
 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17657

A REVIEW OF THREAT MODELLING and ITS HYBRID APPROACHES

TO SOFTWARE SECURITY TESTING

Habeeb Omotunde and Rosziati Ibrahim

 University Tun Hussein Onn Malaysia, Batu Pahat, Malaysia

E-Mail: hi130033@siswa.uthm.edu.my

ABSTRACT

As organizations seek to fulfill their objectives in the 21
st
 century, they have come to immensely depend on

reliable and secure software as a core component of their organizational asset to achieve their set goals. Irrespective of the

size, nature or sector of these firms, securing the software asset has gained momentum given major software security issues

in the form of incessant cyber-attacks to sensitive and confidential data which could bring huge losses to both the

organization and her customers. However, a critical approach to defending the organization’s software infrastructure is

anticipating the nature of the exploits from the attacker’s perspective before they occur and strategizing mitigation plans in

order to prevent these attacks from being successful. This is called Threat Modeling. The objective of this paper is to

identify existing challenges in this research field and establish the grounds for a credible research activity therefore the

researchers present a review of literatures on threat modelling activities overs the years and the subsequent hybrids

developed to cater for the weaknesses of the techniques used. It was discovered that software applications suffered from

analysis paralysis due to over-specification of security requirements while using hybrid threat modeling techniques.

Furthermore, we discuss briefly our proposed approach to using hybrid threat modeling using a set of coherent modeling

techniques in tackling a particular security vulnerability plaguing web applications while avoiding analysis paralysis.

Keywords: threat modeling, hybrid threat modeling, SSDL, software security, software vulnerability, web applications.

INTRODUCTION

Software vulnerabilities in the form of bugs and

flaws are the major gateways to security violations in

computer programs deployed by organizations [1]. Given

the continuous rise in the cost of fixing these

vulnerabilities, legal issues raised by aggrieved partied for

breach of contract, customers’ lack of trust in using the
services and enactment of tough laws by government and

much more which makes it difficult for such organizations

to run smoothly, software developers and security experts

have proposed proactive strategies for building security

into the traditional Software Development Life-

Cycle(SDLC) hence the Secure Software Development

Life-Cycle (SSDL) paradigm came to life [2]. Software

development using the SSDL framework not only ensures

that the software fulfills the functional requirements, it

strictly guarantees the specified security requirements in

all development phases by ensuring the software does not

do what it was never designed for. This has enabled both

teams of software developers and security experts to

address software security concerns at the earlier phases of

software development including the design phase where

threat modeling is executed [3].

By definition, threat modeling is a risk

management strategy to proactively secure software assets

by anticipating the nature of attacks that could exploit the

software vulnerabilities from the attacker’s perspective
and putting up plans and measures to prevent such attacks

from being successful [4]. Having identified an

application's potential vulnerabilities, threat modeling

helps the development and security team to understand

and prioritize the array of risks for which these discovered

vulnerabilities are susceptible in the event of an attack.

With the results of a threat model at hand, development

teams can ensure that they are concentrating their design,

implementation or testing efforts on the risks that matter

most considering the impact of such risks on the business

[5].

Given the above premises, researchers have

proposed many methods for developing threat models such

as the use of threat or attack trees [6] which was adapted

from Fault Trees in safety analysis, threat nets [7] a formal

specification method adapted from Petri Nets, the use of

sequence diagrams to monitor possible threats during

program execution [8], behavioral state machines for

modeling software object’s behavior [9] and Misuse cases,

a variation of the UML Use Case model [10].

Furthermore, Marback et al [11] successfully tested for

software security using attack trees to generate security

test cases which might help in identifying threats capable

of compromising security policies. This approach has also

been used by [8, 12] to test for software security in the

design phase of the software development.

The rest of this paper is organized as follows:

Section 2 briefly provides background information on

software security testing and its techniques. Section 3

discusses the methodology of this research work while

section 4 dives into details on threat modeling. Section 5

ushers in hybrid threat modelling and the related works by

previous researchers while discussion will be given in

Section 6 including a brief insight into the proposed hybrid

threat modeling algorithm after which we conclude in

Section 7.

OVERVIEW OF SOFTWARE SECURITY TESTING

TECHNIQUES

Software security testing is a process for

validating the secure implementation of a software product

http://www.arpnjournals.com/
mailto:hi130033@siswa.uthm.edu.my

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17658

thus reducing the likelihood of a product containing

security flaws being released and discovered by customers

or malicious users. A major goal of software security

testing is to find vulnerabilities, keep them away from the

final product, and confirm that the security of the software

is at an acceptable level [13].

This process is performed regardless of the type

of functionality the software implements. Therefore, while

traditional software testing verifies that all use cases and

functionalities detailed in the requirements documents are

fully implemented according to specification, security

testing goes further to ensure that the software does not do

what it's not supposed to do [14]. Its function is to assess

the security properties and behavior of that software as it

interacts with external entities across the trust boundaries

[4] (humans, its environment and other software

installations) while its own component interact with each

other. This is important as the potentially hostile

environment could cause security breaches that pose

severe consequences [15]. During the testing process, the

objectives of security testing team are:

 To ensure a predictable and secure software behaviour

 To ensure that software vulnerabilities remain hidden

from third parties.

 To guarantee the maintenance of a secure state via

error and exception handling.

 To confirm that all implicit and specified security

requirements are satisfied while no security

constraints are violated.

It is important to mention that there are several

security testing techniques adopted across the

development phases by application developers whereby

the technique used depends on what phase the software

development and security teams are currently working on.

Table 1 shows the distribution of the techniques across the

software development life-cycle.

Table-1. Software security testing techniques.

Development

phase
Testing techniques

1
Requirement

Specification

 Misuse Cases

 Attack Models

2 Design

 Threat Modeling

 Architectural and Design

Review

 Formal Proof

3 Implementation

 Code Review

 Compile Time Detection

 Static Analysis Fault Injection

Similar

Techniques in

Phases 3 & 4

 Fuzz Testing

 Binary Code Analysis

 Vulnerability Scanning

4 Verification

 Static Analysis

 Source code Fault Injection

 Binary Fault Injection

 Penetration Testing

5
Deployment &

Maintenance

 Static and Impact Analysis

 Vulnerability Scanning

 Regression testing

Source: United States department of homeland security [13].

Given the focus of this paper, we will move on to

discussing about threat modelling and its hybrid

techniques. But before that, the method adopted in carry

out this research will be highlighted.

METHODOLOGY

This paper provides a literature review of existing

challenges in threat modelling techniques, its hybrids and

SQL injection using several digital libraries for related

publications. The researchers considered relevant

electronic databases such as Web of Science, Scopus,

Science Direct, IEEE Explorer and Springer Link for

studies between 2009 and 2015 inclusive. A total of 101

primary studies including conference proceedings,

journals and book chapters were found and critically

studied to extract useful information and identify current

challenges in the threat modelling field while restricting

the considered vulnerability to SQL injection hence

narrowing the research scope and search terms. Apart

from these repositories, online forums such as the Open

Web Application Security Project (OWASP), Security

reports from Symantec and MITRE’s Common
Vulnerabilities and Exposure (CVE) repositories were

deeply consulted alongside white papers from leading

security firms around the world. Book sources were not

left behind so as to have a sound understanding of the

topic been discussed.

After reviewing the full texts for identified

challenges, contribution, solutions and future works, gaps

were identified and the researchers categorized the

relevant studies chronologically into years these studies

were conducted starting from the most recent. It is

important to consider that the threat modelling research

field have received far less attention as compared to other

software engineering research fields hence the need to cite

researches earlier than 2009. In conclusion, a hybrid threat

modeling algorithm was presented in section 6, detailing

how the researchers intend to avoid over-specification of

security requirements while preventing SQL injection in

web applications.

THREAT MODELING

Threat modeling provides a systematic way to

identify threats that might compromise security, and it has

been a well-accepted practice by the industry [11]. It

includes determining the attack surface of the software by

examining its functionality for trust boundaries,

vulnerabilities and poor design specifications [16] .It is to

be performed only after the security requirements are

complete, so that the threat model is based on the security

needs of the software [17]. A vendor neutral SSDL model

such as that in Figure 1 must be adopted and tailored by

each organization according to her business needs [14].

http://www.arpnjournals.com/

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17659

Figure-1. The secure software development life-cycle

Source: [14]

 An interesting approach to examining

vulnerabilities was undertaken by [9, 18] using finite state

machines. This was a stepping stone into the realm of

threat modeling. Chen and his team's assertion were to

focus on understanding how threats are realized by

studying the system vulnerabilities first. Using the Bugtraq

database [19], the team selected the most prevalent and

exploited vulnerability classes which represented 22% of

the total content of the database at that moment to derive

predicates. Simply put, predicates are events or a condition

that gives room for exploitable vulnerabilities in a system.

This could be caused by failure to properly perform object

type checks or other necessary input validations to ensure

system safety. The examined functions are therefore

transformed into predicate finite state machines (pFSMs)

representing simple operations that could lead to the

exploitation of such vulnerabilities. Finally a collection of

all pFSMs derived were used to design the final finite state

machine (FSM) model. Summarily, Chen identified 3

important observations needed to track down system

vulnerabilities and foil attacks before the exploit is

successful. These are:

 Software attacks are realized via a chain of

elementary activities which can be broken at any

point to foil the exploit.

 These exploiting activities involve the interaction

and operations of several software objects.

 Source code analysis to determine these

vulnerabilities will allow software security teams

to specify conditions that must be met to provide

security.

 This method was very effective as further system

vulnerabilities were uncovered during the research which

was acknowledged by bugtraq, however, given the narrow

spectrum of threats considered, the findings and

recommendations cannot be generalized but carefully

applied while designing threat models.

As a follow up, Sindre et al [10] proposed the

adoption of misuse cases, a high-level behavioural model,

to identify the possible security requirements an

application would need to defend itself against impending

attacks. Theses researchers drew inspiration from the idea

of using use case models for functional specification

during program design. However, misuse cases only

specify the threats an adversary might pose to the system’s
functionalities and users but neither offers details about

the attack sequences/steps that makes the exploit

successful nor lends support for threat decomposition [20].

[8] in a bid to overcome this defect takes advantage of the

UML sequence diagram’s property of specifying objects
interaction via messaging during program execution.

Threat behaviors were viewed as misuse case scenarios

and a sequence of object interactions documented by

sequence diagrams. This method works by extracting

threat execution paths at the design level. These paths are

stored as signatures or threat traces that must never be

performed during program execution. Wang argued that

previous works only focused on confirming security

violations through their threat models hence he took this a

step further by ensuring that these threat models generate

test cases for verification purposes thereby ensuring that

the software implementation met the security requirements

of the application. A major setback of his approach was its

lack of real-time applicability in the industry though

automated, it was heavily dependent on manual

intervention by security experts to analyze the threat traces

generated. It also involved a lot of reporting and trace

generation which would be fed back into the system hence

making the threat model grow out of manageable

proportion thereby introducing more vulnerabilities and

complexity. Finally, due to the method's dependence on

misuse cases, unspecified threat paths within the resulting

models might be exploited by seasoned attackers hence

bypassing the security checks during program execution.

Subsequent to previous researches, [7] focused

on resolving issues concerning test case generation from

threat models using a mathematical modeling language

called petri nets (Place/Transition Nets). As an abstract

formal model of information flow, petri nets was used to

model attack paths in web applications in the threat

modeling exercise hence the name threat net was adopted.

During the process of building the threat model with threat

nets, similar security issues were classified in terms of the

system’s use cases and their associated threat categories.
This approach heavily relied on the STRIDE (Spoofing,

Tampering, Repudiation, Information Disclosure, Denial

of Service, Elevation of Privilege) classification system

for threat identification although the threat modeling

industries and academic researchers have identified close

to five or more different taxonomies for threat

classification [21]. This introduces bias as the threat

models from which test cases are generated may not

represent all possible attacks. Given this defect, the

method falls into the same category of allowing attackers

exploit unspecified threat paths in the threat models.

Furthermore, security mutants [11] which were

created during the experiment focused on a tiny spectrum

of the vulnerability space such as those affecting C/C++

http://www.arpnjournals.com/

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17660

and web applications only therefore generated test cases

cannot be used as a general representation of

vulnerabilities but limited to the scope for which the

research was executed [7].

Having examined previous threat modeling

techniques to build defense and security into software

applications, Marback et al approached Dianxiang’s
research from a whole different perspective using attack

trees [11]. It is important to realize that the reason why all

previous methods needed improvement was because the

threat model on which all test cases were based had partial

coverage hence security holes were not completely

blocked. Marback’s approach takes advantage of the
unique feature of threat trees which starts with the

attacker’s goal as the root node, then branches out to all

leaf nodes which represents possible attack sequences

through which the main goal can be achieved. In essence,

attack trees expose in detail all possible paths an attacker

would traverse to achieve his objective of compromising

the asset in view. This is a major advantage of threat trees

over the previous techniques. Table 2 summarizes some of

the threat modelling research activities executed till date.

HYBRID THREAT MODELING

Hybrid techniques involve the combination of

two or more complementary threat modeling techniques to

improve the security posture of the software asset being

protected [22]. As identified in the threat modeling

section, attack trees proved to be very effective in

highlighting the goals and attack vectors liable to be

Table-2. Threat modeling research activities.

Author

(s), year
Technique

Test

application

Focus/

attack

vector

Marback et

al, 2013

Attack

Trees (ATs)

OS

Commerce &

Drupal CMS

Spoofing,

Tampering &

Denial of

Service (DoS)

Dianxiang

et al, 2012
Threat Nets

FileZilla,

Magento
STRIDE

Mammar et

al, 2012

Time

Extended

FSM /

Timed

Security

rules

France

Telecoms

Travel

Services

DoS

Wang et al,

2007

Sequence

Diagrams

ATM

Simulation

All

Vulnerabilities

Sidre &

Opdhal,

2005

Misuse

Cases

(MUCs)

Knowlegde

Map App.

All

Vulnerabilities

Chen et al,

2003

Predicate

FSM &

Source

Code

Analysis

Bugtraq

Database

Stack, Heap &

Integer

Overflow,

Input

Validation and

Format String

vulnerabilities

exploited by hackers than all other techniques identified

[11]. This is obviously responsible for its adoption in most

of the hybrid threat modelling researches till date. By

presenting every possible step an attacker traverses on a

tree, pre-emptive mitigation steps can be taken to frustrate

attacker’s effort hence achieving deterrence.

Furthermore, several studies have revealed that

misuse cases technically complements attack trees [3] as

every single researcher used them in designing their

hybrid threat model. This is obvious as the secure software

development lifecycle dictates that security requirements

must be stated first in the earliest part of the development

process which is mostly done using misuse cases [14].

In order to take advantage of the strength of

techniques (attack trees and misuse cases), [3, 23]

performed experiments to compare these two techniques.

The differences in Table 3 were established and more

researchers such as Talukder [24] and Gondotra [25] in the

same year came up with methods of exploiting their

strengths in a hybrid technique.

Table-3. Differences between ATs & MUCs.

Misuse cases Attack trees

1 Suitable for discovering

threats in the early part of

SDLC

Suitable for discovering

threats in the later part of

SDLC

2 Misuse cases are linked to

users and high-level system

functions through the use

cases they build on. They are

therefore particularly useful

for generating new high-

level threats and mitigations

that are specific to the

problem and solution

domains for the new system.

Attack trees have the

ability to systematically

break down high-level

threats into increasingly

more detailed potential

attack steps that may

already be known. They

are therefore particularly

useful for identifying and

tying together low-level

threats corresponding

generic security issues

that apply to many types

of systems.

3 A good starting point for

security requirements

engineering because they

can be used for identifying

an initial set of threats

Threats discovered can

then be further refined

using attack trees,

combining the best of

both techniques.

4 Misuse cases are solely

based on pre-existing use

case diagrams to provide a

link between security

requirements and the larger

software development

context

However, attack trees

provide the necessary

links via generating

hierarchies of more

detailed attack step

sequences

Source: Comparing attack trees and misuse cases (Karpati et al,

2014; Opdahl and Sindre, 2009)

These set of differences gave insight into the

possibility of combining both techniques to create better

secured application. [24] proposed a tool called Suraksha,

a term in Sanskrit which means safety and security, using

http://www.arpnjournals.com/

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17661

threat classifications schemes such as STRIDE and CI5A.

The tool having benefited from both techniques does not

represent the hybrid model with a unique notation to spell

out weaknesses in the system. Also, all tasks were manual

including report generation thereby loosing adoption due

to poor usability and a high learning curve. Gandotra et al

[25] combined both techniques creating a new set of

notifications but faced difficulty as the model became

complex within the hybrid technique. This was the same

problem suffered by HARM [20] as six different

techniques were combined including the previous two

(ATs and MUCs) proposing a set of new modeling

symbols that did away with almost all the well-known

UML notations. HARM proved to be promising but the

technique was marred by over specification of security

requirements suffered through its application. HARM

introduced many modeling guidelines that these

techniques and symbols must represent while modeling the

threat therefore leading to analysis paralysis [10]. Due to

this setback, future researchers have gone back to the

drawing board to use fewer techniques, as this research

intends to do, but explore the possibility of reusable threat

models which would nullify the paralysis issue. Hence,

[22] designed a hybrid model that took advantage of the

UML activity diagram rebranded as “security activity
model”. A repository of known and tested threat models
called SHIELDS was also designed to store reusable threat

models so as to nullify the issues caused by analysis

paralysis. However, as a result of the difficulty in

maintaining such repositories, this research work is yet to

validate its results with the SHIELDS repository.

However, work in progress shows this direction is a

promising one hence the challenge of analysis paralysis

due to over specification of security requirements still

lingers. In summary, Table 4 highlights the remarkable

research efforts in the field of hybrid threat modeling till

date.

Table-4. Hybrid threat modeling research activities.

Researcher,

year
Technique

Result/

outcome

1
Karpati et al,

2014

Attack Trees &

Misuse Cases

Comparative

Studies

2
Tondel et al,

2010

Security Activity

Models, Attack Trees

& Misuse Cases

SHIELDS

3
Karpati et al,

2010

Attack Sequence

Description, Misuse

Sequence Diagrams,

Misuse Cases, MUC

Maps, Attack Trees

and AT Patterns

HARM –

Hacker Attack

Representation

Method

4
Opdahl &

Sindre, 2009

Attack Trees &

Misuse Cases

Comparative

Studies

5
Talukder et al,

2009

Attack Trees &

Misuse Cases
Suraksha

6
Gandotra et

al, 2009

Attack Trees &

Misuse Cases

Hybrid

Technique

DISCUSSIONS

 Threat modeling is undoubtedly a very crucial

exercise in the SSDL. It’s unique capacity to identify and
resolve vulnerabilities in the software at the earliest stages

of development makes it a top priority for organizations

running mission critical web applications. However, the

threat-scape has changed immensely while attackers are

more motivated and armed with sophisticated tools for

doing serious damages. This is why researchers in both

academics and the field of software security have made

much emphasis on building security in at the earliest

phases by adopting more advanced hybrid threat

modelling techniques in order to enforce deterrence, cut

development and maintenance cost while reducing the risk

of damages in the event of a successful attack as much as

possible. Having reviewed past literatures as seen in

sections 4 and 5, it is important to summarize our finding

as regards challenges facing the threat modelling field.

These are:

 Software Security requirements suffer analysis

paralysis due to over-specification while using hybrid

threat modeling techniques

 Lack of reusable threat models and reliable threat

repositories

 Incoherent set of acceptable modeling notations due

to lack of coordination of researches from both the

academic world and industry.

 Given the objective of this paper which is to

identify the current issues affecting threat modeling, this

research intends to focus on the first challenge identified

and further the studies on hybrid threat modeling by

adopting the behavioral state machine (BSM) model

alongside the previous two techniques (attack trees and

misuse cases) in order to protect web applications from

SQL injection vulnerabilities. State machines were chosen

given its unique properties highlighted in [9, 26].

In order to adopt these three (3) techniques in the

proposed hybrid threat model for preventing SQL injection

in web applications, it is important to state and justify the

order in which these techniques will be applied. Taking a

cue from Table-3, misuse cases (dark ovals) in Figure-2

appear handy in discovering threats earlier than other

techniques because it is directly related and connected to

the high-level use case diagrams in the early phase of the

SDLC.

http://www.arpnjournals.com/

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17662

Figure-2. Misuse case representation of spoofing attack.

Source: Testing Guide Introduction. https://www.owasp.org

A general property of every application being

developed is that it has a finite set of use cases throughout

its lifetime till decommission. On the contrary, this does

not mean misuse cases can be limited easily by the

application’s use cases as hackers can inject command into
an application causing it to misbehave in ways never

expected. This set of misbehaviors will be modeled as

attack goals, which are the root nodes of attack trees the

interacting objects must avoid. This reinforces the need to

place attack trees as the next technique after misuse cases.

Take for instance a web application with a user

authentication module which could be subjected to

different kinds of spoofing attacks (misuse cases)

especially SQL injection attacks as considered in this

paper, then the relationship between this software objects

can be depicted as shown in Figure-3. The result of

connecting these two techniques will be an attack tree that

specifies all attack vectors through which SQL injection

can be achieved. An attack vector is simply a set of steps

or a path an attacker traverses to achieve his goal of

exploiting system vulnerability. In our case, the goal is to

perform SQL injection.

Figure-3. Connecting misuse cases to attack trees.

The algorithm below highlights the steps to be

taken to prevent SQL injection Attacks in web

applications

Start

 1
Convert all SQL injection types into misuse

case scenarios

 2
Map each misuse case into Attack tree goals

as the root node

 3 Transform all Attack Trees BSM

 4
Transform Software Asset (e.g. Authentication

Module) BSM

 5
Merge Both BSMs from Step 3 and 4 to derive

Software Asset with Exploitable Vulnerability

(SAEV).

 6
Generate Security Test Cases from the SAEV

model in step 5 and analyze result from test

case execution to obtain Threat report

 7
Extract and recommend security requirements

from Threat report

 8
Apply recommendations to affected software

assets to resolve SQL injection vulnerabilities

identified

End

Figure-4. Proposed hybrid threat modeling algorithm.

CONCLUSIONS

This paper presents threat modeling techniques

and its hybrid approaches to testing the security of

software applications especially web applications. It goes

further to highlight the strength and weaknesses of these

techniques identifying the reliable ones used in designing

hybrid threat models namely; attack trees and misuse

cases. The established differences of the two techniques

shows they are complementary and careful adoption can

improve the potency of the derived hybrid model. As

highlighted in section 4, state machines have the unique

capacity of breaking interacting software objects into

simpler components thereby making it possible to control

object specification, hence the additional technique to the

previous two. Furthermore, related works were discussed

showing the remarkable research activities carried out till

date. The discussion section presented our findings,

restated the objective of the paper work and showcased the

proposed algorithm the researchers intend to implement in

the future work

ACKNOWLEDGEMENTS

The authors would like to thank Universiti Tun

Hussein Onn and the Office for Research, Innovation,

Commercialization and Consultancy Management

(ORICC) for funding this research under the Graduate

Incentive Research Scheme (GIPS), VOT # U193.

REFERENCES

[1] B. Liu, L. Shi, Z. Cai, and M. Li, "Software

vulnerability discovery techniques: A survey," in

Multimedia Information Networking and Security

http://www.arpnjournals.com/

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17663

(MINES), 2012 Fourth International Conference on

(pp. 152-156). IEEE. 2012, pp. 152-156.

[2] OWASP. (2014, 06-09-2014). Testing Guide

Introduction. Available:

https://www.owasp.org/index.php/Testing_Guide_Intr

oduction

[3] P. Karpati, Y. Redda, A. L. Opdahl, and G. Sindre,

"Comparing attack trees and misuse cases in an

industrial setting," Information and Software

Technology, vol. 56, pp. 294-308, 2014.

[4] A. Shostack, Threat modeling: Designing for security:

John Wiley and Sons, 2014.

[5] SecurityInnovation. (2011). Threat Modelling for

Secure Embedded Software [White paper]. Available:

http://web.securityinnovation.com/threat-modeling-

embedded/

[6] F. Swideski and W. Snider, Threat Modeling:

Microsoft Press, 2004.

[7] D. Xu, M. Tu, M. Sanford, L. Thomas, D.

Woodraska, and W. Xu, "Automated security test

generation with formal threat models," IEEE

Transactions on Dependable and Secure Computing,

vol. 9, pp. 526-540, 2012.

[8] L. Wang, E. Wong, and D. Xu, "A threat model

driven approach for security testing," in Proceedings -

ICSE 2007 Workshops: Third International Workshop

on Software Engineering for Secure Systems,

SESS'07, 2007.

[9] S. Chen, Z. Kalbarczyk, J. Xu, and R. K. Iyer, "A

Data-Driven Finite State Machine Model for

Analyzing Security Vulnerabilities," in Proceedings of

the International Conference on Dependable Systems

and Networks, 2003, pp. 605-614.

[10] G. Sindre and A. L. Opdahl, "Eliciting security

requirements with misuse cases," Requirements

Engineering, vol. 10, pp. 34-44, Jan 2005.

[11] A. Marback, H. Do, K. He, S. Kondamarri, and D.

Xu, "A threat model-based approach to security

testing," Software-Practice & Experience, vol. 43, pp.

241-258, Feb 2013.

[12] D. Xu and K. E. Nygard, "Threat-driven modeling and

verification of secure software using aspect-oriented

Petri nets," IEEE Transactions on Software

Engineering, vol. 32, pp. 265-278, 2006.

[13] USDHS. (2010, Software Security Testing. Software

Assuarance Pocket Guide 3(0.7). Available:

https://buildsecurityin.us-

cert.gov/sites/default/files/software_security_testing.p

df

[14] C. Wysopal, L. Nelson, E. Dustin, and D. Dai Zovi,

The Art of Software Security Testing: Identifying

Software Security Flaws: Pearson Education, 2006.

[15] A. Avancini, "Security testing of web applications: A

research plan," in Proceedings of the 34
th

 International

Conference on Software Engineering (pp. 1491-

1494). IEEE Press, 2012, pp. 1491-1494.

[16] D. P. Mirembe and M. Muyeba, "Threat modeling

revisited: Improving expressiveness of attack," in

Proceedings - EMS 2008, European Modelling

Symposium, 2
nd

 UKSim European Symposium on

Computer Modelling and Simulation, 2008, pp. 93-98.

[17] M. Paul, "Software security: Being secure in an

insecure world," Retrieved September, vol. 1, p. 2009,

2008.

[18] A. Mammar, W. Mallouli, and A. Cavalli, "A

systematic approach to integrate common timed

security rules within a TEFSM-based system

specification," Information and Software Technology,

vol. 54, pp. 87-98, 1// 2012.

[19] Security Focus. (2014, 30/11/2014). bugtraq.

Available: http://www.securityfocus.com/archive/1

[20] P. Karpati, G. Sindre, and A. L. Opdahl, "Towards a

hacker attack representation method," in ICSOFT

2010 - Proceedings of the 5
th

 International Conference

on Software and Data Technologies, 2010, pp. 92-

101.

[21] G. McGraw, Software security: building security in

vol. 1: Addison-Wesley Professional, 2006.

[22] I. A. Tøndel, J. Jensen, and L. Røstad, "Combining

misuse cases with attack trees and security activity

models," in ARES 2010 - 5
th

 International Conference

on Availability, Reliability, and Security, 2010, pp.

438-445.

[23] A. L. Opdahl and G. Sindre, "Experimental

comparison of attack trees and misuse cases for

security threat identification," Information and

Software Technology, vol. 51, pp. 916-932, 2009.

[24] A. K. Talukder, V. K. Maurya, S. Babu G, J.

Ebenezer, M. Sekhar V, K. P. Jevitha, et al.,

"Security-aware software development life Cycle

(SaSDLC) - Processes and tools," in 2009 IFIP

International Conference on Wireless and Optical

Communications Networks, WOCN 2009, 2009.

http://www.arpnjournals.com/
https://www.owasp.org/index.php/Testing_Guide_Introduction
https://www.owasp.org/index.php/Testing_Guide_Introduction
http://web.securityinnovation.com/threat-modeling-embedded/
http://web.securityinnovation.com/threat-modeling-embedded/
https://buildsecurityin.us-cert.gov/sites/default/files/software_security_testing.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/software_security_testing.pdf
https://buildsecurityin.us-cert.gov/sites/default/files/software_security_testing.pdf
http://www.securityfocus.com/archive/1

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17664

[25] V. Gandotra, A. Singhal, and P. Bedi, "Identifying

security requirements hybrid technique," in 4
th

International Conference on Software Engineering

Advances, ICSEA 2009, Includes SEDES 2009:

Simposio para Estudantes de Doutoramento em

Engenharia de Software, 2009, pp. 407-412.

[26] O. El Ariss, J. Wu, and D. Xu, "Towards an enhanced

design level security integrating attack trees with

statecharts," in Proceedings - 2011 5
th
 International

Conference on Secure Software Integration and

Reliability Improvement, SSIRI 2011, 2011, pp. 1-10.

http://www.arpnjournals.com/

