
 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17953

SOFTWARE MANIPULATIVE TECHNIQUES OF PROTECTION AND

DETECTION: A REVIEW

M. A. Ibrahim
1,2

, Z. Shukur
2
, N. Zainal

3
 and Abdo A. A. Al-Wosabi

2

1National Metrology Institute of Malaysia, Selangor, Malaysia
2Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
3Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Selangor, Malaysia

E-Mail: mdazwan@sirim.my

ABSTRACT

Over the last decade, many studies have been conducted concerning the protection of software. Software piracy,

tampering and stealing became the major concern of various parties such as software developers, suppliers, traders and

consumers. This paper summarizes some of the related methods in software security such as steganography, obfuscation

and cryptography. Also some of the most applicable techniques in securing software from manipulation such as software

watermarking, fingerprinting and software birthmarking are reviewed in this paper.

Keywords: steganography, obfuscation, fingerprint, watermark, birthmark, software security, software protection, tamper detection,

software tampering.

INTRODUCTION

In the digital era, everything is now relies on

software. Whether in banking, trades, medical, production,

entertainment and education, software plays an important

part. Weaknesses in software related to security bring a lot

more chaos than we could ever expect. Software

vulnerable leads to software piracies, code stealing and

software tampering. This does not only affecting the

software industries, but brings much more troubles such as

in economic and legal situation, where people nowadays

tend to tamper or manipulate software in the favors of

their purposes in every sectors.

Illegal manipulation of software is one of the

biggest issues in software security. There have been many

extensive studies related to the software security such as

steganography, obfuscation, watermarking, birthmarking

and more. Some of them have existed in literatures from

the studies done years ago, but are still being practiced

until today.

Discussing the matter of security, there is no

exact definition to measure the security and robustness.

Both of the terms are relatively measures. However, a

system can be considered to be robust and secure if the

cost of breaking into the system is higher than the cost of

the system and the time required to break the system

exceeds the lifetime of the data [1].

Moreover, the difficulty to determine or prove

that an illegal copy (software tampering) is being

distributed and prosecute the violators during court case

trial is one of the main problems need to be solved.

There are a number of real life cases where

tampering could be a serious threat to community, for

instance; a case as of petrol station in Silibin, Ipoh has

been reported in year 2013 by the Malaysian enforcement

authority where the owner had manipulated their fuel

pumps to gain more profit. Similar cases also have been

reported in India in year 2008 [2].

There are several studies and techniques that

applicable for curing such problems. This paper

summarizes and focuses on the techniques that applicable

from the previous studies that haves been conducted and it

is organized as follows. The first section of the paper is the

introduction part which discussed the software

manipulation issues, second is the methodology section,

which explain the methods used in organization of this

review, and third is the related method in supporting

software securing. Software watermarking, fingerprinting

and software birthmark come next in section four.

METHODOLOGY

This section discusses the methodology used in

preparing this paper from starting from data collection,

search terms and searchable database.

Data collection

A literature search has been conducted in 2015,

for the purpose of compiling and reviewing studies that

have been conducted related with the title of this paper.

The search also cover patents that has been filed related

with the title of interests. The time period covered by this

paper was from year 1994 to 2015.

Search term

Search terms used were based on the software

security synonymous keywords such as “tamper
detection”, “software watermark”, “software fingerprint”,
“software birthmark”, “software steganography”,
“obfuscation”, “tamper prevention”, “portable executable
watermark”, “PE watermark”, “PE specification”,
“watermark patent”, “java watermark”, “java birthmark”,
“binary executable protection”, ”binary watermarking”,
“text fingerprint”, “document fingerprint”, “digital

fingerprint”, “software copy detection”, “software theft”,
“code theft”, “code tampering detection”, “cryptography”,
“steganography”. Search outcome were then filtered by
relevancy of the title of this paper.

http://www.arpnjournals.com/
mailto:mdazwan@sirim.my

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17954

Searchable database

The database searched for the study were online

specific for literature databases such as Mendeley

Literature Search, Google Scholars, IEEE Xplore Digital

Library, ACM Digital Library, Scopus, Springer and

Science Direct. Google Patent was specifically used in the

search for patent that are related with this paper.

RELATED METHODS

The following are fundamental methods that

support the techniques in securing software. Most of the

methods in this section are common in information

security such as steganography, cryptography and

obfuscation. Selection of papers is made so that only the

methods related with securing software are presented.

Steganography

Steganography is defined as the method of hiding

information by using innocuous carriers by means of

covering the existence of the secret information. The word

steganography itself was derived from ancient Greek,

which means to cover or hide. It is not intended to replace

cryptography but rather to complement it. By concealing

information with encryption, it will reduce the chances of

the information being revealed [3].

There are three main elements in a steganography system

(a) Cover message; (b) Embedded message and (c)

Steganographic key. Figure-1 depicts a typical

steganography system [4].

Figure-1. Typical steganography system.

Cover message (C) is the carrier message where

the purpose is to bring the embedded message along with

it. The cover message is to be combined with embedded

message (M) using a specific steganographic algorithm.

The cover message itself may not have any connotation

with the embedded message.

Embedded message is the actual message to be

sent which is to be embedded within the cover message. It

is also meant to be hidden and unseen by normal reader

unless reversed by a specific steganographic algorithm.

The combination of the cover message and embedded

message is called steganographic message. The cover

message may not be of the same data types with the

embedded message, but the cover message and the

steganographic message must have same data type.

 Steganographic key is the additional information

or data, which to be used in the process of embedding and

extracting. Steganographic key is an optional element of

which the sender may use or not. Adding steganographic

key in the element makes the embedded message even

more difficult to reveal.

 There are five main criteria to be considered

when designing a steganography system. (a) Capacity, the

number of bits hidden and to be recovered successfully by

the steganography system; (b) Robustness, the ability of

the information to remain intact after the cover message

has undergone process of changes and transformations; (c)

Undetectable, the format and the physical structure of the

cover message remain the same after the process of

insertion; (d) Invisibility Perceptual Transparency, does

not make any detectable changes by human to the cover

message after the process of insertion of hidden

information by exploiting human perceptual capabilities

and (e) Security, the embedded message is difficult to be

removed after being discovered a third party.

The importance of above criteria depends upon the

application and environment of the steganography system

[5].

A quite recent example of study in steganography that

works at the firmware level is as explained by [6]. They

introduced a method of concealing data in a hard disk

drive by manipulating the drive’s defect control systems
firmware. The defect control system is part of the

firmware functions, which transparent to the users and

works ‘beneath’ the control of operating systems. Any

defects on the drive will be recorded within the P-list and

G-list of the firmware. Listed sectors will be bypassed by

the drive’s electronics and data will on that particular
sectors will be inaccessible.

Cryptography

Cryptography is the method of scrambling data

into something that is not understandable. Normally

steganography and cryptography are used together as both

of them complementing each other. Often, before a

message is to be hidden using steganography technique as

discussed above, it will be first encrypted so that even if

the hidden information is successfully revealed; it would

still be very difficult for the unintended party to

understand the actual meaning of the message.

The original message to be sent is called

plaintext, which will undergo the process of encryption

and transforming it into a new form of message which is

called cipher text. The intended recipient then needs to

decrypt the cipher text using a key provided by the sender

in order to recover the original message.

There are two ways of processing the plaintext:

stream cipher and block cipher. In stream cipher mode, the

plaintext is coded ‘on-the-fly’ with a continuous code
seeded by a generator [7]. Whilst in the block cipher

mode, the data is processed in a predefined blocks size.

The plaintext is divided into groups of predefined block

size before they are to be encrypted.

There are two types of encryption schemes,

asymmetric and symmetric encryptions. Asymmetric

encryption uses a pair of key to encrypt and decrypt while

http://www.arpnjournals.com/

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17955

symmetric encryption uses only single (shared) key for

both operations.

There are two types of keys in asymmetric

encryption. First is public key cryptography, which the

key is known by the public and second is private key

cryptography which, the key is own only by the user. Let

say Alice would like to send private message to Bob, Alice

and Bob needs to negotiate the encryption method to be

used in the first place. After the agreement, Bob sends to

Alice a public key for Alice to use in encrypting her

message. After the message arrived, Bob uses his private

key to decrypt and retrieve Alice’s original message.
There are few major asymmetric encryption

algorithms such as RSA (Rivest, Shamir and Adleman),

ECC (Elliptic Curve Cryptography) and El Gamal. The

RSA algorithm was introduced since 1977 and it is the

most widely used asymmetric algorithm today. It provides

good level of security but it is slow in encrypting speed

[8]. Next, Victor Miller of IBM, and Neal Koblitz of the

University of Washington introduced ECC in 1985. ECC

has the advantage of smaller footprints where it requires

smaller processing power due to smaller key size while

providing same level of security compared to RSA [9].

Taher ElGamal first described the ElGamal

encryption in 1984. A studied suggested that the ElGamal

algorithm is more secured compared to RSA algorithm but

at the same time it is much slower in processing [10].

The strongest symmetric encryption algorithm to

date is the well-known AES standard based on Rijndael

algorithm [11]. AES stands for Advanced Encryption

Standard which is defined under Federal Information

Processing Standard (FIPS) 192 [12]. AES supersedes

DES (Data Encryption Standard) after DES has been

successfully broken by attackers [13].

AES operates on an array of bytes of 4×4 (128

bits) which is called a state. It supports key length of 128,

192 and 256 bits. The encryption and decryption is done

via four transformations for a specific number of rounds

(10, 12 or 14) based on the key length stated above [14].

There are many variants of AES encryption

introduced by cryptography scholars to date. Each of the

variant basically optimizes AES to meet for specific

purpose such as HD multimedia encryption, reducing

processing load for low performance devices, wireless

transmission and others. Variant of AES is known as

MAES (Modified Advance Encryption Standard).

Obfuscation

 Obfuscation is a technique to complicate the

control flow of an instruction stream and data structures

which contains sensitive information so that to mitigate

from code reverse engineering [15].

A study in [16] defines that the transformation of

original program P into an obfuscated program Ṕ (as a

transformation of Ʈ) shall have the same observable
behavior of both. P and Ṕ shall be the same in terms of

their functionalities to the user. It is aside of the

performance losses due to the obfuscation transformation.

Virus writers often employ obfuscation-like

techniques to prevent it from being detected along with

tamper-proof alike technique to prevent it from being

removed easily [16].

There has been a study of an implementation of

obfuscation at assembly level by inserting junk bytes [17].

Junk bytes are used to fool disassembler at selected

instruction stream and it serve for two main purposes, it

must be partial instructions; and it shall not interfere with

existing instructions such that the partial instructions must

be unreachable during runtime.

A hybrid combination of obfuscation between static and

dynamic analysis has been discussed in [18]. Static

analysis obfuscation is implemented by adding branching

functions with statically obfuscation algorithms to control

the flow of software, resulting large number of small

chunks of code blocks. The control flow of the instructions

and the information on how to connect between small

chunks of codes to form a sequence of valid program are

unknown. On the dynamic obfuscation sides, the control

flow graph of the software is diversified so that it contains

much more control flow paths in order to make debugging

difficult. The small chunks of codes is diversified in terms

of the flow (i.e. semantically identical but syntactically

different) and adding input dependent branches so that

different chunks of codes get executed with different

inputs.

Some of the fundamental solutions in the

techniques of securing software have been discussed. In

the next section, we will be discussing the major

techniques to be used in securing software such as

software watermark, fingerprinting and software

birthmark.

SOFTWARE WATERMARK

Software watermarking can be defined as the

process of embedding additional information into

software, without interrupting the functionality of the

software itself.

The earliest patents were filed in 1994, based on

the concepts of software watermarking. The watermarking

proposed by [19] are methods for, identifying

unauthorized copies and; to provide a method for

identifying the source of unauthorized copies. In another

patent in the same year [20], an assignee claiming a

method and apparatus for serializing and validating copies

of software, and thus, possibilities of disabling the

functionalities of the software whenever an unauthorized

copy is found.

Two years later, a patent had been filed by

Microsoft Corporation in 1996 [21], utilizing software

watermarking concepts. The method is by rearranging

blocks of codes so that arrangement of code blocks

become as its unique identification on each software

distribution.

Ever since the popularity of digital watermarking started

to increase, the terms “watermarking” became more
ambiguous due to the many kinds of watermarking-alike

technology appearing. A taxonomy in software

http://www.arpnjournals.com/

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17956

watermarking has been specified in a study [22], in order

to clarify the sub-terms emerged in the watermarking

technology.

Some studies stated that, a strong watermark shall

be able to withstand these four types of attacks [1, 23] (a)

Subtractive Attack, attempt of removing watermark

completely so that there will be no sign of watermark; (b)

Distortion Attack, attempt of damaging or distorting the

watermark so it will be unrecognizable; (e) Additive

Attack, action of overwriting the original watermark with

a new one by adversary and (f) Collusive Attack, locating

the watermark by differentiating between different

fingerprints of watermark.

 An attack is considered to be successful if the

watermark is failed to be extracted from the attacked

software, and also if the de-watermarked performance of

attacked program is considered useful by the attacker [23].

There are two major types of software watermarking

modes of operations; known as dynamic and static

watermarking. Static watermarks are embedded into the

code and/or data of a program while the dynamic

watermark is applied during the program’s execution state
[16, 24, 25].

There is another method of watermarking called

graph watermarking. This type of watermarking is

available in both static and dynamic type of watermarking.

The first graph based static software watermarking was

first introduced in [26]. The idea is to convert both

software and watermark codes into digraphs and adding

new edges between them by adding additional function

calls between the software and watermark codes. The

complement of the dynamic sides was firstly introduced in

[27], which is a type of dynamic graph based software

watermarking, called CT algorithm. It is implemented by

embedding the watermark in the topology of dynamic

heap data structures, generated by the code algorithm,

while a secret key of series sequence is fed into the

system, the watermark (graph structure) will be appeared

and can be identified by the recognizer.

Spread-spectrum method of watermarking was

proposed in [28], by analyzing functions representing

consecutive of assembly instructions as a type of statistical

object. The frequency counts of set of consecutive

instructions become the marking object. Another spread-

spectrum based is introduced [29], utilizing multimedia

concept of watermarking in software, where vector r is

extracted from the properties of the running programs. The

call graph is altered using algorithm to embed the

watermark.

There are other tremendous researches in Java

based watermarking [25], such as a method proposed

using dummy Java class file and a dummy call instruction

to be inserted into a Java program. The dummy

conditional instruction is written such that the return value

for the condition will never make the method within the

class to be executed. The dummy Java class contains the

watermark information. This method has been proposed to

be used with obfuscation techniques in order to prevent the

attacker from locating the dummy methods [30].

Besides that, there are two types of watermarking

robustness, each with their own unique application. First is

robust watermarking; which is the ability of the watermark

to hold themselves and can be successfully extracted even

after the file suffered from maliciously attacked, and

secondly the fragile watermarking of which the mark will

be destroyed upon any tampering circumstances. The

robust watermarking is used in as copy protection and

proof of ownership while the fragile watermarking is

mainly used in tampering detection and as a proof of

integrity.

 Zero-watermark is another concept of

watermarking [31–33]. The technique is quite different

from other watermarking schemes since there is no

additional watermark message to be embedded into the

original message, but rather utilizes the combination of

birthmark and watermark approach by calculating

registration message along with the birthmark data. The

technique can be seen in Feature n-gram Set (FnGS)

concept, which method has been proposed in [34].

 The terms Zero-watermark above shall not be

confused with Zero-knowledge watermarking [35–37]. In

zero-knowledge watermarking, the existence of watermark

can be soundly proven without revealing the details of the

watermark itself. This prevents sensitive data to be

disclosed to unnecessary party.

Microsoft has released specifications structure of

executable file. This reference shall be used to embed

watermarks on portable executable. Figure-2 shows the

typical layout of an executable [38].

MS-DOS 2.0 Compatible

EXE Header

Unused

OEM Identifier

OEM Information

Offset to PE Header

MS-DOS 2.0 Stub Program

and

Relocation Table

Unused

PE Header

(Aligned on 8-byte boundary)

Section Headers

Import Pages

Import information

Export information

Base relocations

Resource information

Base of Image Header

MS-DOS 2.0 Section

(for MS-DOS

compatibility, only)

Figure-2. Portable executable file layout.

Recently, there have been active studies

conducted on watermarking of portable executable (PE)

file, a watermark in binary form of executable. A

watermark is inserted by analyzing suitable space for

inserting watermark using standard profiling of PE file

http://www.arpnjournals.com/

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17957

structure. This implementation requires high level of

understanding of the format of PE specifications and

Relative-virtual Address (RVA) formatting. RVA is a

position unit within the PE and is used as a start-address of

a PE file loaded into memory [39].

There are several studies on watermarking on

various locations of PE layout as; in unused area number 1

[40], Unused area number 2 [4, 41], Combination of

Unused Area number 1 and Unused Area number 2 [42],

Import Pages [43] and Bitmap Resources area [44]. In

another study, watermarking data within triplex space for

EXE file has been presented. By making use of three

possible spaces which are Unused Area 1, Unused Area 2

and Image Pages areas. This method could hold around

28% of overall size of cover file before watermarking

[45].

In a study in [39], two new techniques of

embedding hidden information into the PE have been

introduced: (a) Utilizing slack space, where slack spaces

are unused spaces within each section. The size of data to

be inserted is limited, depending on the size of slack

spaces; (b) At the .text section, inserting data into this area

does make the overall size of PE changed. Blindly

inserting will make the PE not executable. Modifications

are required on both section table and

IMAGE_OPTIONAL_HEADER to make the PE usable

again. The advantage being there is no limit on the hidden

information to be inserted and the execution results are not

affected.

A modification at the code level approach has

been introduced [46]. The basic idea is by inserting

redundant functions within the executable file and they are

distributed randomly within the executable file, thus

making it difficult to be traced. This method theoretically

has unlimited watermark data size capacity.

Currently, most of the watermarking scheme

proposals are to protect the ownership of the piece of

media/software, but there is an urgent need of

watermarking as integrity verification of software in

practical applications [47].

A good example of software watermarking that

has been used outside its ordinary usage as introduced in

[48]. The author proposed a new virus detection

mechanism via software watermarking. This is a type of

watermarking which is implemented within the PE binary

format. The concept is by embedding a fragile watermark

along with the identity of the PE carriers. This method has

been tested and proven to have high detection rates for

known and unknown viruses compared to conventional

virus signature-based detection methods.

We can see a lot of potential in software

watermarking technique, where it has been used in various

situations as discussed. In the next section we will be

discussing on another near-similar concept of

watermarking which is called fingerprinting.

FINGERPRINTING

Fingerprinting is basically the same as

watermarking, except that fingerprinting embeds unique

identifier information on each distribution copies of

software. This may not only detect an occurrence of

software violation copies, but also able to trace the

violator. A fingerprint may include vendor, product or

customer information [16].

A quick substring matching algorithm has been

proposed in [49]. This method is the earliest version of

fingerprinting based on k-grams concept. Winnowing is

introduced later in [50], an algorithm for document

fingerprinting, based on the k-grams method as well.

Fingerprinting Java based program using Java class file

obfuscation is presented in [51], based on watermarking

scheme introduced in [30], with addition of some

modifications to make it as a fingerprinting approach.

A Patent has been filed by [52] on fingerprinting.

The implementation is by inserting NOP (No Operation)

codes into an executable in a pattern as identification of

the fingerprint. NOP code is a type of instruction, which

does nothing within the program functions. In this case, it

is inserted purposely with pre-determined pattern for

identification purposes.

 Another alternative method in securing software

called software birthmark will be discussed in the next

following section.

SOFTWARE BIRTHMARK

One of the less popular methods on securing a

copy of software is called software birthmark. It has quite

a different approach compared to software watermark. The

general concept of software birthmark is the same that is

found in the computer virus signature concepts; to produce

a unique identification of software.

There are two important characteristics that differ between

the software watermark and software birthmark [53]; (a)

In software watermark, it is often necessary to embed

external information or data or code within carrier

software, whereas it is not required in software birthmark;

(b) Birthmark could not be used to identify ownership, or

source of distribution but rather to confirm that software or

code whether it is in partially or in fully, is a reproduction

of others.

In software birthmark, the inherent characteristic

from the software itself is to be extracted, whilst for

software watermark, the pre-embedded information is to

be extracted. Software watermark provides further some

evidence on the ownership information, but the application

of software birthmark is strictly and serves better in

proving evidence of software/code theft.

A software birthmark is a method of producing

unique characteristic on each of the software or code.

There will be no same markings on each of the software. If

same marks ever found on two or more different copies of

software, it proves that a copy violation has occurred.

If only part of the codes is stolen, and integrated into new

software, which is then distributed. It makes even more

difficult to detect or prove there is a code theft [54].

A strong birthmark shall be able to withstand from attacks

via code transformation has been applied in order to hide

the theft [53].

http://www.arpnjournals.com/

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17958

Same as in software watermarking, birthmark

generally can be divided into two categories; static

analysis and dynamic analysis. Static birthmark is derived

from the syntactical instruction code structure of the

software while the dynamic birthmark is implemented

during the runtime [49].

It can be further divided into few more sub-

categories [55] as (a) Static source code based birthmark

[54]; (b) Static executable code based birthmark [56]; (c)

Dynamic WPP based birthmark [53]; (d) Dynamic API

based birthmark [57, 58] and (e) Dynamic behavior based

birthmark [59].

Based on static analysis birthmark, [60] proposed

four new static based analysis of Java class file code theft

detections; Constant Values in Field Variables (CVFV),

Sequence of Method Calls (SMC), Inheritance Structure

(IS) and Used Classes (UC). These four methods were

further evaluated by [54] on the performance with

practical applications and tolerance against program

transformation.

A strong static executable code based birthmark

has been proposed in [56]. The method is implemented by

tabulating the sequence of instruction and applying k-gram

concepts for analyzing its opcode. The method of k-gram

is previously used for document fingerprinting and it is

strong in plagiarism detection.

A dynamic birthmark based called Whole

Program Paths (WPP) is introduced in [53]. WPP is

originally used to represent the dynamic control flow of a

program. This method is weak against some many of the

semantic-preserving transformation such as loop

unwinding and in-lining functions. Within these

limitations, WPP is not suitable in environments where

various compilers are available such as Windows [55, 58].

In another study, Tamada proposed new

approaches based on dynamic API (Application Program

Interface) birthmarking called EXESEQ (Sequence of API

Function Calls Birthmark) and EXEFREQ (Frequency of

API Function Calls Birthmark) [54, 58]. Since the API call

is being analyzed, this method is suitable within windows

environment. This is based on the facts that it is difficult to

modify API calls within a binary code without interrupting

its operational behavior of executions. Therefore, API call

is used as a signature of a program.

Based on System Dependent Graph Based

(SDCG), a new technique is proposed [59] called System

Call Short Sequence Birthmark. Short sequence of system

calls has been used previously to detect abnormality of

behavior of a program. In SDCG, program’s behavior is
represented by using graph. Via these two techniques, a

new method has been developed to detect behavior

similarities between programs.

As discussed above, software birthmark has its

own potential with different kind of approaches and serves

better in proving copy violations. The main objective of

studies in this area is mainly to find the best approach to

determine a unique identifier on each software within its

very original form.

DISCUSSIONS

There are three major techniques that have been

discussed; software watermarking, fingerprinting and

birthmarking. Table-1 briefly compares each of the

technique.

Table-1. Comparison summary between different

techniques.

All these techniques in combination with a

number of fundamental security related solutions such as

cryptography, steganography and obfuscation, could

possibly achieve a good protection scheme which can be

used to protect against software stealing, piracy, tampering

and also malware as well as virus detection and curing.

CONCLUSIONS

In this paper, we reviewed some of the techniques

that applicable to securing software from manipulation

from the definitive to the recent years of study. It is

suggested that there are different kind of methods to

securing software depending on the suitability of the

application and environment.

Our aim from this review is to propose an

effective method and framework in the future for detecting

and securing software by utilizing some of the methods

discussed above. The application would be on the

protection of software based instruments that relates with

trade and consumer. This would directly benefit the both

business and consumers community in by means of

trustworthy transaction.

REFERENCES

[1] Q. Albluwi and I. Kamel. 2006. Watermarking

Essential Data Structures for Copyright Protection. In:

5
th

 International Conference, CANS 2006, Suzhou,

China, December 8-10. Proceedings, 2006, pp. 241–
258.

http://www.arpnjournals.com/

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17959

[2] Abdo Ali Abdullah Al-wosabi, Z. Shukur, and M. A.

Ibrahim. 2015 Framework for Software Tampering

Detection in Embedded System. In: 5
th

 International

Conference on Electrical Engineering and

Informatics.

[3] Z. K. Al-ani, A. A. Zaidan, B. B. Zaidan, and H. O.

Alanazi. 2010. Overview : Main Fundamentals for
Steganography. J. Comput., Vol. 2, No. 3, pp. 158–
165.

[4] A. W. Naji, A. A. Zaidan, and B. B. Zaidan. 2009.

Challenges of Hidden Data in the Unused Area Two

within Executable Files. J. Comput. Sci., Vol. 5, No.

11, pp. 890–897.

[5] Y. Al-Nabhani, A. A. Zaidan, B. B. Zaidan, H. A.

Jalab, and H. O. Alanazi. 2010. A new system for

hidden data within header space for EXE-file using

object oriented technique. In: Proceedings - 2010 3rd

IEEE International Conference on Computer Science

and Information Technology, ICCSIT 2010, 2010,

Vol. 7, pp. 9–13.

[6] I. Sutherland, G. Davies, and A. Blyth. 2011.

Malware and steganography in hard disk firmware. J.

Comput. Virol., Vol. 7, No. 3, pp. 215–219.

[7] K. Saranya, R. Mohanapriya, and J. Udhayan. 2014.

A Review on Symmetric Key Encryption Techniques

in Cryptography. Int. J. Sci. Eng. Technol., Vol. 3,

No. 3, pp. 539–544.

[8] R. Bhanot and R. Hans. 2015. A Review and

Comparative Analysis of Various Encryption

Algorithms. Int. J. Secur. Its Appl., Vol. 9, No. 4, pp.

289–306.

[9] K. Gupta, S. Silakari, N. Koblitz, and V. Miller. 2011.

ECC over RSA for Asymmetric Encryption : A
Review unexpected application of elliptic curves in

integer. Int. J. Comput. Sci. Issues, Vol. 8, No. 3, pp.

370–375.

[10] A. Sharma, J. Attri, A. Devi, and P. Sharma. 2014.

Implementation & Analysis of RSA and ElGamal

Algorithm. In: National Conference on Advances in

Basic & Applied Sciences, 2014, Vol. 2, No. 3, pp.

125–129.

[11] J. Nechvatal, E. Barker, L. Bassham, W. Burr, M.

Dworkin, J. Foti, and E. Roback. 2000. Report on the

Development of the Advanced Encryption Standard (

AES).

[12] M. Pitchaiah, P. Daniel, and Praveen. 2012.

Implementation of Advanced Encryption Standard

Algorithm. Int. J. Sci. Eng. Res., Vol. 3, No. 3, pp. 1–
6.

[13] S. M. Wadi and N. Zainal. 2013. A Low Cost

Implementation of Modified Advanced Encryption

Standard Algorithm Using 8085A Microprocessor. J.

Eng. Sci. Technol., Vol. 8, No. 4, pp. 406–415.

[14] A. Abdulgader, M. Ismail, N. Zainal, and T. Idbeaa.

2015. Enhancement of AES Algorithm Based on

Chaotic Maps and Shift Operation for Image

Encryption. J. Theor. Appl. Inf. Technoogy, Vol. 71,

No. 1.

[15] C. Collberg, C. Thomborson, and D. Low. A

taxonomy of obfuscating transformations. 1997. In:

Technical Report 148 Department of Computer

Science University of Auckland July, 1997, No. 148,

p. 36.

[16] C. S. Collberg and C. Thomborson. 2002.

Watermarking, tamper-proofing, and obfuscation -

Tools for software protection. IEEE Trans. Softw.

Eng., Vol. 28, pp. 735–746.

[17] C. Linn and S. Debray. 2003. Obfuscation of

executable code to improve resistance to static

disassembly. In: Proceedings of the 10
th

 ACM

conference on Computer and communications

security.

[18] S. Schrittwieser and S. Katzenbeisser. 2011. Code

obfuscation against static and dynamic reverse

engineering, In: Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics),

2011, vol. 6958 LNCS, pp. 270–284.

[19] K. Holmes. 1994. Computer software protection.

US5287407 A.

[20] P. R. Samson. 1994. Apparatus and method for

serializing and validating copies of computer

software. US 5287408 A.

[21] R. I. Davidson and N. Myhrvold. 1996. Method and

system for generating and auditing a signature for a

computer program. US 5559884 A.

[22] J. Nagra, C. Thomborson, and C. Collberg, A

functional taxonomy for software watermarking.

2002. In: Aust. Comput. Sci. Commun., 2002, Vol.

24, No. 1, pp. 177–186.

[23] C. Collberg, E. Carter, S. Debray, A. Huntwork, J.

Kececioglu, C. Linn, and M. Stepp. 2004. Dynamic

path-based software watermarking. in ACM

SIGPLAN Notices, 2004, Vol. 39, No. 6, p. 107.

[24] J. Hamilton and S. Danicic. 2011. A survey of static

software watermarking. In: 2011 World Congress on

http://www.arpnjournals.com/

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17960

Internet Security (WorldCIS-2011), 2011, pp. 100–
107.

[25] C. Collberg, G. Myles, and A. Huntwork. 2003.

Sandmark - A tool for software protection research.

IEEE Secur. Priv. Arch. Vol. 1 Issue 4, July 2003,

Vol. 1, No. 4, pp. 40–49.

[26] R. Venkatesan, V. Vazirani, and S. Sinha. A Graph

Theoretic Approach to Software. In: 4
th

 International

Information Hiding Workshop, 2001, pp. 157–168.

[27] C. Collberg and C. Thomborson. 1999. Software

watermarking: Models and Dynamic Embeddings. In:

Proceedings of the 26
th

 ACM SIGPLAN-SIGACT

symposium on Principles of programming languages -

POPL ’99, 1999, pp. 311–324.

[28] J. Stern, G. Hachez, F. Koeune, and J.-J. Quisquater.

2000. Robust Object Watermarking: Application to

Code. In: Third International Workshop, IH’99, 2000,
Vol. 1768, pp. 368–378.

[29] D. Curran, N. J. Hurley, and M. O. Cinneide. 2003.

Securing Java through Software Watermarking. in

PPPJ ’03 Proceedings of the 2nd
 international

conference on Principles and practice of programming

in Java, 2003, pp. 145–148.

[30] A. Monden, H. Iida, K. Matsumoto, K. Inoue, and K.

Torii. 2000. A practical method for watermarking

Java programs. In: Proceedings 24
th

 Annual

International Computer Software and Applications

Conference. COMPSAC2000.

[31] Z. Jalil, A. M. Mirza, and M. Sabir. 2010. Content

based Zero-Watermarking Algorithm for

Authentication of Text Documents. Int. J. Comput.

Sci. Inf. Secur., Vol. 7, No. 2, pp. 212–217.

[32] Z. Jalil, A. M. Mirza, and T. Iqbal. 2010. A Zero-

Watermarking Algorithm for Text Documents Based

on Structural Components. 2010 Int. Conf. Inf.

Emerg. Technol. ICIET 2010, pp. 1–5.

[33] H. Ishizuka, I. Echizen, K. Iwamura, and K. Sakurai.

2014. A Zero-Watermarking-Like Steganography and

Potential Applications. In: 2014 Tenth International

Conference on Intelligent Information Hiding and

Multimedia Signal Processing, 2014, pp. 459–462.

[34] B. Lu, F. Liu, X. Ge, and P. Wang. 2008. Feature n-

gram Set Based Software Zero-Watermarking. In

2008 International Symposiums on Information

Processing, 2008, pp. 607–611.

[35] A. Adelsback and A.-R. Sadeghi. 2005. Zero-

Knowledge Watermark Detection and Proof of

Ownership. In: 2004 Information Hiding Workshop,

Proceedings, LNCS 3200, 2005, Vol. 3200, pp. 239–
252.

[36] S. Bhattacharya and a. Cortesi. 2010. Zero-knowledge

Software Watermarking for C Programs. In 2010

International Conference on Advances in

Communication, Network, and Computing.

[37] Z. Fu, X. Sun, J. Shu, and L. Zhou. 2014. Plain Text

Zero Knowledge Watermarking Detection Based on

Asymmetric Encryption. In: International

Conferences, ISA, CIA, 2014, Vol. 48, No. Cia, pp.

126–134.

[38] Microsoft. 2013. Microsoft PE and COFF

Specification. Microsoft Corporation, US.

[39] D. Shin, Y. Kim, K. Byun, and S. Lee. 2008. Data

Hiding in Windows Executable Files. In: Proceedings

of the 6
th

 Australian Digital Forensics Conference.

[40] A. A. Zaidan, B. B. Zaidan, and F. Othman. 2009.

New Technique of Hidden Data in PE-File with in

Unused Area One. Int. J. Comput. Electr. Eng., Vol.

1, No. 5, pp. 642–650.

[41] A. W. Naji, A. A. Zaidan, B. B. Zaidan, S. A.

Hameed, and O. O. Khalifa. 2009. Novel Approach

for Secure Cover File of Hidden Data in the Unused

Area within EXE File Using Computation between

Cryptography and Steganography. J. Comput. Sci.,

Vol. 9, No. 5, pp. 294–300.

[42] W. F. Al-khateeb and S. A. Hameed. 2009. New

Approach of Hidden Data in the portable Executable

File without Change the Size of Carrier File Using

Statistical Technique. Int. J. Comput. Sci. Netw.

Secur., Vol. 9, No. 7, pp. 218–224.

[43] M. H. Jawwad. 2014. A Proposed System for Hiding

Information In Portable Executable Files Based on

Analyzing Import Section. IOSR J. Eng., Vol. 04, No.

01, pp. 21–30.

[44] J. Xu, L. Feng, Y. Ye, and Y. Wu. 2012. An

Information Hiding Algorithm Based on Bitmap

Resource of Portable Executable File. J. Electron. Sci.

Technol., Vol. 10, No. 2, pp. 181–184.

[45] A. A. Zaidan, B. B. Zaidan, O. H. Alanazi, A. Gani,

O. Zakaria, and G. M. Alam. 2010. Novel approach

for high (secure and rate) data hidden within triplex

space for executable file. Sci. Res. Essays, Vol. 5, no.

15, pp. 1965–1977.

[46] G. Chen, M. Zhang, and P. Zhang. 2012. The

Unlimited Steganographic Capacity Algorithm for

Source Code Modification Steganographic Model. J.

http://www.arpnjournals.com/

 VOL. 10, NO. 23, DECEMBER 2015 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences

©2006-2015 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

17961

Inf. Comput. Sci., Vol. 18, No. 20090322004, pp.

5543–5550.

[47] C. Zhang, H. Peng, X. Long, Z. Pan, and Y. Wu.

2009. A Fragile Software Watermarking for Tamper-

Proof. in 2009 Fifth International Conference on

Information Assurance and Security, pp. 309–312.

[48] Z. Tian, X. Sun, and H. Yang. 2011. A Scheme of PE

Virus Detection Using Fragile Software

Watermarking Technique. Int. J. Digit. Content

Technol. its Appl., Vol. 5, No. 2, pp. 158–164.

[49] R. M. Karp and M. O. Rabin. 1987. Efficient

randomized pattern-matching algorithms. IBM J. Res.

Dev., Vol. 31, No. 2, pp. 249 – 260.

[50] S. Schleimer, D. S. Wilkerson, and A. Aiken. 2003.

Winnowing: Local Algorithms for Document

Fingerprinting. In Proceedings of the 2003 ACM

SIGMOD international conference on on

Management of data - SIGMOD ’03, 2003, pp. 76–85.

[51] K. Fukushima and K. Sakurai. 2003. A Software

Fingerprinting Scheme for Java Using Classfiles

Obfuscation. In: 4
th

 International Workshop, WISA

2003 Jeju Island, Korea, August 25-27, 2003 Revised

Papers, 2004, pp. 303–316.

[52] A. G. Gounares. 2012. Fingerprinting Executable

Code. US 20120317421 A1.

[53] G. Myles and C. Collberg. 2004. Detecting Software

Theft via Whole Program Path Birthmarks. In: Proc.

Information Security 7
th

 International Conference,

ISC 2004, 2004, Vol. 3225, pp. 404–415.

[54] H. Tamada and M. Nakamura. 2004. Design and

evaluation of birthmarks for detecting theft of java

programs. In: Proceedings of the IASTED

International Conference on Software Engineering,

2004, pp. 569–574.

[55] X. Wang, Y. C. Jhi, S. Zhu, and P. Liu. 2009.

Detecting software theft via system call based

birthmarks. In: Proceedings - Annual Computer

Security Applications Conference, ACSAC, 2009, pp.

149–158.

[56] G. Myles and C. Collberg. 2005. K-gram Based

Software Birthmarks. In: Proceedings of the 2005

ACM symposium on Applied computing - SAC ’05,
2005, p. 314.

[57] H. Tamada, K. Okamoto, and M. Nakamura. 2004.

Dynamic software birthmarks to detect the theft of

windows applications. In: International Symposium

on Future Software Technology.

[58] H. Tamada and K. Okamoto. 2007. Design and

evaluation of dynamic software birthmarks based on

api calls. Nara Inst. Sci. Technol. Tech. Rep.

[59] X. Wang, Y.-C. Jhi, S. Zhu, and P. Liu. 2009.

Behavior based software theft detection. Proc. 16
th

ACM Conf. Comput. Commun. Secur. - CCS ’09, p.
280.

[60] H. Tamada, M. Nakamura, A. Monden, and K.

Matsumoto. 2003. Detecting the Theft of Programs

Using Birthmarks. In: Information Science Technical

Report NAIST-IS-TR2003014 ISSN 0919- 9527,

2003, p. 13.

http://www.arpnjournals.com/

