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ABSTRACT  

The particle swarm optimization (PSO) algorithm, which uses the best experience of an individual and its 

neighborhood to find the optimum solution, has proven useful in solving various optimization problems, including multi-

objective optimization (MOO) problems. In MOO problems, existing multi-objective PSO algorithms use one or two 

leaders to guide the movement of every particle in a search space. This study introduces the concept of multiple leaders to 

guide the particles in solving MOO problems. In the proposed Multi-Leader PSO (MLPSO) algorithm, the movement of a 

particle is determined by all leaders that dominate that particle. This concept allows for more information sharing between 

particles. The performance of the MLPSO is assessed by several benchmark test problems, with their convergence and 

diversity values are computed. Solutions with good convergence and diversity prove the superiority of the proposed 

algorithm over MOPSOrand algorithm. 

 
Keywords: particle swarm optimization, multi-objective optimization, multiple leaders, convergence, diversity. 

 

INTRODUCTION  

 Particle Swarm Optimization (PSO) is a 

population-based stochastic optimization algorithm, 

inspired by the social behavior of bird flocking [1]. The 

PSO algorithm, introduced by Kennedy and Eberhart, 

consists of a group of particles that traverse a search space 

seeking an optimum solution according to a particular 

objective function. The movement of a particle is 

subjected to its own best found solution and the best found 

solution in the neighborhood known as leader.  

 Multi-objective Optimization (MOO) is a type of 

optimization problem that involves more than one 

objective function. These objective functions often conflict 

with each other, and hence, it is not possible to find a 

single best solution. Thus, a variant of the PSO algorithms 

known as Multi-Objective PSO (MOPSO) has been 

introduced for solving MOO problems [2]. Usually, an 

external archive is used to store a set of non-dominated 

solutions and the leader is determined based on the non-

dominate solutions. 

 A variety of Multi-objective PSO algorithms 

have been published to date. From the literature review, it 

is found that most MOPSO algorithms use a leader to 

guide particles’ movement but with different selection 
strategy. For example, the leader can be selected from the 

non-dominated solutions based on their fitness value, such 

as crowding distance [3], particle influence on diversity to 

the Pareto front [4], niche count [5], the nearest neighbor 

density estimator [5], and the sigma value [6].  

 Besides, the leader can be selected from the non-

dominated solutions according to their location in 

objective space. A number of approaches have been 

investigated. As such, non-dominated solutions can be 

divided into several hypercubes [7] before the selection. In 

[8], the dominate trees data structure [9] is used to select 

leader from the nearest members in objective space. The 

“stripes” mechanism [10] divides the objective space into 

several stripes for leader selection. The leader can also be 

determined according to the domination between a particle 

and the non-dominated solutions [11]. 

More than one leader approach has been 

introduced in [12]. In particular, two different “guiders”, 
or leader, has been employed in solving the MOO 

problems. The first guider is randomly chosen from the 

non-dominated solutions, while the second guider is the 

non-dominated solution with the largest crowding distance 

value.  

Since the search in MOPSO algorithms is driven 

by an external archive, a number of non-dominated 

solutions in the archive may benefit different particles. In 

other words, each particle may need a different set of non-

dominated solutions as leader. This mechanism would 

prevent a particular particle from being trapped in local 

optima, which is the natural weakness of PSO algorithm 

[13]. In this study, an alternative algorithm, which is based 

on more than two leaders, is proposed. The proposed 

algorithm is called Multi-Leader PSO (MLPSO). 

Note that similar concept has been employed in 

[14]. However, different equation has been used in 

updating the position of particles. Moreover, they solved 

multi-objective problems in binary search space.  

 

PARTICLE SWARM OPTIMIZATION 

Consider an N-dimensional search space and I 

number of particles. The fitness is calculated based on 

each particle’s position, pi (i = 1, 2, …, I). The velocity, 

vi(t), is updated for each dimension with the cooperation of 

http://www.arpnjournals.com/
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the best position found by the particle, pBesti, and among 

all particles, gBest, as in Equation (1). 

 

vi(t + 1) = vi(t) + c1r1[pBesti – pi(t)] + c2r2[gBest – pi(t)]  

(1) 

 

where ω is the inertia weight. The values c1 and 

c2 are the cognitive and social coefficients, respectively, 

and both are positive constants that define the tendency to 

move toward pBest and gBest, while r1 and r2 are both 

standard uniformly distributed random values, U[0,1]. For 

each dimension, the particle position is then updated 

according to Equation (2). 
 

 
 

Figure-1. Pseudocode for general MOPSO algorithm. 

 

pi(t + 1) = pi(t) + vi(t + 1)                                                (2) 

 

MULTI-OBJECTIVE PARTICLE SWARM 

OPTIMIZATION 

Figure-1 illustrates the pseudocode for the 

general Multi Objective PSO algorithm [15]. At iteration t 

= 0, the algorithm begins by initializing all particles, 

associating their positions and velocities with random 

values. Then, the fitness of each particle is calculated 

based on the particle’s position. Based on the fitness 
values, a set of non-dominated particles is stored in an 

external archive. The non-dominated particles are 

subjected to a quality measure to determine the quality of 

each non-dominated particle. Then, each particle selects a 

non-dominated solution from the archive as leader to 

update its velocity and position based on Equation (1) and 

Equation (2), respectively. Then, a mutation operation is 

performed before the pBest is updated, based on Pareto 

dominance. Once all particles are updated, the archive will 

be updated with the latest non-dominated solutions. At the 

end of the iteration, the solutions in the archive are 

reported as the final optimum solutions for the MOO 

problem. Note that in Figure-1, tmax indicates the 

maximum number of iterations. 

 

THE PROPOSED MULTI-LEADER PSO (MLPSO) 
The MLPSO algorithm includes two equal-size 

swarms where both swarms employ the RANDOM 

selection method [11] to determine the leaders. The 

difference is that the particles in the first swarm require 

the multiple leaders to fully utilise the information from all 

leaders. While, the second swarm operates like regular 

MOO algorithm by optimised using the information from 

one leader only. Figure-2 shows the flow chart of the 

proposed MLPSO algorithm. The solid line and the dotted 

line represent the flow of the first and the second swarms, 

respectively. Also in Figure-2, tmax indicates the maximum 

number of iterations. 

During initialization, all particle positions in both 

swarms are initialised with a uniformly distributed random 

value within the search space limit for all N dimensions, as 

shown in Equation (3). 

 

ps,i (t = 0) = { ps,i,n, n = 1, 2, …, N} = U[p
l
,p

u
] 

 for i = 1, 2, …, I and s = 1, 2 (3)  

 

where N is the number of dimensions of the 

search space, s is the index of the swarm, I is the size of a 

particle in the swarm, and the uniform distribution, U[p
l
, 

p
u
], is bounded between the lower limit, p

l
, and the upper 

limit, p
u
, of the N dimensional search space. The velocity 

and pBesti are initialised to zero and particle position, 

respectively. 

Then, the particle position is used to calculate all 

M objective functions. During the computation, pBesti is 

replaced with the new position if the previous pBesti is 

dominated by the new position or if both the previous 

pBesti and the new position are non-dominated by each 

other. 

An external archive, Ψ, is important in MOPSO 

algorithm to store non-dominated solutions, �. During 

computation, the external archive is updated to store the 

latest found non-dominated solutions. In this work, the 

newly found non-dominated solutions of both swarms are 

involved in the archive update. Based on the Pareto 

Optimality concept, if a new solution is not dominated by 

all solutions in the archive, then the solution is added into 

the archive. Whenever any solution in the archive is 

dominated by the new solution, it is deleted from the 

archive. 

During computation, the archive size, �, can 

easily reach its limit, �max. Thus, another mechanism is 

required to remove a solution from the external archive. In 

this work, the solution with the smallest crowding distance 

[16] value is removed to ensure that the non- dominated 

solutions are not too crowded at a certain area in the 

Pareto front. 

The RANDOM method [11] was adopted as the 

leader selection mechanism, with some changes to allow 

for the selection of a set of multiple leaders. 

 

http://www.arpnjournals.com/
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Definition : The multiple leader set, MLs,i, is defined as 

the set of non-dominated solutions that dominate the i-th 

particle from the s-th swarm as below: 

 

MLs,i = { ≺ ps,i }                        (4) 

 

Consider the particles and the non-dominated 

solutions shown in Figure-3. For example, the first particle 

labelled with ‘1’ is dominated by the non-dominated 

solution ‘A’, and thus, MLs,1 = {�஺}. The second particle 

is dominated by the non-dominated solutions ‘A’ and ‘B’, 
and thus, MLs,2 = {�஺, �஻}. Similarly, MLs,3 = 

{�஺, �஻ , �஼} because the non-dominated solutions ‘A’, 
‘B’, and ‘C’ dominate the third particle. For the rest of the 
particles, MLs,4 = {�஻, �஼} and MLs,5 = {�஼}. 

Furthermore, if the particle is a member of the archive, 

then the other members in the archive are selected to be its 

leaders. In this case, MLs,A = {�஻ , �஼}. 

In MLPSO, the non-dominated solutions � in the 

MLs,i are the leaders (or gBest) which dominate the ps,i. 

The MLs,i can be represented as follows: 

 

MLs,i = { gBests,i,1, gBests,i,2, …, gBests,i,q, … 
gBests,i,MLs,i}         (5)  

 

where |ܮܯ�,�| represents the cardinality of MLs,i or the 

number of leaders in the leader set, and gBests,i,q is the q-th 

leader in the MLs,i. 

 

 
 

Figure-2. The MLPSO algorithm. 

 
 

Figure-3. Particles and non-dominated solutions at the 

Pareto Front (PF). 

 

In addition, the particles in the first swarm used 

all leaders while the second swarm require only one leader 

for the guidance in moving the particles for respective 

swarm. The single leader can be obtained by reducing the 

ML2,i size randomly with equal probability. 

The modified velocity update based on the new 

concept of multiple leaders is shown in Equation (6). 
 

vs,i(t + 1) = vs,i(t) + c1r1[���࢙࢚��,1
 – ps,i(t)]  

+ c2r2 ∑ ��|ெ௅�,�|�=1 [gBests,i,q – ps,i(t)]    (6) 
 

Specifically, the social term is replaced with MLs,i.  

However, it is possible that vs,i (t + 1) value 

become very large, thus, a weight gain, cq, is multiplied in 

the social term. Besides, it is desirable to explore the 

region with less non-dominated solutions in Pareto front. 

Hence, cq should vary inversely proportional to the density 

of solutions around a leader. Thus, both swarms use the 

same velocity equation with cq is calculated based on 

Equation (6) as to promote diversity performance. 
 �� =  11+|ெ௅�,�|�−|ಾಽ�,�|಴ವ�                                                   (7) 

 

where CDq is the crowding distance value for the 

q-th leader, evaluated based on the (q+1)-th and (q-1)-th 

non-dominated solutions that are sort ascending with 

respect to the first objective function. The range of the 

objective functions do not affect the CDq as it is 

normalised to the non-dominated solutions that have 

extreme value at either one of the objective functions. 

However, the crowding distance for the extreme non-

dominated solutions is set to infinity as they only have one 

neighbour non-dominated solution. After the velocity 

update, the position of i-th particle in the n-th dimension 

of s-th swarm is updated conventionally. Both velocity and 

position updates are clamped at certain limit based on the 

experiment setup. However, if the position update is 

clamped, the direction of the velocity updates is inverted. 

Some particles are subjected to a position 

mutation. Polynomial mutation [17], which has been used 

http://www.arpnjournals.com/
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in NSGA-II [16] and is shown in Equation (8), is applied 

to a particular dimension with 1/N probability. 
 

ps,i = ps,i + ∆q(pl  pu), pl  ps,i  pu                                  (8) 
 

where N is the number of dimensions for the 

corresponding problem, and ps,i is the position to be 

mutated, which is bound between the upper (pu) and lower 

(pl) search space limits for each dimension. The 

polynomial equation is scaled to the upper and lower 

limits [18], as follows: 
 

 
(9) 

 

where r = U[0,1], and z is the distribution index 

for real-coded mutation. 

 

PERFORMANCE MEASURE AND TEST 

PROBLEM 

Four quantitative performance measures have 

been used to evaluate the performance of the proposed 

MLPSO: (1) Number of Solutions (NS) (2) Generational 

Distance (GD) (3) Spread (4) Hypervolume (HV). 

In this study, the ZDT [19] benchmark test 

problems are used to validate the performance of the 

algorithm. These benchmark test problems include six test 

problems. However, the ZDT5, which is used for binary 

evaluation, has been excluded because this study focuses 

on the continuous search space problem. The parameters 

used for the test problems are based on [19]. Other than 

ZDT test problems, nine test problems introduced by 

Walking Fish Group (WFG) [20] were also included to 

validate the performance of the algorithm. 

 

 

 

Table-1. Results based on ZDT test problems. 
 

 
 

EXPERIMENTS 

In this work, each experiment was repeated for 

100 runs to provide reliable and statistical significant 

results. For fair comparison, each algorithm compared in 

this work is subjected to 25,000 function evaluations. In 

each comparison, the average and standard deviation 

(shown in bracket) of the performance measures are 

showed. In addition, for each function, Kruskal-Wallis test 

is performed to determine if there is any difference in 

performance under each performance measure [21]. All 

statistical tests are performed with confidence level of 

95%. The symbol ‘+’ indicates if there is significant 
difference in performance and the symbol ‘-’ indicates 
opposite condition. The best and second best performances 

are highlighted in dark and light grey, respectively. 

The Multi Objective PSO algorithm with 

RANDOM method (denoted as MOPSOrand) [11], is 

compared to the proposed algorithm since the 

MOPSOrand is very similar to the MLPSO algorithm 

except that the concept of multi leaders is not included. 

For a fair comparison, both MOPSOrand and MLPSO 

algorithm used the same parameter setting as in [11]. Both 

algorithms contain 100 particles and iterate for a 

maximum of 250 iterations. The � = 0.5, c1 = c2 = 1.0, and 

the archive is limited to 100 solutions only. Besides, none 

of the particles in both algorithms are subjected to 

mutation. The MLPSO particles are equally divided into 

two swarms, according to the proposed MLPSO algorithm. 

 

RESULT AND DISCUSSION 
The result of performance measures evaluated 

with MOPSOrand and MLPSO algorithms on ZDT test 

problems are listed in Table-1. It is observed that the 

MLPSO outperformed the MOPSOrand in all test 

http://www.arpnjournals.com/


                             VOL. 10, NO. 23, DECEMBER 2015                                                                                                            ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
17537 

problems with significant difference in performance. 

Besides, the differences of performance measured between 

both algorithms are relatively large. However, the 

MOPSOrand only show better result in NS and Spread 

measured on ZDT2 and ZDT3 problem, respectively. Even 

with higher number of solutions in ZDT2 problem, the 

MOPSOrand was unable to converge. The MLPSO has 

larger Spread value for ZDT3 problem, is negligible when 

it has superiority in the GD and HV measures. 

Table-2 illustrates the performance measures 

evaluated on WFG test problems. There is significant 

difference in performance for most of the performance 

measure except NS as both algorithms obtain similar 

number of non-dominated solutions. However, in most 

cases, the MLPSO shows better performance than the 

MOPSOrand except WFG4 problem. In WFG4 problem, 

without position mutation, the particles in MLPSO which 

follow the multi leader set have higher tendency to follow 

the same group of leader due to the multi-modal feature. 

However, the differences in performance for both 

algorithms are quite small in WFG4 problem. 

Based on these two set of test problems, MLPSO 

shows better performance compared to MOPSOrand. 

Therefore, it can be concluded that the concept of using 

multiple leaders to guide the particles’ movement is 
practical and proven to obtain a good quality of Pareto 

front. 

 

 

Table-2. Results based on WFG test problems. 
 

 
 

CONCLUSIONS 

The existing Multi Objective PSO algorithms 

used at most two leaders to update the particle velocity. In 

this paper, a new implementation of the PSO algorithm for 

MOO problems based on the guidance of multiple leader 

guidance is presented. The proposed MLPSO algorithm 

has been evaluated on several ZDT and WFG test 

problems to measure the resulting convergence and 

diversity using four performance measures: Number of 

Solution, Generational Distance, Spread, and 

Hypervolume. The proposed algorithm showed excellence 

performance for most cases over the algorithm that it 

originates from which share similar leader selection 

mechanism except the concept of multi leaders.  
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