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ABSTRACT 

The paper proposes new algorithm for solving the flat problem of computed tomography by direct method of 

Fourier for the symmetric functions using spline-interlination. The algorithm reduces the number of operations needed to 

compute the Fourier series asymptotically twice. 
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INTRODUCTION 

In computed tomography, is often arose the 

problem of calculation of sums of Fourier series for the 

functions of one and many variables on a given system of 

points (e.g., on a line segment or on a plane). The most 

widely used mathematical apparatus to solve this problem 

is a Fast Fourier Transform (FFT) [1; 2], which allows us 

significantly reduce the time of computations. For 

example, direct calculation of the vector 

npexXX
n

k

npki

kp ,1,,
1

/)1)(1(2 


  of the length n  

needs  2
nO  Arithmetic Operations (AO), and when 

using FFT - only  nnO 2log  AO. Widely used for 

scientific research MATLAB system defines two-

dimensional FFT - fft2(X) - with the help of one-

dimensional FFT - fft(X) - by the formula 

fft2(X) = (fft (fft(X))’)’1
 

For the matrix Х of dimension nn  the number 

of operations, needed to find the sum  
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by the known matrix h  is nn 2

2 log2  AO. Without use 

of FFT to compute this matrix 
4

n  of AO is needed. 

                                                 
1
 The function fft in MATLAB computes the discrete sums 

of Fourier. The symbol ' is the operation of matrix 

transposition. 

Despite of such obvious effectiveness of two-

dimensional FFT, analysis of continuously increasing 

massifs of data requires further optimization of algorithms 

for the fast Fourier transform. One of the promising 

directions for this optimization is a combination of FFT 

with the method of spline-interlination of functions [3] for 

computing values of an array of two-dimensional Fourier 

sums.  

Another direction is a selection of subclasses of 

problems (e.g. symmetric, axisymmetric, plane, etc.), 

which is also widely used when solving three-dimensional 

problems in mathematics. This approach allows us 

significantly reduce the number of needed arithmetic 

operations and, in some cases, obtain a precise solution. 

This paper combines two mentioned directions and 

proposes an algorithm that reduces the number of AO, 

needed to compute the Fourier sums asymptotically twice. 

 

MATERIAL AND METHODS 

In this paper we consider the functions of the 

form f(x,y)=f(y,x), which graphs are symmetric with 

respect to the bisectors of the 1 and 3 quadrants. Let us 

analyse the possible directions of reducing the 

computation time of the double Fourier sum of f(x,y) on 

the system of points nqp
n

q
y

n

p
x ,1,,,   using FFT 

and spline-interlination of functions. 

Suppose, we need compute the double sum of 

Fourier series with the matrix of coefficients 

2
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khkl   on the system of points
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x ,1,,,  . We will have  

mailto:mejuev@ukr.net


                               VOL. 11, NO. 1, JANUARY 2016                                                                                                               ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                          21 

 



 















 

























2

2

/2

,

2

2

/2
2

2

/2

2

2

2

2

/2

,

n

n
l

nlqi

lp

n

n
l

nlqi

n

n
k

nkpi

kl

n

n
k

n

n
l

nlqkpi

klqp

eW

eeh

ehF







 

where 



2

2

/2

,

n

n
k

nkpi

kllp ehW


. 

Matrix lpW , , 
2

,
2

nn
p   is one-dimensional Fourier 

transform of the l-th row of the matrix klh . 

To compute qpF ,  we need use all of the 

elements of the matrix h . In other words, it is necessary 

to perform one-dimensional Fourier transform for all rows 

and then for all columns of the matrix klh . Note, using 

FFT algorithm it is impossible to find a single value of the 

matrix F . 

The idea of proposed approach is to compute 

two-dimensional Fourier transform not for each row of the 

matrix klh , but only for 
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that is, on the mesh, sparse along the rows matrix klh  with 

the step n . 

Restore values between rows of the resulting 

matrix we propose using spline-interlination (blended 

interpolation) of functions [4], which has high accuracy. 

Let we have matrix klh  of dimensionality nn . 

In the traditional approach to compute two-dimensional 

FFT, it is necessary to perform n2  one-dimensional fast 

transformations: n  for each column and n  for each rows 

of the matrix. 

When calculating on a sparse along the rows of 

the matrix klh  mesh, it is necessary to perform n  FFT for 

each column and n  FFT to each row of obtained 

matrix. Similarly, when calculating on sparse along the 

columns of the matrix klh  mesh, it is necessary to perform 

n  FFT for each row and n  FFT for each column of 

obtained matrix. 

 

Statement 1: If f(x,y)=f(y,x), then 
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Statement 1 is proved. 

 

Statement 2: If kllk hh ,,   then fft( h )=fft(
T

h ). 

 

Statement 3: If T
hh  , V=fft(h)’, W=fft(V), 

V1=fft(h’)’, W1=fft(V1), then W1 = W. 

 

Proof: Follows from the obvious equality V=V1. 

 

Theorem 1: Suppose we need find the value of 
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To compute it, lets use the following algorithm 

Step 1: Find  hfftU  . In MATLAB this 

operation means application of fft to each of the columns 

of the matrix h separately. 

Step 2: Find )'(UfftV  . However, we do not 

find all values of V , but only those, which satisfy

nqnn

npF qp

,1;,...,2

,,1,,




. 
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Corresponding software implementation of this 

algorithm is given below. 

Step 3: Find 
T

VF  . 

Given that for the class of the functions f(x,y) = 

f(y,x) transposition is not necessary, the step 3 may be 

skipped. 

Then to compute nqnnnpF qp ,1;,...,2,,1,,   

we need the following number of AO: 
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2 loglog  

Proof: To find the matrix U  we need perform n  

times FFT for each column of the matrix h  separately. To 

do this, we use    nnOnnOn 2

2

2 loglog   AO. 

To compute the matrix V , given that we have to find only 

the values in n  rows, we need 
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


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


 nnOnnn 2

2

3

2 loglog  AO. Thus, in the 

proposed method, to obtain information on n  columns 

and n  rows, we need perform only 
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
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Theorem 1 is proven. 

 

Result 1: Given the properties of the functions 

f(x,y)=f(y,x) and the interpolation formula, based on 

interlination of functions, it is enough to make calculations 

similar to Theorem 1, since the values of the rows are 

equal to the values of the transposed columns 

pqqp FF ,,  . 

 

Result 2: To find this information using 

MATLAB subroutine fft2(X) we need nnQ 2

2

1 log2  

AO. Thus, reduced number of arithmetic operations is 

asymptotically equal to 
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Thus, to obtain information we use 

asymptotically twice fewer amount of AO. I.e., the 

efficiency of the algorithm increases comparatively with 

two-dimensional FFT algorithm asymptotically two times. 

This reduction is due to that algorithm computes not the 

entire matrix, but only a part of it. 

Note, that the standard MATLAB-function to 

compute FFT of two variables is fft2(X) = fft(fft(X)')'. 

Thus, the proposed algorithm even is more effective, since 

the given value of increasing efficiency does not consider 

two matrix transpositions, performed in the MATLAB 

function fft2. 

To compare effectiveness of the algorithms we 

rewrite both algorithms in C++. We implement the 

traditional two-dimensional FFT (a function fft2) and 

optimized algorithm for the two-dimensional FFT (a 

function Myfft2). 

Both these programs use one-dimensional Fast 

Fourier Transform (function fft). The only difference is the 

organization of loops: if fft2 performs fft for each row, and 

then fft for all columns of the input matrix, then Myfft2 

performs fft for each row, and then fft for each n -th 

column of the input matrix. 

The size of the matrix is defined by the global 

constant n , where ...3,2,1,2  kn k
  

In the process of computing experiment we 

managed to implement calculations for the maximum 

value n=4096, wherein the number of matrix elements is 

equal to 4096 x 4096=16 777 216 for the real numbers and 

the same amount of the matrix of complex numbers. Thus, 

the total amount of operating memory used is 16 777 216 

x 2 x 4 byte = 134 Mb. Table-1 shows results of 

computation experiment. 
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Table-1. Comparison of theoretical and experimental values of computation time. 
 

N 32 64 128 

t1, c (fft2) 0 0,010 0,045 

t2, c (Myfft2) 0 0,006 0,030 

t1/t2(theoretical) 
1

2

n

n
 1,7 1,778 1,838 

t1/t2 (experimental) – 1,666 1,500 

 

N 256 512 1024 

t1, c (fft2) 0,236 0,999 4,155 

t2, c (Myfft2) 0,155 0,650 2,660 

t1/t2(theoretical) 
1

2

n

n
 1,882 1,915 1,939 

t1/t2 (experimental) 1,523 1,537 1,562 

 

N 2048 4096 

t1, c (fft2) 17,10 721,111 

t2, c (Myfft2) 10,87 416,526 

t1/t2(theoretical) 
1

2

n

n
 1,957 1,969 

t1/t2 (experimental) 1,57 1,731 

 

Thus, the results of computation experiment 

confirm theoretically found trend.  

Note, that the time of computations increases at 

n=4096. This is due to the fact that when n=2048 an array 

is fully located in operating memory, but at n=4096 the 

program start using dump on the hard drive, having much 

slower speed of file operations. Meanwhile, the ratio of the 

time t1/t2 remaining true. 

 

USING INTERLINATION OF FUNCTIONS 

Let us discuss the method to restore the internal 

structure of an object using spline interlination of 

functions. We will reconstruct the structure of an object by 

its projections by development of the method, which uses 

both direct Fourier method and interpolation operators, 

built on the basis of interlination. 

Let’s investigate the function  yxf , , 

   ccccf ;;psup  . For it, the Radon transform 

 ,rp  has compact support in    ,0,  dd , where 

2cd  . 

Direct Radon transform of the function  yxf ,  

is determined by the formula [5] 
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where   is an angle, 

and the reverse - by the formula 
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Double Fourier transform   ,~
f  of the 

function  yxf ,  is calculated by the formula 
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The proposed direct Fourier method is as follows: 

а) we get  ,~p  from  ,rp  by the formula 
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b) obtain 

 

    












dxdyeyxf

f

yxi 



,

,
~

 using 

so-called slice theorem about central section by the 

formulas 
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b) find an unknown function  yxf ,  using 

Fourier series  
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coefficients of the function  yxf , . 

Substituting (6) into (3) we obtain 
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From (5) we obtain 

 

 
    

      


















j n

jn

l

m

cnccjcf

dmcp





sin2sincos2sin

2sin





  (7) 

 

   
t

t
tc

sin
sin   

 

In the formula (6) for each pair (k, l) we choose 

  ,  in a way that 

 

 sin2,cos2 clck                                   (8) 

 

Such selection   ,  leaves only one set of 

lkf ,
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 in the right side of (6). Given that 

  0,dd , using these formulas we 

obtain (9). 
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Note, that formula (9) is an exact formula for the 

calculation of the Fourier coefficients. However, in 

practice, it is necessary to replace the infinite sum by the 

finite one. In addition, when calculating 

    klsarctgp
k
l

m 0
 using the formula 
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 we need use the 

appropriate quadrature formula. 
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In this case, the function ),( yxf  will be calculated by 

the formula 
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Note, that using proposed method it becomes 

possible to calculate value of functions ),( yxf  at points 

 lk yxf ,  using standard form for the Fourier sums, 

rather than the formula 
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CONCLUSIONS 

The paper proposes a new effective method, 

which can be used to find an internal structure of a body 

by its projections on a given system of planes. The method 

uses Fast Fourier Transform and is adopted for the needs 

of computed tomography. For the rendering a tomography 

image, the method uses operators of interpolation built on 

the base of spline interlination of functions. It allows us 

for the functions f(x, y)=f(y,x) to reduce the number of AO 

asymptotically twice. 
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