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ABSTRACT 

The purpose of this paper is to propose a set of algorithms that can be used to develop an automated crack-tip 

finite element mesh for numerical fracture mechanics analysis. The algorithms were developed in MATLAB based on a 

two-dimensional boundary layer formulation. It was further shown that the nodes and elements of the models can be 

numbered in a consistent pattern by controlling the order of generating the nodes and the elements in the models. It was 

also demonstrated that the nodes can be connected in a systematic order to form second order quadrilateral element using 

the proposed algorithms.  
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INTRODUCTION 

Computational fracture mechanics through finite 

element method has developed extensively in the last few 

decades, following the rapid revolution in the computation 

capability of computers. The finite element computation 

output could be the determination of elastic stress intensity 

factor [1], elastic-plastic energy release rate from crack 

domain (J-integral) [2], the stress-strain deformation field 

of the near crack fields and so on.  

All these numerical determination can be 

conducted either in two dimensional plane problems (2D) 

or using three dimensional fields (3D).  In plane problem, 

the common method used to analyze the near tip crack 

field is boundary layer formulation (BLF). Concept of 

BLF was firstly introduced in [3] to take the crack tip 

vicinity as a semi-circular region and apply the loading 

conditions, i.e. displacement at the outer boundary. This 

method is then improved later in [4] by incorporating T 

stress into the boundary condition, and it is then renamed 

as modified boundary layer formulation (mBLF). From 

here, the modified BLF was used extensively in 

computational fracture mechanics. Henceforth, the basis 

for the development of several important concept in the 

field of fracture mechanics was developed, such as the two 

parameterization for crack tip fields (K-T[5], J-T[6, 7], J-

Q [8, 9] and J-A2[10]). To validate the solutions from 

mBLF, usually a full field solution can be used as an 

alternative. The full field solution in plane conditions was 

provided by designing a finite element model with the 

shape of an actual specimen under fracture strength 

testing. There are a few standard specimens listed in 

ASTM E1820 to be used in fracture strength testing, 

which includes single edged cracked bending specimen 

(SENB), center-cracked specimen in tension (CCP), 

compact tension specimen (CT) and etc. 

For fracture mechanics in three-dimensional 

problems, similar model used in plane problem is 

modelled with thickness. Since thicknesses are associated 

in 3D model, it can captures changes of stress and strain 

along the thickness of the studied structure. Therefore, the 

three dimensional solution can provide a detailed solutions 

compared to plane solution. Recent focus in fracture 

mechanics had been shifted to crack tip deformation in 

three dimensional problems[11]. New parameters such as 

Tz[12, 13] and T33[14] were introduced to characterize the 

stress-strain deformation field in three dimensional 

fracture problem. 

Usually, prior to modelingfinite element analysis 

in 2D or 3D, a model is required and can be modeled via 

commercial finite element package, i.e ADINA, ANSYS, 

ABAQUS. However, some human intervention such as 

element aspect ratio, height to width ratio of specimen, 

and others are still needed to have a properly designed 

model [15]. Among them, the arrangement and numbering 

system of nodes is vital for post processing of finite 

element analysis because exact nodes must be known 

beforehand in order to extract data from a specific location 

in a model, e.g. at a fixed distance from the crack tip. 

Therefore, the numbering system for nodes and elements 

must be planned ahead carefully during the modeling 

process. However, the process of setting up the finite 

element mesh in commercial finite element package can 

be laborious.  

In this paper, a set of algorithmsused to create full 

field single edge cracked model in plane problems are 

discussed. These algorithms were proposed to simplify the 

automaticmesh generation procedure for fracture 

mechanics finite element computation in ABAQUS. The 

proposed algorithms are applicable to any single edge 

specimen with a crack length to ligament ratio, ܽ/�=0.5. 

The crack tip domain used a “spider web” mesh design, 
which can be implemented separately in a modified 

boundary layer formulation. The model created using the 

algorithm presented could also be modified into a three-

dimensional model for other related problems. 
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MODEL GEOMETRY 

A full field model for a single edge cracked 

specimen is presented in this study as shown in Figure-1a. 

Symmetrical features are used and only one half of the full 

model was used in the study (shaded region). The model 

was divided into four regions for meshing convenience. 

The first region is the intermediate vicinity of the crack-

tip. The second region takes a box like shape while 

encompassing the first region. The third region is the 

bottom section of the specimen which encloses the first 

and second region. The fourth region is the top section of 

the specimen, where load, � is usually applied at the top 

end of this region. The algorithms presented in this paper 

were designed in MATLAB to complement all regions 

conditionally.The conditions were based on completion of 

a region before proceeding to the next region. The 

description of the processes is presented in Figure-2. 

 

 
(a)        (b) 

 

Figure-1. (a) Geometry studied (only shaded region is 

considered) (b) The four regions in model. 

 
 

Figure-2. Process flow of the designed algorithms. 

 

NODES GENERATION 

The algorithm discussed in this work generates 

nodes in a consistent pattern for all regions. The origin 

labelled as the first node was located at the crack tip in 

region 1. This region wasoutlined as the crack tip domain 

of the model. The model presented was designed for 

elastic-perfectly plastic analysis, thus defining 1/r 

singularity is sufficient to capture the strain singularity in a 

collapsed quadrilateral element at crack tip. Such 

definition can be achieved by placing midside nodes at the 

middle between corner nodes [15]. The entire node 

generation process begins with constructing a horizontal 

line with nodes (representing region ahead of crack tip at 0 

degree) as depicted in Figure-3. 

 

 
 

Figure-3. First line constructed in region 1(0°) 
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The first line was divided into segments 

according to the number of elements across the line, N and 

bias ratio, b. Bias seeding was achieved using element 

length ratio, c through Equation (1). 

 ܿ = ܾሺ 1�−1ሻ                     (1) 

  

Moving away from origin (0, 0), the initial 

distance between corner nodes, k will increase by factor c 

as seen in Figure-4. The total length of the first line equals 

to the radius of region 1. 

 

 
 

Figure-4. Nodes generated in the first line with 

bias seeding. 

 

The nodes on the first line can be created using 

algorithmA1 as follow: 

 
%Algorithm A1 

origin=[0 0]; %set origin 

ll=10;  %set length  

br=2;   %set bias ratio 
No_ele=3;  %set number of element  
Cc=br^(1/(No_ele-1)); %length ratio 
k =ll/sum(Cc.^[0:No_ele-1]); %get k 
hk1=1/2*(Cc^(0:No_ele-1)*k);   

hk2=hk1; 
n_line=[ha1; ha2];  
node_dist=n_line(:)';  
for n from 1 to 2*No_ele  

    xcoord_1(n)=origin(1,1)+ 
sum(node_dist(1:n));  

    ycoord_1=zeros(1,2*No_ele); 
end 

 

Through algorithm A1, the nodes were generated 

starting from the origin (0, 0), and eventually ended at the 

end of first line. Similar process was repeated to compute 

the coordinates of nodes and arrange themat another line at 

a fixed angle interval. The lines were generated in a 

counter clockwise manner. The number of lines was 

decided by the number of elements needed within the 

angle from 0 to �. An algorithm as described below was 

written to describe this repeating process. 

 
%Algorithm A2 

E_w=8; %number of elements from 0 to pi 

tn=E_w*((2*No_ele)+(2*No_ele+1));   

no_line=2*E_w;   

thetta=180/E_w;   

node=zeros(tn,2)   

a1=a2=0; %initialize a1 and a2   

for ii from 1 to no_line   

if rem(ii,2)~=0 

    u1=thetta/2*(ii); 

fori=1:No_ele+1 

       w1=(a1*(No_ele+1))+ 

 (a2*(2*No_ele+1))+i;  

 mn=i*2-1; 

node(w1,1)= 
 xcoord_1(mn,1)*cosd(u1); 

node(w1,2)= 

 xcoord_1 (mn,1)*sind(u1); 

end 

   a1=a1+1; 

else 

     u2=thetta*(ii/2); 

fori=1:2*No_ele+1 

       w1=(a1*(No_ele+1))+ 

    (a2*(2*No_ele+1)+i;  

node(w1,1)= xcoord_1 (i,1)*cosd(u2); 

node(w1,2)= xcoord_1 (i,1)*sind(u2); 

end 

   a2=a2+1; 

end 

end 

 

Moving to region 2, the coefficients of the first 

degree of polynomial were firstly computed using the 

origin (0, 0) and each nodes on outermost boundary of 

region 1. The resulted coefficients were a slope, m and the 

y-intercept, c which can be expressed as: 

ݕ  = ݔ� + ܿ        (2) 

 

With known height of y1 and width of x1 values 

for the box region, as shown in Figure-5, the x and y-

coordinates of nodes on the outermost boundary in region 

2 can be calculated using the coefficients in Eqn. (2). The 

process of determining nodes on the outermost boundary 

can be achieved using algorithmA3 as shown below: 

 

%AlgorithmA3 

angle=linspace(0,pi,2*E_w+1);   

outer_x1=ll*cos(angle);   

outer_y1=ll*sin(angle);   

fori from 1 to 2*E_w+1    

rw=find(node(:,1)==outer_x1(i)  

 &node(:,2)==outer_y1(i); 

row(i)=rw; 

end 

outer_r1=node(row,:)  

x1=100; %set width 

y1=100; %set height 

b=0; %initialize b 

fori=0:thetta/2:180 

ifi==0 
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b=b+1; 

    bd2_y(b)=0; 

bd2_x(b)=x1; 

elseifi==90 

b=b+1; 

        bd2_y(b)=y1; 

        bd2_x(b)=0;     

elseifi==180 

b=b+1; 

        bd2_y(b)=0; 

        bd2_x(b)=-1*x1;    

elseifi>=135 

b=b+1; 

gc=polyfit(outer_r1(b,1), 

  outer_r1(b,2),1); 

        bd2_y(b)=polyval(gc,-1*x1); 

        bd2_x(b)=-1*x1;                         

elseifi<=45     

b=b+1; 

gc=polyfit(outer_r1(b,1),   
 outer_r1(b,2),1); 

        bd2_y(b)=polyval(gc,x1); 

        bd2_x(b)=x1;         

else 

     a=a+1; 

gc=polyfit(outer_r1(b,1), 

 outer_r1(b,2),1); 

     bd2_y(b)=yval; 

     bd2_y(b)=(outer_r1(b,2)-gc(2))/gc(1);  

end 

end 

 

Using the nodes computed from Eqn. (2), the 

distance between the outermost nodes in previous two 

regions were determined. The distance values were 

divided according to the required number of elements 

across region 2. Eqn. 1 and algorithm A1were adopted to 

generate the nodes using the distance values while 

applying the bias seeding on the first line in region 2. The 

line was later swept from angle 0 to �  in a similar manner 

as region 1. Similar node generation as shown in region 1 

were repeated using algorithm A2 to complete the whole 

region 2. The only input parameters required for region 2 

were the number of elements across the first line and its 

bias ratio. The algorithms A1 and A2 can be modified for 

generation of nodes inregion 3 and region 4 as required. 

Lastly, the nodes were numbered starting from 1 following 

the order of nodes generation. Therefore, the nodes 

numbering system of the model were carried in a 

consistent manner throughout the regions. 

 

 
 

Figure-5. Nodes generated in outermost boundaries. 

 

ELEMENT CONNECTIVITY 

The model studied in this work consists of 

discrete second order quadrilateral elements. The nodes 

created must be connected in the right order to form a 

suitable elemental configuration. Each second order 

quadrilateral element consists of 8 nodes, with 4 midside 

nodes and 4 corner nodes. In ABAQUS, the nodes should 

be connected in such way by picking corner nodes with 

the lowest number for the connectivity definition of 4 

corner nodes, followed similarly by the 4 midside nodes. 

The pattern in selecting the nodes for element connectivity 

must be consistent throughout the model. It can be in 

either clockwise or counter clockwise manner. The first 

nodes for the midside nodes connectivity definition must 

lies at the side of the first nodes for corner nodes 

connectivity definition. As shown in Figure-6, by taking 

element 1, the element connectivity for element 1 in this 

work are defined in counter-clockwise manner as 

(18,20,34,32,19,26,33,25). 

 

 
 

Figure-6. Elements connectivity diagram. 

 

Algorithm A4 as shown below was used to 

connect nodes into 8-noded quadrilateral element in region 

1. In this work, the nodes generated in other regions of the 

model were connected similarlyas in region 1. 
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%Algorithm A4 

total_ele=No_ele*E_w;   

element=zeros(total_ele,8);  

 

for n from 1 to E_w 

fori from 1 to No_ele 

 e1=(n-1)*(No_ele)+i;  

 m1=No_ele+(2*No_ele+1)+3;  

 m2=2*No_ele+1; 

 element(e1,1)=(n-1)*((No_ele +1) 

  +(2*No_ele +1))+(i*2-1);       

 element(e1,2)= element(e1,1)+2; 

 element(e1,3)=(n-1)*((No_ele+1) 

  +(2*No_ele+1))+(i*2-1)+ m1;       

 element(e1,4)= element(e1,3)-2;       

 element(e1,5)= element(e1,1)+1; 

 element(e1,6)=(n-1)*(No_ele+1) 

  +(m2*n)+i+1;    

 element(e1,7)= element(e1,3)-1; 

 element(e1,8)= element(e1,6)-1; 

end 

end 

 

RESULTS 

 By compiling all the algorithms as described 

above in MATLAB, an input file for ABAQUS containing 

the nodes and elements information is created. An 

example of the designed models is depicted in Figure-7. 

The meshes on model can be refined by varying the 

number of elements across the regions and the associated 

bias ratio. 

 

 
 

Figure-7. Full field model created using algorithms. 

 

CONCLUSIONS 

The algorithm discussed in this paper simplified 

the steps needed to prepare a finite element model for 

fracture mechanics computation. The nodes and elements 

were generated in a consistent manner, which was 

convenient for the numbering system and post processing 

process. However, the discussed algorithm has its own 

limitation where it can only be applied on single edge 

cracked with ܽ/�=0.5. The development of the algorithm 

for specimen with different ܽ/� ratio is currently in 

progress. 
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