regularization term can avoid this type of problem by 

compromising between minimizing the error term and 

minimizing the magnitude of weight parameter values. In 

Figure. 9, the distribution of weight parameters value of 

the three techniques when regressing Type 1 with noise 

level at 0.1 is shown. In general, iteration technique has 

the largest variance model and GA has the lowest variance 

model. As iteration technique does not provide a 

mechanism to minimize the regularization term, the 

estimated weight parameter value varies from very small 

negative value to very large positive value as compared to 

RR and GA.  The implication of large variances of the 

estimated weight parameter values for iteration technique 

is the over-fitting problem. Meanwhile, the lowest 

variance model of GA produces the lowest average MSE 

as compared to RR and iteration technique. However, the 

addition of regularization term may also cause an under-

fitting problem when the average of estimated weight 

parameter value is too small. 

In general, the quality prediction of learning 

function with L2-norm error term is better than L1-norm 

error term. The learning function with L2-norm error term 

and L1-norm regularization term gives a good quality of 

prediction for noise level at 0.1 and 0.5. Meanwhile, 

learning function with L2-norm error term and L2-norm 

regularization term gives a good quality of prediction for 

noise level at 0.3. However, the difference of the quality 

prediction error between the two above-mentioned 

learning functions is small.  

In Figure-10, the distribution of weight parameter 

values for all investigated learning functions when 

regressing Type 3 function with noise level at 0.1 is 

shown. The learning function with L1-norm regularization 

term shows sparseness solution as the median value of the 

distribution centralized at value close to zero as compared 

to learning function with L2-norm regularization term. 

The sparseness solution offers slightly smaller model as 

the estimated weight parameter value close to zero. 

However, we found that this feature is not substantially 

important when addressing small training samples 

problem. 

 

 
 

Figure-10. Distribution of weight parameter values for the 

learning functions in solving Type 3 function with noise at 

0.1. 

 

CONCLUSIONS 

A complete extension of WKR is proposed to 
address regression problem with noisy training samples. 
The investigation branches into two parts (1) investigation 
on weight parameters techniques and (2) investigation on 
formulated learning functions. Prior to these two 
investigations, the free parameter value has firstly to be 
estimated. The improvement, in terms of quality of 
prediction is experimented and presented. We found that in 
general, GA is flexible but requires more time to obtain 
weight parameters. In addition, for learning functions, the 
L2-norm error term is better than L1-norm error term. 
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