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ABSTRACT 

World is becoming increasingly data-driven and complexly connected due to the emergence of ever changing 
technological scenario such as  cloud computing, Big Data, Internet of Things (IoT), etc. Internet of Things can be viewed 
as inter-connection of people, applications and smart devices, which transmit and receive data over already existing 
network. These operations are done in real-time within a deadline. In essence, IoT objects are small, networked embedded 
devices. Current ideology is that Android and Linux are the most suitable Operating Systems for IoT implementation. This 
paper introduces a viewpoint that a sophisticated, robust and efficient real-time operating system (RTOS) which is TCP/IP 
ready would be more suitable for IoT. The critical features of µC/OS III, Micrium’s commercial RTOS and Embedded 
Linux are studied and a comparative analysis is done based on the study findings. 
 
Keywords: IoT, RTOS, µC/OS III, Linux, RTAI, Real-time, embedded devices. 
 
1. INTRODUCTION 
 
1.1. Internet of things 

The Internet of Things (IoT) is a paradigm shift and 
an ontological change. IoT is a communication between 
physical objects/ things that have built-in computing 
devices. These embedded objects have in-built processors, 
software and network connectivity for storing and sharing 
of data. Internet of Things enables embedded objects to be 
connected and operated remotely using already existing 
internet network. This creates tremendous opportunities 
for direct integration between the physical world and 
computing systems, resulting in increased performance 
and efficiency. It can be envisioned as a scenario in which 
human, animals or objects are embedded with unique 
identifiers and the ability to exchange information over a 
network without requiring human-to-human or human-to-
machine interaction. The unique identifiers can be 
provided through RFID and SAAS. IoT has evolved from 
the convergence of wireless technologies, micro-
electromechanical systems (MEMS) and the Internet. 
There are 4 major components in an IoT system: 
 
 The Embedded object-Embedded devices make 

upthe key component/node/object of Internet of 
Things connectivity. 

 The local network - This includes a gateway which 
translates communication protocols to internet 
protocols 

 The Internet- Currently existing network 
connectivity 

 Back-end services - Enterprise data services, PCs or 
Mobile phones 

 
 The illustration given in Figure-1 is an apt 
example of an IoT implementation. It shows a Wireless 
Sensor Network (WSN) installed in a factory setup. WSN 
nodes are connected to internet via a gateway. They go 

through the gateway for LAN connectivity as well. Data 
from WSN nodes are updated in the server using Cloud.   
 

 
 

Figure-1. WSN of a factory. 
 

The individual WSN nodes and the Edge Node/ 
Gateway can be considered as the embedded object/ 
device in an IoT system. These embedded objects which 
form the building blocks of IoT are computing devices 
with built-in processors, software and network 
connectivity. The software is the driving force of the IoT 
object, which has to provide real-time processing. A real 
time operating system (RTOS) like µC/OS III, VxWorks, 
etc has numerous special features and characteristics that 
can make them an appropriate choice for IoT 
implementation. 
 
1.2. Which is the most preferrable o/s for IoT  
        implementation?  

Any common object ranging from Street lights, 
Washing machines, Automobiles to Nuclear reactors are 
empowered with electronic sensors and communication 
devices. These are the "things" that make up the IoT. To 
be suitable for IoT purpose, an operating system would 
need to be: 
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 Small in memory size, because these are mostly tiny 
devices with restricted resources. 

 Capable of detecting and working with a wide variety 
of different sensors and actuators. 

 TCP/IP ready. 
 

It is industry belief that Android has great 
potential to provide the unifying power needed for IoT 
than any other single operating system. Linux seems to be 
the other popular choice. The Internet of Things is too big 
to be contained by one or two operating systems. 
Interoperability is the mandate for IoT.  Actually we may 
very likely find that building the right APIs and making 
sure those APIs have all the right gateways and features is 
more important than the operating systems itself. 
 
1.3. RTOS as the driving force of an IoT object 
 It is common knowledge that IoT objects are 
small networked systems, i.e. low end microcontroller 
based systems with even 8 or 16 bit processors and small 
sensors whose memory unit is tiny. The major 
disadvantage of Linuxbeing the driver behind IoT is its 
memory footprint, which is huge to fit inside these tiny 
IoT objects. Another critical factor needed for IoT objects 
is Real-Time processing of data. The following list shows 
a wide range of application areas which require the 
stringent principles and concepts of Hard Real-time 
system. 
 
 Aerospace: Jet Engine controls, Weapons systems 
 Automobile industry: GPS, Engine Control, 

Antilock Braking systems  
 Process control: Factory Automation, Chemical 

Plants, Food Processing 
 
 These small real-time microcontroller based IoT 
systems uses 8, 16 or 32-bit processors. Most of these 
systems use a Real Time Operating system (RTOS) as the 
driving software. RTOS can be custom-built for a specific 
application or can be a generic one. A few of the 
commercially available RTOS are RTAI, Free RTOS, 
VxWorks, µC/OS III etc. A Real Time Operating System 
(RTOS) generally contains a real-time kernel and other 
higher-level services such as file management, protocol 
stacks, Graphical User Interface (GUI), and other 
components. Most additional services revolve around I/O 
devices. As the name suggests, there is a deadline 
associated with tasks and an RTOS adheres to this 
deadline as missing a deadline can cause reactions ranging 
from undesired to catastrophic. Basic features of an RTOS 
are as follows: 
 
 Context switching: The time taken for saving the 

context of current task and switching over to another 
task should be extremely negligible.  

 Interrupt latency: The switch-over time between 
executing the final instruction of an interrupted task 

and the first instruction of interrupt handler should be 
less and deterministic.. 

 Interrupt dispatch latency: The switch-over time 
between the final instruction of the interrupt handler 
and the next task should be predictable and limited.  

 Inter-process mechanisms: Should have Reliable 
and time bound system in place for processes to 
interact with each other. 

 Task preemption: The ability to stop the currently 
executing task and switch to a higher priority task 
should be available.  

 Kernel preemption: kernel should have the ability to 
preempt the current process for a higher priority 
process. 

 Network support: Readymade APIs should be 
available for internet connectivity and networking 
support. 

 
The RTOS, which can cater to the needs of an IoTdevice, 
must contain the following characteristics: 
 
 Scalability: To accommodate a wide range of 

different classes of devices. 
 Modularity: The option to choose only the essential 

components in order to meet tight RAM requirements. 
 Connectivity: For movement of data in and out of the 

device via Wi-Fi, Ethernet, USB, or Bluetooth. 
 Security: The pervasive connectivity in IoT results in 

substantial exposure to threats. 
 Safety: Safety is paramount in many embedded 

operating systems because they control machines that 
can endanger life. 

 Reliability: Foremost for devices used in safety-
critical applications. 

 
 The illustration given in Figure-2 depicts the 
software architecture of an IoT object. 
 

 
 

Figure-2. Software architecture of an IoT object. 
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1.4. Advantages of using  commercial RTOS for IoT  
       implementation 

IoT devices require a solid software 
infrastructure, including a real-time kernel along with 
additional services like TCP/IP, Wi-Fi, Bluetooth stacks, 
USB connectivity as well as cloud services and the ability 
to put it all together. Developers will hugely benefit if GUI 
development, communications middleware and wireless 
connectivity can also be integrated into the design process. 
An RTOS that can integrate wireless (Ethernet, WiFi and 
Bluetooth) protocols and USB connectivity into their OS 
will have a fair advantage over other vendors. Modeling 
can enable rapid prototyping, code reuse as well as 
integration of legacy software. Commercial off-the-shelf 
solutions offer quicker time-to-market, lesser risk and cost, 
and long term maintenance and support. A list of 
Proprietary RTOSand free RTOS are given in Table-1.  
 

Table-1. List of commonly available RTOS. 
 

 List of  RTOS 

Free RTOS FreeRTOS, ucLinux, eCos, coscox 

Proprietary 
RTOS 

SafeRTOS, VxWorks, µC/OS II & III, 
ThreadX, QNX, embOS 

 
2. µC/OS III AS THE CORE OF IOT 

This section analyses the major features of 
µC/OS III, a commercially available RTOS from Micrium 
Inc.as an engine behind IoT object. μC/OS-III is a third 
generation real-time kernel which offers the services 
expected from a modern age RTOS such as resource 
management, synchronization, inter-task communication, 
scheduling and much more. The architecture of μC/OS-III 
is shown in Figure-3.  
 

 
 

Figure-3. Architecture of μC/OS-III. 
 
 Notable features of μC/OS-III are explained in 
the following section: 
 
 Running on the largest number of processor 

architectures, their performance is measured at run-
time. Also, can directly signal or send messages to 
tasks 

 Can handle unlimited number of tasks with the 
processor’s memory capacity being only constraint.  

 Supported priority level is also unlimited, generally 
between 8 and 256 different priority levels. 

 Facility for mutexes, event flags, semaphores, 
message queues, timers and memory partitions. 

 Multiple tasks can run at the same priority level at the 
same time. For equal priority tasks that are ready-to-
run, µC/OS-III runs each for a user-specified time 
period. The facility for each task to define its own 
time quanta and give up its time slice if it does not 
require the full time quanta is also available. 

 Stack growth of tasks can be monitored.  
 Extensive range checking facility which can be 

disabled during compile time is available.   
 It can check for many features such as if NULL 

pointers are passed in API calls, task level services 
aren’t called from ISRs, arguments are within 
allowable range and valid options are specified. Each 
API function provides an error code with respect to 
the outcome of the function call. 

 µC/OS-III’s memory footprint can be scaled to 
accommodate only the specific features needed for an 
application, typically 6–24 KB of code space residing 
in memory. 

 

 
 

Figure-4. Software stack of WSN. 
 

The illustration given in Figure-4 shows the 
software stack for an industrial wireless sensor node 
(WSN) using µC/OS-III as the software driving this IoT 
device. Wireless communication over short distances is 
achieved using Bluetooth, low-power Wi-Fi or Ethernet. 
Such a device typically uses a Cortex-M3/M4 or a Cortex-
A processor. 

A few functionalities of µC/OS-III which are 
highly essential for IoT implementation such as WSN are 
discussed in detail in the following section:   
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Network protocols: Accessibility to Wi-Fi is a 
necessity for many applications. However, Wi-Fi needs 
good amount of power. In the case of remotely located 
sensors, where it is difficult to get supply from the grid, 
battery operated devices are the mandate. Hence, IPv6 is 
key for IoT devices. IPv6’s addressing scheme provides 
more addresses than any other option - some have 
calculated that it could be as high as 1030 addresses. With 
IPv6, it is much easier for an IoT device to get a global IP 
address, which facilitates efficient peer-to-peer 

communication. μC/TCP-IP is a compact, reliable, high-
performance TCP/IP protocol stack from Micrium that can 
be used for IoT implementation. It is optimized for 
embedded systems, and features dual IPv4 and IPv6 
support. µC/OS-III real-time kernel takes care of task 
scheduling and mutual exclusion and μC/TCP-IP module 
handles IPv6 support. The specifications of μC/TCP-IP 
such as supported processors and protocols, Interface type, 
Transport layer, etc are given in detail in Table-2. 

 
Table-2. Specifications of μC/TCP-IP. 

 

Supported 
processors 

Most of the commercial processors 

Real-time Kernel 
Supports Micrium’sμC/OS-III or 

μC/OS-II 

Transport Layer TCP and/or UDP 

Protocols 
supported 

Multicast transmission and reception (IGMPv2), IPv6 
Multicast (MLD), ICMPv6, ARP, Neighbor Discovery 

Protocol (NDP) 

Interface Type Ethernet (802.3 and Ethernet), Wifi, Loopback 

Socket API 
Two sets of socket APIs: one proprietary and another 

standard BSD socket. 
 

The uC/USB Device and Host modules is 
available with robust implementations of many popular 
classes, including Audio, Mass Storage, Human Interface 
Device, Communications Device, and Personal Healthcare 
Device. 

The real-time kernel of μC/OS-III handles the 
major functions such as Task scheduling, Time 
management, Inter task communication, etc. The functions 
are discussed in detail in the following section: 

Task scheduling: µC/OS-III can manage any 
number of tasks at a given point of time. The kernel 
reserves 4 highest priority and 4 lowest priority tasks for 
its internal use. When the priority value is low, actually, 
the priority of the task is higher. The task priority number 
also doubles as the task identifier. The process cycle is 
shown in Figure-5. 
 

 
 

Figure-5. Process cycle. 
 

After task creation, the task is loaded onto a stack 
where the data is stored. A stack usually has contiguous 

memory locations. The kernel determines how much stack 
space a task actually uses. Deleting a task returns the task 
to its dormant state. However, the code for the task will be 
retained. The calling task can delete the code. If another 
task tries to delete the current task, the resources are not 
freed and thus are lost. Hence, the task should delete 
oneself after it uses its resources.  

Memory management: Each memory partition 
is made of several fixed sizedblocks. A task must create a 
memory partition before it can be used and obtains 
memory blocks from the partition. Allocation and de-
allocation of these fixed-sized memory blocks is done in 
constant time and is deterministic. Multiple memory 
partitions can exist, which enables a task to obtain 
memory blocks of varying sizes. Each memory block 
should be returned to the respective partition it came from.  

Time management: μC/OS-III increments a 32-
bit counter for every clock cycle. Starts at zero, the 
counter rolls over to 4, 294, 967, 295(2^32-1). The facility 
to delay a task can and then resume the delayed task is 
available.  
 Five services related to time management are: 
 
 OSTimeDLY() 
 OSTimeDLYHMSM() 
 OSTimeDlyResume() 
 OSTimeGet() 
 OSTimeSet() 
 
 Inter-Task communication: μC/OS III handles 
Inter-task or inter process communication using one of the  
options such as Semaphores, Message mailbox, Message 
queues, Tasks and Interrupt service routines (ISR), which 
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interact with each other through an ECB (event control 
block). Figure-6 shows the multi task waiting and 
signaling operation.  
 

 
 

Figure-6. Inter-task communication. 
 
 Development environment: μC/GUI is 
aversatile development environment that comes along with 
μC/OS III. It supports almost all commercially available 
processors from 8-bit upwards. 
 
 Window manager: Windows that are created using 

the GUI are managed by this facility. It handles all 
mouse and keyboard related events. Since μC/OS III 
provides touch screen facility, those are also managed 
by window manager. 

 Frame buffer: The image of a window is drawn on 
this buffer and when the drawing is complete, it is 
copied to the touch screen. This helps in preventing 
screen flickering. 

 Anti-aliasing: This polishes the fonts and 
othergraphical entities. It gives a pleasant affect to the 
eye instead of the rugged look. 

 Touch screen: Touch Screen drivers, LCD drivers. 
 Widgets and dialogs: A library to create the widgets 

(Check boxes, buttons, textboxes, etc) and dialog 
boxes is readily available. This reduces lot of effort to 
build everything using pixels and lines.  

 Font converter: It converts a general font format (ttf, 
utf, etc) to the μC/GUI compatible fonts.  

 Bitmap converter: It converts the 32-bit bitmap 
images to a compatible image that is used on μC/GUI.  

 
 Hard real-time operating system: μC/OS III is 
a hard RTOS. In critical applications, missing a deadline 
often results in catastrophe. μC/OS III is highly 
deterministic in nature,  where the execution times of all 
functions and tasks are predictable. Hence, missing 
deadlines does not happen that easily in this environment. 
 
3. RTAI 
 Linux is a time-sharing OSthat provides good 
average performance and highly sophisticated services. 
Linux was not built for real time support. To obtain a 
timing correctness behavior, it is very much needed to 
make a few modifications in the kernel sources, i.e. in 
interrupt handling techniques and scheduling policies. In 
this way, one can have a real time platform, with low 
latency and high predictability requirements, within full 
non real time Linux environment (access to TCP/IP, 

graphical display and windowing systems, file and data 
base systems, etc.).Real Time Application Interface 
(RTAI) is not a real time operating system, such as 
VXworks or QNX. It is based on the Linux kernel, 
providing the ability to make it fully pre-emptable. RTAI 
is also an open source like Linux. According to Kim and 
Ambike, RTAI has real time performance comparable to 
RTOS such as VxWorks and QNX [Kim et al. 2006], 
having sufficient determinism to replace them [Barbalace 
et al. 2008], however it does not offer any certification or 
guarantee to its users, as it is open source. RTAI provides 
deterministic response to interrupts, POSIX-compliant and 
native RTAI real-time tasks. RTAI supports various 
architectures, including IA-32 (with and 
without FPU and TSC), x86-
64, PowerPC, ARM (StrongARM and ARM7: clps711x-
family, Cirrus Logic EP7xxx, CS89712, PXA25x), 
and MIPS. In RTAI, the operating system is divided into 
domains, making the real time domain as the one with 
highest priority. Whenever a real time task needs to be 
executed, a tiny scheduler, called nanokernel, schedules 
this task, freezing the whole remaining system. When 
there are no pending real times jobs to be done, the other 
parts of the system, such as GUI and user interface are 
executed [Barabanov 1997]. This solution is very 
practical, as most real time systems consists of a 
combination of tasks with soft and hard real time 
requirements [Labrosse 2002]. This enables the use of a 
single computer to control both real time critical functions 
and user interface, networking or others features that can 
be added at any time without changing the real time 
performance. RTAI mainly consists of two parts: 
an Adeos-based and a plethora of services. The Adeos-
based patch to the Linux kernel introduces a hardware 
abstraction layer. Adeos is a kernel patch comprising an 
Interrupt Pipeline where different OS domains register 
interrupt handlers. RTAI versions 3.0 and above uses one 
which is slightly modified in the x86 architecture case, 
providing additional abstraction and much reduced 
dependencies on the "patched" OS. This way, RTAI can 
transparently take over interrupts while leaving the 
processing of all others to Linux kernel. It offersthe 
following services to the applications: 
 
 Hardware management layer which deals with 

interrupts and event polling 
 Task Scheduling classes that deals with process 

activation, time slice, priorities, etc 
 Inter-application communication 
 
 The main disadvantage of Linux is its memory 
footprint. It requires minimum of 1MB of on board RAM 
and ROM size for it to operate. Hence, it cannot run on 8 
or 16-bit MCUs and even many newer 32-bit MCUs do 
not have enough on board RAM for the Linux kernel. The 
ARM Cortex-M series is a good example.  
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4. COMPARATIVE STUDY 
An elaborate analysis of the features of μC/OS III 

was covered in Section 2. The features of RTAIwere 
discussed in Section 3.This section consolidates the key 
features of µC/OS III and RTAI that are essential for 
Internet of Things implementation. Table-3 gives the 
comparison study on the key programming features 
forµC/OS III and RTAI. 
 

Table-3. Comparative Study on programming features 
of µC/OS III and RTAI. 

 

 µC/OS III RTAI 

Min RAM 1K B 1 MB 

Min ROM 6K-24K B 1 MB 

C Support Yes Yes 

C++ Support Yes Yes 

Multi-
Threading 

Yes Yes 

Response 
time 

Close to Zero Moderate 

 
 
The graph illustrated in Figure-7 shows the Comparative 
minimum RAM/ROM requirements of µC/OS III and 

RTAI. Minimum memory requirements are measured in 
units of KB.  
 

 
 

Figure-7. Comparison on minimum RAM/ROM 
requirements for µC/OS III and RTAI. 

 
It can be inferred from Figure-7 that when 

compared to RTAI, the memory requirements of µC/OS 
III are negligible. The characteristics that are mandatory 
for an OS to operate as an efficient driver for IoT are 
Scalability, Modularity, Security, Safety, Network 
Support, Determinism, extensive feature set and memory 
footprint. The comparative study report based on the 
analysis of the above mentioned key features are given in 
Table-4. 

 
Table-4. Comparative study on µC/OS III and Linux for IoT implementation. 

 

 µC/OS III RTAI 

Scalability 
Supports 8, 16 and 32-bit 

processors 
No support for  8 and 16 bit 

processors 

Modularity 

Option to choose only the 
needed components to 

meet tight RAM 
requirements 

Modularity is better with the 
advent of Linux 2.4. 

Security 
Has  μC/SSL which 

supports Java,Perl,PhP 
and Python

Same security features as Linux 

Network Support 
APIs for Ipv6, Wi-
Fi,Ethernet,USB, 

Bluetooth connectivity 

Need to know shell 
programming to include IPv6 

support 

Extensive Features set 
MicroEJ – a SDK for 

design and development 
Same development and 

debugging tools as Linux 

Safety 
Encrption, firewall and 
other safety measures 

Watchdog facility for safe 
development environment 

Determinism 

Execution times of all 
functions and services are 

deterministic. Hence 
highly predictable 

Not designed for Real-time 
processing. So, lacks true real-

time support 

Memory Footprint Occupies less memory High memory footprint 

 
Since RTAI is open-source, the features are 

attractive from a licensing perspective. Development tools 
are available along with distribution. However, if things 
go wrong, there is no vendor to blame. Post development 
maintenance and support of Linux cannot be compared to 

that of a commercial RTOS. Based on the study given in 
Table-3 and $, taking into consideration the complete 
package of features and post implementation support, 
µC/OS III emerges as a better choice for design, 
development and maintenance of IoT objects.  
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5. CONCLUSIONS 
This paper analyzed the basic characteristics that 

are required for embedded objects/things that make up the 
key component of IoT. IoT is an immensely complex and 
complicated system which must be equipped to handle 
heterogenous requirements of diverses hardware  
platforms  and  application scenarios, provide  an  adaptive  
IP network  stack,  and  offer  a  standard developer-
friendly API. Further, the OS suited for IOT must have 
reliable microkernel architecture, occupy less memory and 
have a highly adaptive network stack. It was established 
beyond doubt that the software needs of an IoT object can 
be satisfied by the RTOS, µC/OS III. Micrium’sµC/OS III, 
a commercial RTOS was taken up for study and its 
characteristic features in the context of IoT 
implementation were discussed. Further, the merits and 
demerits of RTAI/Linux were also discussed and the study 
findings were tabulated. Based on the study findings, 
µC/OS III, with its impeccable post development support 
and maintenance, emerges as the preferred choice of 
RTOS for IoT implementation. For future scope of work, 
design and simulation of an IoT embedded device with 
µC/OS III as the OS can be achieved. 
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