
 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17808

BRINGING ORDER IN SEGMENTS FOR A ROBUST NETWORK IN
MOBILE SERVICES

Abdulfattah Muhyiddeen, R. Mohd Nor and M. M. Hafizur Rahman

Department of Computer Science, International Islamic University Malaysia, Kuala Lumpur, Malaysia
E-Mail: ideataha@gmail.com

ABSTRACT

Common overlay network arranges nodes in a particular topology such as a ring, a tree or a hyper-tree on top of
its’ physical network and takes advantage of its structure to improve network efficiency. The structured overlay network
may provide efficient routing but the constructed structured network may not consider physical proximity in the physical
network. The construction of any structured network requires nodes to be topologically sorted. Topologically sorting nodes
is not a difficult task, however, to keep nodes in a correct state where transient faults exist like the overlay network created
on top of the mobile network can be daunting. In this paper, we introduce an algorithm to improve the performance of an
overlay network by ensuring physical proximity. Furthermore, the linearized nodes will self-stabilize to a correct state as
soon as the transient fault stops. A segment based self-stabilizing linearizing algorithm that creates a linear overlay
network (topologically sorting) over the mobile network is proposed.

Keywords: self stabilization, p2p, mobile networks, network efficiency.

INTRODUCTION

The advancement of technology in smart devices
allows cheap and continuous access to the Internet.
According to the Internet Live Stats [13], Internet users
exceed 3 billion users and it is still growing in numbers.
This statistics alone is a cautionary sign for public online
systems such as social network and instant messaging
services to redesign their network to be scalable to handle
large number of users. One of the ways to deal with large
number of users is to decentralize the load of the server
where the burden of the server is distributed among users.
However, this distributed approach comes with challenges.
One of such challenges is the handling of transient faults.

In a large system, transient faults may occur quite
frequently. Transient faults are faults that occur due to
some temporary condition in the network such as a bit-flip
due to lightning overcharge which may result in
misconfiguration of the network or disconnection of
network services due to temporary power failure. Even a
small transient error in the slightest scale may snowball
into crippling the whole system and affect all of the users
if it is not managed properly. Such an incident can be a
nightmare to maintain, time consuming and costly to
repair, such as what is experience on 12th June 2015
where Level 3 (one of the world’s largest Internet Service
Provider) had failed to handle the routing properly which
resulted in disturbance of Internet service for several hours
even after the routing fault was corrected [13]. In a
traditional client-server model, clients use the help of a
server to relay messages to utilize the use of storage,
computation or network resources. A heavy load on the
server due to overwhelming client activity can result in a
bottleneck or worse crash the server. One solution to this
is to distribute the server load.

In a distributed model, messages are relayed
among several clients and servers, usually called nodes or

peers. Unfortunately, one of the challenges on distributing
server load is to manage routing of messages that can be
constantly changing with respect to link quality, network
topology and network accessibility. Many applications of
distributed systems manage its links to other nodes using
distributed routing tables. Since routing information
among nodes is distributed across the network, an
occurrence of transient fault on any node could possibly
affect the whole network. If the problem affects the rest of
the network, repairing the network will be a very tedious
task since it would be very hard to distinguish between a
correct and wrong routing table that each node needs to
use. Simply resetting the whole network will indeed be a
cheaper and faster solution but this will destroy every
ongoing transaction.

Our contribution in this paper is to propose a self-
stabilizing algorithm to construct an efficient network for
mobile devices. One of the key features of this algorithm
is constructing an overlay network with linear topology by
arranging nodes according to their GPS coordinate. In the
linear topology, nodes are grouped within segments. These
segments are fully utilized for routing purposes where
nodes are not only identified by their identifier numbers,
but also which segments they belong. The existence of a
linear topology allows the construction of a structured
overlay network commonly used to reduce the diameter of
the network for efficient routing for example trees,
hypertree, or skip-list [16] structure.

This paper is organized as follows. In the related
work section, we describe previous research in our area
pertaining to self-stabilizing algorithms, the need for
linearization for a structured network construction and
peer-to-peer systems. Then in the notation and
computational model section, we describe the terminology
used in this paper and explain the computational
constraints of each node and its behavior. In the

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17809

methodology section, we provide an informal description
of our solution. Later in our algorithm description section,
we introduce the algorithm used in each node to construct
a self-stabilizing linear network. The theoretical results
section discuss the advantages of our algorithm. Finally,
we explain our future research direction as well as the
need for such solution in the future works and conclusion
section.

RELATED WORK
 In this paper, we present related work by
researchers in the area of self-stabilizing algorithms,
distributed computing and peer to peer field. According to
Onus et al., [15], linearization is a basic and necessary step
to arrange connected graphs. They proposed a
linearization algorithm for random graphs in
polylogarithmic time. Gupta et al. [1], later prove that
performance of the network is determined by how the
network is constructed and organized. The aim for all
topology construction is to minimize the overlay routing
hops. Therefore the linearization step in this case is
necessary for making an efficient algorithm.

In a self-stabilizing network, nodes or peers in the
network rely on message passing to send information to
each other. However, a fundamental constraint exist as
nodes crashes in the network. Mohd Nor et al., [18]
highlighted that one of the fundamental constraints of peer
to peer system is the impossibility to connect a
disconnected network or discard peer identifiers that are
not present in the system. Essentially, the author proves
that peers can create two independent graphs, G1 and G2
and remain disconnected due to crashes. This problem
exist because there is no way for a peer in graph G1 to
rediscover another peer in graph G2 if there is no path
from G1 to G2 .

The fundamental constraint can be circumvented
if there exist an ever present node or super peer to provide
the path from any disconnected graphs. Yang et al. [4],
defined super peers as nodes that function as a server and
also as similar as other peers at the same time. A super
peer is expected to be reliable and does not suffer crashes.
Super peers mainly exist to handle a fundamental
constraint as nodes crashes in asynchronous distributed
systems.

A few papers address self-stabilization of
network topologies. The Iterative Successor Pointer
Rewiring Protocol [9] and the Ring Network [20] organize
the nodes in a sorted ring. Onus et al. [15] linearize a
network into a sorted linked list. However, they use a
simplified synchronized communication model for their
algorithm. There are several studies of more sophisticated
structures relying on networks to be initially topologically
sorted. H´erault et al. [12] describe a self-stabilizing
spanning tree algorithm. Caron et al. [6] present a Snap-
Stabilizing Prefix Tree for peer-to-peer systems while
Bianchi et al. [5] shows stabilizing peer-to-peer spatial
filters. Clouser et al. [8] propose a deterministic self-

stabilizing skip list for shared register communication
model while Mohd Nor et al. [17] propose a deterministic
self-stabilizing 1-2 skip-list in a message-passing model
with low atomicity suitable for peer-to-peer systems. Gall
et al. [11] discuss models that capture the parallel time
complexity of locally self-stabilizing networks that avoids
bottlenecks and contention. Scheideler et al. [21]
generalize insights gained from graph linearization to two
dimensions and present a self-stabilizing construction for
Delaunay graphs. In another paper, Jacob et al. [14]
present a self-stabilizing, randomized variant of the skip
graph and show that it can recover its network topology
from any weakly connected state in O(log2 n)
communication rounds with high probability in a simple,
synchronized message passing model. Berns et al. [3]
present a general framework for the self-stabilizing
construction of any overlay network. However, the
algorithm requires the knowledge of the 2-hop
neighborhood for each node and involves the construction
of a clique.

One of the closest to our approach is presented by
Feldotto et al. [23] which considers bandwidth for
construction of the topology rather than using physical
proximity. The authors takes on a more practical
parameter rather than relying on a logical parameter.
However, Feldotto et al. paper differs to our approach as
their main goal is to eliminate unnecessary hops and our
parameter is to ensure physical proximity between peers
remain local to their segments.

NOTATION AND COMPUTATIONAL MODEL

In this section of this paper we will introduce
some of the notations and computational model being used
in this paper. An algorithm is considered reliable if it can
tolerate and overcome any transient faults that occur
during run time. Nodes in distributed systems should be
self-stabilizing and able to reconstruct the network
themselves, if for any reason the system is perturbed in
any way.

An algorithm is considered scalable if it has good
performance for joining a particular distributed network
and good performance for routing messages from a
specific source to a specific destination. Performance is
measured by calculating number of hops for specific task:
(i) construction, (ii) joining and leaving of nodes, (iii)
routing messages.

The degree of autonomousity is measured by how
minimal each node depends on outer resources such as a
dedicated or a group of nodes to maintain the network and
to route messages. The lesser amount of dependencies on
other nodes, the higher the degree of autonomousity.

A peer-to-peer overlay system consists of a set of
N nodes with unique identifiers. When it is clear from the
context, we refer to a node and its identifier
interchangeably. A node stores other nodes identifiers in
its local memory. Once the node identifier is stored, the
node is able to communicate with the other node by

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17810

sending messages to it. Message routing is handled by the
underlying network. We thus assume that the nodes are
connected by a communication channel. In a mobile
service, we can assume such a channel is handled by the
local mobile network operator such as EDGE, 3G or 4G
networks.

For the computational model used in this paper,
each node contains a set of variables and actions. A
channel is a special variable type whose values are sets of
messages. That is, we consider non-FIFO (First In First
Out) channels. The channels may contain an arbitrary
number of messages, i.e. the channels are unbounded. We
assume that the only information any message can carry is
node identifiers. We further assume that each message
carries only one identifier. Message loss is not considered.
Since message order is unimportant, we consider all
messages sent to a particular node as belonging to the
single incoming channel of this node.

METHODOLOGY

The algorithm works by sorting nodes in a linear
topology which is divided into segments. Nodes are first
grouped into segments based on their physical position
and later, sorted according to their respective segments.

For the sake of discussion, let’s make the
assumption that the network coverage is the whole
peninsular of Malaysia. Albeit, this methodology can be
applied to many different scenarios concerning network
proximity based on several different metrics. For example,
nodes can be divided into segments in an organization
based on physical location proximity or in a hierarchy of
bandwidth speeds based on network speeds proximity. It
can also be in a specific regional locations across the globe
based on hop count proximity. In the case of the whole
peninsular of Malaysia, a number of super nodes are
deployed across the region based on current
telecommunication network providers. Each of the super
node will represent a segment throughout the country.
When other node joins the network, they will send a
message to the closest super node and they will be
linearized along this backbone according to the segment
where the super node is located.
 Since the assumption of this algorithm is for
mobile services, it is fair to say that each node are given a
unique identifier (a cell phone number, an IP address or a
manufacturer assigned serial number) each. It can also be
assumed that each node have the ability to know their own
GPS coordinate via onboard GPS chip that exist on most
mobile devices to indicate their physical position or rely
on values provided by close by routers and cell-phone
towers. Each node are interconnected in an existing
network provided by the network provider of each mobile
device. Following these assumptions, the construction of
the topology is divided into several steps:

a. Super nodes
 Super nodes are selectively distributed across the
whole region. The algorithm behaves exactly the same
with other nodes in a homogeneous manner, except the
fact that a super node will never leave the segment. Super
nodes will be a reference point for a newcomer node
joining the system for the first time or a previous node
who have left the network and require to rejoin the
network. The super nodes are initially linearized to form a
logical line which will construct an overlay network
backbone.

b. Logical backbone and segmentation
 A logical jagged line is drawn across the
peninsular of Malaysia which will be the logical backbone
of this algorithm. As initially describe, this is initially
consist of super nodes. As shown in Figure-1, the logical
backbone for the algorithm is targeted to create a linear
topology among all interconnected nodes in the peninsular
of Malaysia. The logical backbone is predefined in the
algorithm and visible for all nodes by storing it in their
memory. The backbone is divided into segments where all
of the nodes will be grouped according to the closest
segment it belongs to according to where they are
physically located.

Figure-1. Logical backbone. The line is drawn across the
peninsular of Malaysia. It is divided into segments. Each

segment is represented by a super node.

c. Location segment projection
 As previously discussed in this section, each node
is assumed to be able to extract its own GPS location.
Each node then will use their own GPS coordinate, to
projects themselves onto the closest segment on the logical
backbone for the process of linearization, or accurately on

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17811

the closest super node that represents the segment. For a
node to project on the closest segment, each node will
calculate projection points on every segments available
and compare the distance between the its’ position with
the closest points on every segment to get which segment
contain the closest projection point from their position.
Then, nodes will be grouped into segments which contain
the closest projection point to them. As discussed earlier in
this section, each node has a unique identifier given to
them by their network providers. Each node will then
concatenate their segment number as a prefix to their
identifier number. The concatenation of their segment
number with their identifier number will be a new mutable
identifier in this overlay network and will be used for the
purpose of routing messages later.

d. Linearization
 After the nodes are grouped into segments
according to their physical locations, the nodes will start to
linearize themselves. Nodes within the same segment will
be sorted according to the identifier number while
segments are sorted according to the segment numbers.
Each segments will be connected to each other. To realize
this, a special node (super node) is required for each
segment which will be the reference points for all other
nodes to enter the segments and for segments to be
connected. These special nodes have similar property like
other nodes, except there are ensured to be always alive in
the network. Figure-2 illustrates the end results of 4 nodes
after the linearization process. Each node is ordered by
segment number first, then by its identifier.

Figure-2. Example of 4 nodes being linearized and written
in “a-b” format. “a” indicates the segment number while

“b” indicates the original id of the nodes. The figure shows
nodes are sorted according to the segment number first

then the nodes original number.

e. Routing messages
 Messages are routed from sender to receiver in
several steps. The sender will extract the identifier number
of the receiver to get its segment number. If the receiver is
in the same segment with the sender, the sender will
forward the message to other nodes within the same
segment. Other nodes who receive the message will check
whether the message belongs to them or not. If not, the
messages will be forwarded until the message reaches the
desired receiver. If the receiver is not within the same
segment, the message will end being forwarded to a super
node within the segment. The message will then be
forwarded to the receiver’s segment directly utilizing the
structured overlay network constructed on via the super

nodes. A node in the segment will receive the message and
forwards it to the desired receiver.

ALGORITHM DESCRIPTION

The algorithm works by deploying several super
nodes in several strategic locations. Later, each area where
the super node exists is considered as a segment. The
segments are numbered in sequence starting from the
number 1. The location (GPS coordinate) of every super
nodes are visible for all new coming nodes only. Each
node will try to calculate which super node is the nearest
to it. Once the node finds which super node is the nearest,
the node will identify itself to be in the same segment by
storing the segment number.

One of the advantages of peer-to-peer in
distributed computing is it does not suffer from the
problem of single point of failure. A super node is a node
that acts like a centralized server for a specific task, which
to some extend is unavoidable or rather needed to assure
connectivity when all other nodes fail. The concept of
having a super node might be contradicting with the aim
of distributed computing as of this case. However, to
circumvent the problem of crashed and non-existing
identifiers in the network, implementation of a super node
is unavoidable since it facilitate other nodes.
Implementation of a super node is also a realistic approach
since most network services rely on several servers with
reliable up times. Specifically, the implementation of a
super node in this paper is required due to the following
constraints: (i) to be a reference point for newcomer nodes
in specific segments (ii) to ensure all segments are
connected.

Nodes may not be fairly distributed between
segments in this algorithm, because it depends on their
physical location. This is because the main aim of the
algorithm is not to distribute the nodes fairly, but to avoid
unnecessary hops across segments. Messages are routed
directly to the desired segments before it reach desired
node. Therefore, if messages is to be sent from a node to
other node in its same segment, the message will not be
sent further out of the segment first before reaching the
receiver.

Assume originally all nodes has a unique serial
number each, the node will identify itself by concatenating
the segment number with its serial number. This
concatenation of segment number and serial number is
referred to as ID number for this algorithm and the ID
number will be used throughout the algorithm for
constructing, linearizing, stabilizing and routing process.
The segment number is concatenated as a prefix to the
serial number; therefore, nodes are first sorted according
to the segment number. After that, they are sorted
according to its serial number.
 Every node has local variables to keep track its
direct left neighbor and right neighbor. Once it get the
closest super node, the node will assign it as its left

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17812

neighbor. For every cycle, each node will execute the
following steps:
1. read message and execute command from the

message
2. send notification message every time out, send

message to left node with parameter "1" and also right
node (if exist) with parameter "2" indicating their
neighbors that it is their direct neighbor.

 When a node joins the network, it will set nearest
super node as left neighbor and let the right neighbor
empty (it can be positive infinity). In its first execution, it
will notify its left neighbor (nearest super node initially)
by sending a message with parameter "1" to tell the super
node that they are currently neighbors. And then finish the
execution.
 When the super node or any node receive the
message (notification) with parameter "1" it will check
whether the node (sender of the message) is suitable to be
its right neighbor (the sender's left if receiver's right) or
not. There are several possibilities when receiving
message with parameter "1":

i. If the sender's id is smaller than the receiver's id, and

the sender's id is also smaller than receiver's left
neighbor’s id, receiver will suggest the sender to set
receiver's left neighbor as sender's left neighbor also
(message with parameter "" (empty) and "sender's
id").

ii. If the senders id is smaller than the receiver id, but
the sender id is bigger than receiver's left neighbor’s
id, the receiver will send a message to its left
neighbor to suggest it to make the sender as its right
neighbor (message with parameter "4" and "sender's
id"). Then receiver will set its left neighbor as sender
and notify the sender about that (message with
parameter "1")

iii. If sender's id is bigger than receiver's id, but smaller
than receiver's right neighbor’s id, the receiver will
send a message to its right neighbor to suggest it to
make the sender as its left neighbor (message with
parameter "3" and "sender's id"). Then receiver will
set its right neighbor as sender and notify the sender
about that (message with parameter "2")

iv. If the sender's id is bigger than the receiver's id, and
the sender's id is also bigger than receiver's right
neighbor’s id, receiver will suggest the sender to set
receiver's right neighbor as sender's left neighbor.

v. If the sender's id is smaller than the receiver's id but
receiver’s left neighbor is negative infinity (receiver
is the left most node), receiver will make sender as its
left neighbor and notify the sender about that.

 Figure 3-a illustrates a node with segment
number 2 and identifier 90 trying to join the segment
number 2. The mutable id for this node is 2-90. The node
with mutable id 2-90 tries to calculate the segment it

belongs to by comparing its id with a list of other ids
belonging to other super nodes in its algorithm. Following
the algorithm mentioned in this section, node with id 2-90
will eventually receive a message from node id 2-44 about
node id 2-89. The node will then try to contact node 2-89
and attached itself as node 2-89 right neighbor. The result
of this process is known as linearization as it linearizes
nodes according to their ids. An illustration of this is
shown in Figure-3b.

Figure-3a. Linearization process. Node 1-56, 2-46, 2-89
and 3-78 are already linearized. Node 2-90 wants to join
the network. Bidirectional arrow indicates both node store
each other’s id and aware that they are neighbors.
Unidirectional arrow indicates that only one node make
the other node as neighbor, not the other way round. In
this example, node 2-90 sends a message to 2-44 when
making it as neighbor. Receiving the message, node 2-44
will send 2-89’s id to 2-90. Upon receiving the id, 2-90
will also send message to 2-89 to join the network.

Figure-3b. When node 2-89 realized that 2-90 is bigger
than it but smaller than its right neighbor, 2-89 make 2-90
as its new right neighbor and ask 3-78 to make 2-90 as its
new left neighbor. Finally, all nodes are successfully
linearized.

THEORETICAL RESULTS

Each peer updates its links based on messages it
receive in its incoming channel. It does not depend on any
global knowledge or information from other peers other
than messages it receive from other peers. Therefore, each
peer behaves independently. It must be noted here that if a
transient fault occurs, the incoming message in a peer may
be incorrect. This will cause the network to be in an
incorrect state. However, once the transient fault stops, the
network will correct itself since the algorithm will process
messages that are sent by other peers and process those
messages locally. It will not depend on the results of other
nodes in the network.

There are two reasons why this algorithm
improves routing in distributed computing. Firstly, nodes
are sorted according to their physical position which helps
the network to avoid unnecessary hops. Unnecessary hops
(inefficient routes), which can occur because two or more
nodes might be located closely in the physical network but

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17813

relatively far away in the logical overlay network. This
could happen when nodes that are right next to each other
have significantly huge distance in their logical space id.
For example, a node with id 10 is relatively very far away
from a node with id 400. Since nodes are arranged using
their identifiers in an overlay network, 2 peers can be
significantly far away in the overlay network. To illustrate
the effects of this, let us refer to Figure-4 for example. If
node ‘A’ wants to send a message to node ‘E’, physically
it can be done directly without sending the message
through other nodes in the physical network but in the
logical network or overlay network, it cannot be done
directly. Node with identifier ‘A’ needs to send the data to
the node with identifier ‘B’ first, and when node with
identifier ‘B’ received the message it will forward this
message to node identifier ‘C’ and so on until it reach
node with identifier ‘E’. This is obviously result in an
inefficient method to routing messages.

In another case, if a node with identifier ‘A’
wants to send a message to another with node identifier
‘B’ and at the same time a node with identifier ‘E’ wants
to send a message to another node with identifier ‘F’, on
the logical network it might seems that this two messages
does not cross each other’s path. However, an overlay
network exist on top of the physical network and relies on
the physical network to relay messages. This will result on
a bottleneck occurring on a gateway or on a shared path
along the routes in the physical network. In this scenario,
it shows that a good algorithm on a logical network might
not give the same performance on the existing physical
network because it does not take proximity in
consideration. Therefore, considering the GPS coordinate
of the nodes for construction of the logical network
topology helps to increase the performance of routing in
the distributed network.

Figure-4. Mapping between an existing networks with an
overlay network in a linear topology.

FUTURE WORKS
This paper discuss the use of physical proximity

in linearizing nodes for the purpose of constructing a
linearize set of peers on the overlay network. It is known
through literature that a complex network can only be
constructed if nodes are initially topologically sorted. The
existence of an overlay network with linearize identifiers
allows the construction of a more complex structured
network that can be implemented to reduce the diameter of
the overall network. Since linear networks performs
poorly, O(n) complexity, the future direction of this
research area is to develop an algorithm that can construct
a structured network similar to hyper trees, trees or skip-
list to reduce the network complexity to O(log N).

To extend this research further, a simulation
study could be done to compare theoretical results with
simulation results. It is expected that this algorithm will
locally try to fix its left and right neighbor during a
transient fault and eventually construct a correct state for a
system with linearize nodes. However, it would interesting
to see to what extent the network can reconstruct itself
despite recurring transient faults.

On the implementation of super node in this
algorithm, ideally super nodes should be more
decentralized and peers should be less dependent on super
nodes. This opens up to a huge number of research area
pertaining to maintaining peers to be part of a cluster of
super nodes rather than a single super node.

Finally, the algorithm can be further improved by
introducing more parameters for the linearization process
such as bandwidth, type of node (phone or computer), type
of sub network and so forth which will make the algorithm
more practical to be implemented (in smart phone era).

CONCLUSIONS

This study will contribute to enhance distributed
computing systems which are currently an ongoing trend,
especially after the introduction of the cloud computing
and big data concept in mobile devices network.
Distributed computing is very good in managing huge
storages. Matei et al., [19], Chao et al., [7] and Chu et al.,
[10] also mentioned that distributed computing has
become an important method for huge data processing
across platforms. According to Sinha et al., [22]
distributed computing also can be used to solve complex
calculation by distributing the task of calculation to
multiple computers to generate the results.
 Furthermore, several modern day problems
involving big data requires applications in distribute
storage, distributed processing and distributed networks to
share resources and computing power. All of this problems
rely on an efficient scalable network to ride on for data
transfer, efficient routing and resilient to transient faults.

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17814

ACKNOWLEDGEMENTS
This paper is made possible through funding

provided by Ministry of Education under the RAGS
program (RAGS 12-042-0042).

REFERENCES

[1] Ankur Gupta, Lalit K. Awasthi. 2011. Peer-to-Peer

Networks and Computation: Current Trends and
Future, Computing and Informatics, Vol 30, No 3,
2011.

[2] A. Rowstron, P. Druschel. 2001. Pastry, Scalable,
distributed object location and routing for large-scale
peer-to-peer systems. In Proc. of Middleware.

[3] Berns, A., Ghosh, S., Pemmaraju, S.V. 2010.: Brief
announcement: a framework for building self-
stabilizing overlay networks. In: Proc. of the 29th
ACM Symp. on Principles of Distributed Computing
(PODC), pp. 398–399.

[4] Beverly Yang, Hector. 2003. Designing a Super-peer
Network.

[5] Bianchi, S., Datta, A., Felber, P., Gradinariu, M.
2007. Stabilizing peer-to-peer spatial filters. In:
ICDCS 2007: Proceedings of the 27th International
Conference on Distributed Computing Systems, p. 27.
IEEE Computer Society Press, Washington, DC,
USA.

[6] Caron, E., Desprez, F., Petit, F., Tedeschi, C. 2010.
Snap-stabilizing prefix tree for peer-to-peer systems.
Parallel Processing Letters 20(1), 15–30.

[7] Chao Jin, Christian Vecchiola, Rajkumar Buyya.
2008. MRPGA: An Extension of MapReduce for
Parallelizing Genetic Algorithms, Fourth IEEE
International Conference on eScience, pp.214-221

[8] Clouser, T., Nesterenko, M., Scheideler, C. 2008.
Tiara: A Self-stabilizing Deterministic Skip List. In:
Kulkarni, S.S., Schiper, A. (eds.) SSS 2008. LNCS,
vol. 5340, pp. 124–140. Springer, Heidelberg.

[9] Cramer, C., Fuhrmann, T. 2005. Self-stabilizing ring
networks on connected graphs. Technical Report
2005-5, System Architecture Group, University of
Karlsruhe.

[10] C.T. Chu, S. K. Kim, Y.-A. Lin, Y. Yu, G. Bradski,
A. Y. Ng, and K. Olukotun. 2007. Map-reduce for
machine learning on multicore, Advances in Neural
Information Processing Systems .Cambridge, MA:
MIT Press, pp. 281-288.

[11] Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid,
S., Täubig, H. 2010.: Time complexity of distributed
topological self-stabilization: The case of graph
linearization, pp. 294-305

[12] Hérault, T., Lemarinier, P., Peres, O., Pilard, L.,
Beauquier, J. 2006. Brief Announcement: Self-
stabilizing Spanning Tree Algorithm for Large Scale
Systems. In: Datta, A.K., Gradinariu, M. (eds.) SSS
2006. LNCS, vol. 4280, pp. 574-575. Springer,
Heidelberg.

[13] Internet Live Stats. 2015. Retrieved on July 13, 2015,
from http://www.internetlivestats.com.

[14] Jacob, R., Richa, A., Scheideler, C., Schmid, S.,
Täubig, H. 2009. A distributed polylogarithmic time
algorithm for self-stabilizing skip graphs. In: Proc. of
the 28th ACM Symp. on Principles of Distributed
Computing (PODC), pp. 131-40.

[15] Onus, M., Richa, A., Scheideler, C. 2007.
Linearization: Locally self-stabilizing sorting in
graphs. In: Proc. 9th Workshop on Algorithm
Engineering and Experiments (ALENEX). SIAM,
Philadelphia.

[16] Pugh, W. 1990. Skip lists: A probabilistic alternative
to balanced trees, Communications of the ACM 33.

[17] Rizal Mohd Nor, Mikhail Nesterenko, Christian
Scheideler. 2011. Corona: A Stabilizing Deterministic
Message-Passing Skip List, Stabilization, Safety, and
Security of Distributed Systems, Lecture Notes in
Computer Science Volume 6976, 2011, pp 356-370.

[18] Rizal Mohd Nor, Mikhail Nesterenko, Sébastien
Tixeuil. 2011. Linearizing Peer-to-Peer Systems with
Oracles, Stabilization, Safety, and Security of
Distributed Systems Lecture Notes in Computer
Science Volume 8255, 2013, pp 221-236.

[19] Matei Zaharia, Andy Konwinski, Anthony D. Joseph,
Randy H. Katz and Ion Stoica. 2008. Improving
MapReduce Performance in Heterogeneous
Environments, OSDI 2008, pp. 29-42.

[20] Shaker, A., Reeves, D.S. 2005. Self-stabilizing
structured ring topology P2P systems. In: Proc. 5th
IEEE International Conference on Peer-to-Peer
Computing, pp. 39–46.

[21] Scheideler, C., Jacob, R., Ritscher, S., Schmid, S.
2009. A self-stabilizing and local delaunay graph
construction. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.)
ISAAC 2009. LNCS, vol. 5878, pp. 771–780.
Springer, Heidelberg.

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17815

[22] Sinha, A., Saini, T., Srikanth, S.V. 2014. Distributed
computing approach to optimize road traffic
simulation, Parallel, Distributed and Grid Computing
(PDGC), 2014 International Conference pp.360,364.

[23] Feldotto, Matthias; Scheideler, Christian; Graffi,
Kalman. 2014. HSkip+: A Self-Stabilizing Overlay
Network for Nodes with Heterogeneous Bandwidths,
CoRR, vol. arXiv: 1408.0395 [cs.DC], 2014.

