
 VOL. 11, NO. 1, JANUARY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 765

AN ANALYTICAL STUDY ON RTOS AS THE ENGINE BEHIND
INTERNET OF THINGS: CHOICES AND TRADE-OFFS

J. Umadevi, V. Kavitha and A. Srikrishnan

Department of Electronics and Communication Engineering, Dr. M.G.R Educational and Research Institute University, Chennai, India
E-Mail: umadevijp@yahoo.com

ABSTRACT

World is becoming increasingly data-driven and complexly connected due to the emergence of ever changing
technological scenario such as cloud computing, Big Data, Internet of Things (IoT), etc. Internet of Things can be viewed
as inter-connection of people, applications and smart devices, which transmit and receive data over already existing
network. These operations are done in real-time within a deadline. In essence, IoT objects are small, networked embedded
devices. Current ideology is that Android and Linux are the most suitable Operating Systems for IoT implementation. This
paper introduces a viewpoint that a sophisticated, robust and efficient real-time operating system (RTOS) which is TCP/IP
ready would be more suitable for IoT. The critical features of µC/OS III, Micrium’s commercial RTOS and Embedded
Linux are studied and a comparative analysis is done based on the study findings.

Keywords: IoT, RTOS, µC/OS III, Linux, RTAI, Real-time, embedded devices.

1. INTRODUCTION

1.1. Internet of things

The Internet of Things (IoT) is a paradigm shift and
an ontological change. IoT is a communication between
physical objects/ things that have built-in computing
devices. These embedded objects have in-built processors,
software and network connectivity for storing and sharing
of data. Internet of Things enables embedded objects to be
connected and operated remotely using already existing
internet network. This creates tremendous opportunities
for direct integration between the physical world and
computing systems, resulting in increased performance
and efficiency. It can be envisioned as a scenario in which
human, animals or objects are embedded with unique
identifiers and the ability to exchange information over a
network without requiring human-to-human or human-to-
machine interaction. The unique identifiers can be
provided through RFID and SAAS. IoT has evolved from
the convergence of wireless technologies, micro-
electromechanical systems (MEMS) and the Internet.
There are 4 major components in an IoT system:

 The Embedded object-Embedded devices make

upthe key component/node/object of Internet of
Things connectivity.

 The local network - This includes a gateway which
translates communication protocols to internet
protocols

 The Internet- Currently existing network
connectivity

 Back-end services - Enterprise data services, PCs or
Mobile phones

 The illustration given in Figure-1 is an apt
example of an IoT implementation. It shows a Wireless
Sensor Network (WSN) installed in a factory setup. WSN
nodes are connected to internet via a gateway. They go

through the gateway for LAN connectivity as well. Data
from WSN nodes are updated in the server using Cloud.

Figure-1. WSN of a factory.

The individual WSN nodes and the Edge Node/
Gateway can be considered as the embedded object/
device in an IoT system. These embedded objects which
form the building blocks of IoT are computing devices
with built-in processors, software and network
connectivity. The software is the driving force of the IoT
object, which has to provide real-time processing. A real
time operating system (RTOS) like µC/OS III, VxWorks,
etc has numerous special features and characteristics that
can make them an appropriate choice for IoT
implementation.

1.2. Which is the most preferrable o/s for IoT
 implementation?

Any common object ranging from Street lights,
Washing machines, Automobiles to Nuclear reactors are
empowered with electronic sensors and communication
devices. These are the "things" that make up the IoT. To
be suitable for IoT purpose, an operating system would
need to be:

 VOL. 11, NO. 1, JANUARY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 766

 Small in memory size, because these are mostly tiny
devices with restricted resources.

 Capable of detecting and working with a wide variety
of different sensors and actuators.

 TCP/IP ready.

It is industry belief that Android has great
potential to provide the unifying power needed for IoT
than any other single operating system. Linux seems to be
the other popular choice. The Internet of Things is too big
to be contained by one or two operating systems.
Interoperability is the mandate for IoT. Actually we may
very likely find that building the right APIs and making
sure those APIs have all the right gateways and features is
more important than the operating systems itself.

1.3. RTOS as the driving force of an IoT object
 It is common knowledge that IoT objects are
small networked systems, i.e. low end microcontroller
based systems with even 8 or 16 bit processors and small
sensors whose memory unit is tiny. The major
disadvantage of Linuxbeing the driver behind IoT is its
memory footprint, which is huge to fit inside these tiny
IoT objects. Another critical factor needed for IoT objects
is Real-Time processing of data. The following list shows
a wide range of application areas which require the
stringent principles and concepts of Hard Real-time
system.

 Aerospace: Jet Engine controls, Weapons systems
 Automobile industry: GPS, Engine Control,

Antilock Braking systems
 Process control: Factory Automation, Chemical

Plants, Food Processing

 These small real-time microcontroller based IoT
systems uses 8, 16 or 32-bit processors. Most of these
systems use a Real Time Operating system (RTOS) as the
driving software. RTOS can be custom-built for a specific
application or can be a generic one. A few of the
commercially available RTOS are RTAI, Free RTOS,
VxWorks, µC/OS III etc. A Real Time Operating System
(RTOS) generally contains a real-time kernel and other
higher-level services such as file management, protocol
stacks, Graphical User Interface (GUI), and other
components. Most additional services revolve around I/O
devices. As the name suggests, there is a deadline
associated with tasks and an RTOS adheres to this
deadline as missing a deadline can cause reactions ranging
from undesired to catastrophic. Basic features of an RTOS
are as follows:

 Context switching: The time taken for saving the

context of current task and switching over to another
task should be extremely negligible.

 Interrupt latency: The switch-over time between
executing the final instruction of an interrupted task

and the first instruction of interrupt handler should be
less and deterministic..

 Interrupt dispatch latency: The switch-over time
between the final instruction of the interrupt handler
and the next task should be predictable and limited.

 Inter-process mechanisms: Should have Reliable
and time bound system in place for processes to
interact with each other.

 Task preemption: The ability to stop the currently
executing task and switch to a higher priority task
should be available.

 Kernel preemption: kernel should have the ability to
preempt the current process for a higher priority
process.

 Network support: Readymade APIs should be
available for internet connectivity and networking
support.

The RTOS, which can cater to the needs of an IoTdevice,
must contain the following characteristics:

 Scalability: To accommodate a wide range of

different classes of devices.
 Modularity: The option to choose only the essential

components in order to meet tight RAM requirements.
 Connectivity: For movement of data in and out of the

device via Wi-Fi, Ethernet, USB, or Bluetooth.
 Security: The pervasive connectivity in IoT results in

substantial exposure to threats.
 Safety: Safety is paramount in many embedded

operating systems because they control machines that
can endanger life.

 Reliability: Foremost for devices used in safety-
critical applications.

 The illustration given in Figure-2 depicts the
software architecture of an IoT object.

Figure-2. Software architecture of an IoT object.

 VOL. 11, NO. 1, JANUARY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 767

1.4. Advantages of using commercial RTOS for IoT
 implementation

IoT devices require a solid software
infrastructure, including a real-time kernel along with
additional services like TCP/IP, Wi-Fi, Bluetooth stacks,
USB connectivity as well as cloud services and the ability
to put it all together. Developers will hugely benefit if GUI
development, communications middleware and wireless
connectivity can also be integrated into the design process.
An RTOS that can integrate wireless (Ethernet, WiFi and
Bluetooth) protocols and USB connectivity into their OS
will have a fair advantage over other vendors. Modeling
can enable rapid prototyping, code reuse as well as
integration of legacy software. Commercial off-the-shelf
solutions offer quicker time-to-market, lesser risk and cost,
and long term maintenance and support. A list of
Proprietary RTOSand free RTOS are given in Table-1.

Table-1. List of commonly available RTOS.

 List of RTOS

Free RTOS FreeRTOS, ucLinux, eCos, coscox

Proprietary
RTOS

SafeRTOS, VxWorks, µC/OS II & III,
ThreadX, QNX, embOS

2. µC/OS III AS THE CORE OF IOT

This section analyses the major features of
µC/OS III, a commercially available RTOS from Micrium
Inc.as an engine behind IoT object. μC/OS-III is a third
generation real-time kernel which offers the services
expected from a modern age RTOS such as resource
management, synchronization, inter-task communication,
scheduling and much more. The architecture of μC/OS-III
is shown in Figure-3.

Figure-3. Architecture of μC/OS-III.

 Notable features of μC/OS-III are explained in
the following section:

 Running on the largest number of processor

architectures, their performance is measured at run-
time. Also, can directly signal or send messages to
tasks

 Can handle unlimited number of tasks with the
processor’s memory capacity being only constraint.

 Supported priority level is also unlimited, generally
between 8 and 256 different priority levels.

 Facility for mutexes, event flags, semaphores,
message queues, timers and memory partitions.

 Multiple tasks can run at the same priority level at the
same time. For equal priority tasks that are ready-to-
run, µC/OS-III runs each for a user-specified time
period. The facility for each task to define its own
time quanta and give up its time slice if it does not
require the full time quanta is also available.

 Stack growth of tasks can be monitored.
 Extensive range checking facility which can be

disabled during compile time is available.
 It can check for many features such as if NULL

pointers are passed in API calls, task level services
aren’t called from ISRs, arguments are within
allowable range and valid options are specified. Each
API function provides an error code with respect to
the outcome of the function call.

 µC/OS-III’s memory footprint can be scaled to
accommodate only the specific features needed for an
application, typically 6–24 KB of code space residing
in memory.

Figure-4. Software stack of WSN.

The illustration given in Figure-4 shows the
software stack for an industrial wireless sensor node
(WSN) using µC/OS-III as the software driving this IoT
device. Wireless communication over short distances is
achieved using Bluetooth, low-power Wi-Fi or Ethernet.
Such a device typically uses a Cortex-M3/M4 or a Cortex-
A processor.

A few functionalities of µC/OS-III which are
highly essential for IoT implementation such as WSN are
discussed in detail in the following section:

 VOL. 11, NO. 1, JANUARY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 768

Network protocols: Accessibility to Wi-Fi is a
necessity for many applications. However, Wi-Fi needs
good amount of power. In the case of remotely located
sensors, where it is difficult to get supply from the grid,
battery operated devices are the mandate. Hence, IPv6 is
key for IoT devices. IPv6’s addressing scheme provides
more addresses than any other option - some have
calculated that it could be as high as 1030 addresses. With
IPv6, it is much easier for an IoT device to get a global IP
address, which facilitates efficient peer-to-peer

communication. μC/TCP-IP is a compact, reliable, high-
performance TCP/IP protocol stack from Micrium that can
be used for IoT implementation. It is optimized for
embedded systems, and features dual IPv4 and IPv6
support. µC/OS-III real-time kernel takes care of task
scheduling and mutual exclusion and μC/TCP-IP module
handles IPv6 support. The specifications of μC/TCP-IP
such as supported processors and protocols, Interface type,
Transport layer, etc are given in detail in Table-2.

Table-2. Specifications of μC/TCP-IP.

Supported
processors

Most of the commercial processors

Real-time Kernel
Supports Micrium’sμC/OS-III or

μC/OS-II

Transport Layer TCP and/or UDP

Protocols
supported

Multicast transmission and reception (IGMPv2), IPv6
Multicast (MLD), ICMPv6, ARP, Neighbor Discovery

Protocol (NDP)

Interface Type Ethernet (802.3 and Ethernet), Wifi, Loopback

Socket API
Two sets of socket APIs: one proprietary and another

standard BSD socket.

The uC/USB Device and Host modules is
available with robust implementations of many popular
classes, including Audio, Mass Storage, Human Interface
Device, Communications Device, and Personal Healthcare
Device.

The real-time kernel of μC/OS-III handles the
major functions such as Task scheduling, Time
management, Inter task communication, etc. The functions
are discussed in detail in the following section:

Task scheduling: µC/OS-III can manage any
number of tasks at a given point of time. The kernel
reserves 4 highest priority and 4 lowest priority tasks for
its internal use. When the priority value is low, actually,
the priority of the task is higher. The task priority number
also doubles as the task identifier. The process cycle is
shown in Figure-5.

Figure-5. Process cycle.

After task creation, the task is loaded onto a stack
where the data is stored. A stack usually has contiguous

memory locations. The kernel determines how much stack
space a task actually uses. Deleting a task returns the task
to its dormant state. However, the code for the task will be
retained. The calling task can delete the code. If another
task tries to delete the current task, the resources are not
freed and thus are lost. Hence, the task should delete
oneself after it uses its resources.

Memory management: Each memory partition
is made of several fixed sizedblocks. A task must create a
memory partition before it can be used and obtains
memory blocks from the partition. Allocation and de-
allocation of these fixed-sized memory blocks is done in
constant time and is deterministic. Multiple memory
partitions can exist, which enables a task to obtain
memory blocks of varying sizes. Each memory block
should be returned to the respective partition it came from.

Time management: μC/OS-III increments a 32-
bit counter for every clock cycle. Starts at zero, the
counter rolls over to 4, 294, 967, 295(2^32-1). The facility
to delay a task can and then resume the delayed task is
available.
 Five services related to time management are:

 OSTimeDLY()
 OSTimeDLYHMSM()
 OSTimeDlyResume()
 OSTimeGet()
 OSTimeSet()

 Inter-Task communication: μC/OS III handles
Inter-task or inter process communication using one of the
options such as Semaphores, Message mailbox, Message
queues, Tasks and Interrupt service routines (ISR), which

 VOL. 11, NO. 1, JANUARY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 769

interact with each other through an ECB (event control
block). Figure-6 shows the multi task waiting and
signaling operation.

Figure-6. Inter-task communication.

 Development environment: μC/GUI is
aversatile development environment that comes along with
μC/OS III. It supports almost all commercially available
processors from 8-bit upwards.

 Window manager: Windows that are created using

the GUI are managed by this facility. It handles all
mouse and keyboard related events. Since μC/OS III
provides touch screen facility, those are also managed
by window manager.

 Frame buffer: The image of a window is drawn on
this buffer and when the drawing is complete, it is
copied to the touch screen. This helps in preventing
screen flickering.

 Anti-aliasing: This polishes the fonts and
othergraphical entities. It gives a pleasant affect to the
eye instead of the rugged look.

 Touch screen: Touch Screen drivers, LCD drivers.
 Widgets and dialogs: A library to create the widgets

(Check boxes, buttons, textboxes, etc) and dialog
boxes is readily available. This reduces lot of effort to
build everything using pixels and lines.

 Font converter: It converts a general font format (ttf,
utf, etc) to the μC/GUI compatible fonts.

 Bitmap converter: It converts the 32-bit bitmap
images to a compatible image that is used on μC/GUI.

 Hard real-time operating system: μC/OS III is
a hard RTOS. In critical applications, missing a deadline
often results in catastrophe. μC/OS III is highly
deterministic in nature, where the execution times of all
functions and tasks are predictable. Hence, missing
deadlines does not happen that easily in this environment.

3. RTAI
 Linux is a time-sharing OSthat provides good
average performance and highly sophisticated services.
Linux was not built for real time support. To obtain a
timing correctness behavior, it is very much needed to
make a few modifications in the kernel sources, i.e. in
interrupt handling techniques and scheduling policies. In
this way, one can have a real time platform, with low
latency and high predictability requirements, within full
non real time Linux environment (access to TCP/IP,

graphical display and windowing systems, file and data
base systems, etc.).Real Time Application Interface
(RTAI) is not a real time operating system, such as
VXworks or QNX. It is based on the Linux kernel,
providing the ability to make it fully pre-emptable. RTAI
is also an open source like Linux. According to Kim and
Ambike, RTAI has real time performance comparable to
RTOS such as VxWorks and QNX [Kim et al. 2006],
having sufficient determinism to replace them [Barbalace
et al. 2008], however it does not offer any certification or
guarantee to its users, as it is open source. RTAI provides
deterministic response to interrupts, POSIX-compliant and
native RTAI real-time tasks. RTAI supports various
architectures, including IA-32 (with and
without FPU and TSC), x86-
64, PowerPC, ARM (StrongARM and ARM7: clps711x-
family, Cirrus Logic EP7xxx, CS89712, PXA25x),
and MIPS. In RTAI, the operating system is divided into
domains, making the real time domain as the one with
highest priority. Whenever a real time task needs to be
executed, a tiny scheduler, called nanokernel, schedules
this task, freezing the whole remaining system. When
there are no pending real times jobs to be done, the other
parts of the system, such as GUI and user interface are
executed [Barabanov 1997]. This solution is very
practical, as most real time systems consists of a
combination of tasks with soft and hard real time
requirements [Labrosse 2002]. This enables the use of a
single computer to control both real time critical functions
and user interface, networking or others features that can
be added at any time without changing the real time
performance. RTAI mainly consists of two parts:
an Adeos-based and a plethora of services. The Adeos-
based patch to the Linux kernel introduces a hardware
abstraction layer. Adeos is a kernel patch comprising an
Interrupt Pipeline where different OS domains register
interrupt handlers. RTAI versions 3.0 and above uses one
which is slightly modified in the x86 architecture case,
providing additional abstraction and much reduced
dependencies on the "patched" OS. This way, RTAI can
transparently take over interrupts while leaving the
processing of all others to Linux kernel. It offersthe
following services to the applications:

 Hardware management layer which deals with

interrupts and event polling
 Task Scheduling classes that deals with process

activation, time slice, priorities, etc
 Inter-application communication

 The main disadvantage of Linux is its memory
footprint. It requires minimum of 1MB of on board RAM
and ROM size for it to operate. Hence, it cannot run on 8
or 16-bit MCUs and even many newer 32-bit MCUs do
not have enough on board RAM for the Linux kernel. The
ARM Cortex-M series is a good example.

 VOL. 11, NO. 1, JANUARY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 770

4. COMPARATIVE STUDY
An elaborate analysis of the features of μC/OS III

was covered in Section 2. The features of RTAIwere
discussed in Section 3.This section consolidates the key
features of µC/OS III and RTAI that are essential for
Internet of Things implementation. Table-3 gives the
comparison study on the key programming features
forµC/OS III and RTAI.

Table-3. Comparative Study on programming features
of µC/OS III and RTAI.

 µC/OS III RTAI

Min RAM 1K B 1 MB

Min ROM 6K-24K B 1 MB

C Support Yes Yes

C++ Support Yes Yes

Multi-
Threading

Yes Yes

Response
time

Close to Zero Moderate

The graph illustrated in Figure-7 shows the Comparative
minimum RAM/ROM requirements of µC/OS III and

RTAI. Minimum memory requirements are measured in
units of KB.

Figure-7. Comparison on minimum RAM/ROM
requirements for µC/OS III and RTAI.

It can be inferred from Figure-7 that when

compared to RTAI, the memory requirements of µC/OS
III are negligible. The characteristics that are mandatory
for an OS to operate as an efficient driver for IoT are
Scalability, Modularity, Security, Safety, Network
Support, Determinism, extensive feature set and memory
footprint. The comparative study report based on the
analysis of the above mentioned key features are given in
Table-4.

Table-4. Comparative study on µC/OS III and Linux for IoT implementation.

 µC/OS III RTAI

Scalability
Supports 8, 16 and 32-bit

processors
No support for 8 and 16 bit

processors

Modularity

Option to choose only the
needed components to

meet tight RAM
requirements

Modularity is better with the
advent of Linux 2.4.

Security
Has μC/SSL which

supports Java,Perl,PhP
and Python

Same security features as Linux

Network Support
APIs for Ipv6, Wi-
Fi,Ethernet,USB,

Bluetooth connectivity

Need to know shell
programming to include IPv6

support

Extensive Features set
MicroEJ – a SDK for

design and development
Same development and

debugging tools as Linux

Safety
Encrption, firewall and
other safety measures

Watchdog facility for safe
development environment

Determinism

Execution times of all
functions and services are

deterministic. Hence
highly predictable

Not designed for Real-time
processing. So, lacks true real-

time support

Memory Footprint Occupies less memory High memory footprint

Since RTAI is open-source, the features are

attractive from a licensing perspective. Development tools
are available along with distribution. However, if things
go wrong, there is no vendor to blame. Post development
maintenance and support of Linux cannot be compared to

that of a commercial RTOS. Based on the study given in
Table-3 and $, taking into consideration the complete
package of features and post implementation support,
µC/OS III emerges as a better choice for design,
development and maintenance of IoT objects.

0

200

400

600

800

1000

1200

Min
RAM

Min
ROM

M
in
 M

e
m
o
ry

R
e
q
u
ir
e
m
e
n
t
(
In
 K
B
)

μC/OS III

RTAI

 VOL. 11, NO. 1, JANUARY 2016 ISSN 1819-6608

ARPN Journal of Engineering and Applied Sciences
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

www.arpnjournals.com

 771

5. CONCLUSIONS
This paper analyzed the basic characteristics that

are required for embedded objects/things that make up the
key component of IoT. IoT is an immensely complex and
complicated system which must be equipped to handle
heterogenous requirements of diverses hardware
platforms and application scenarios, provide an adaptive
IP network stack, and offer a standard developer-
friendly API. Further, the OS suited for IOT must have
reliable microkernel architecture, occupy less memory and
have a highly adaptive network stack. It was established
beyond doubt that the software needs of an IoT object can
be satisfied by the RTOS, µC/OS III. Micrium’sµC/OS III,
a commercial RTOS was taken up for study and its
characteristic features in the context of IoT
implementation were discussed. Further, the merits and
demerits of RTAI/Linux were also discussed and the study
findings were tabulated. Based on the study findings,
µC/OS III, with its impeccable post development support
and maintenance, emerges as the preferred choice of
RTOS for IoT implementation. For future scope of work,
design and simulation of an IoT embedded device with
µC/OS III as the OS can be achieved.

REFERENCES

[1] Emmanuel Baccelli and Oliver Hahm INRIA Saclay,

France, Mesut Gunes and Matthias Wahlisch,
FreieUniversitat Berlin, Germany and Thomas C.
Schmidt, HAW Hamburg, Germany. 2013. Operating
Systems for the IoT - Goals, Challenges, and
Solutions. Workshop Interdisciplinaire sur la
S´ecurit´e Globale (WISG2013), Troyes, France.

[2] Emmanuel Baccelli, Oliver Hahm, Mesut G¨unes,
Matthias W¨ahlisch, Thomas Schmidt. 2013. RIOT
OS: Towards an OS for the Internet of Things. The
32nd IEEE International Conference on Computer
Communications (INFOCOM 2013), Turin, Italy.

[3] 2014. The RTOS as the engine powering the Internet
of Things. By Bill Graham and Michael Weinstein.

[4] D. McCullough. 2004. uCLinux for Linux
Programmers. In Linux Journal.

[5] RIOT OS - An Operating System for the IoT
2012. [Online]. Available: http://www.riot-os.org

[6] H. Will, K. Schleiser, and J. H. Schiller. A real-time
kernel for wireless sensor networks employed in
rescue scenarios. In: Proc. of the 34th IEEE
Conference on Local Computer Networks (LCN)

[7] M. O. Farooq and T. Kunz. 2001. “Operating systems
for wireless sensor networks: A survey,” Sensors
Journal.

[8] Ambike A., Kim, W.-J. and Ji, K.. 8-10 June 2005.
Real-time operating environment for networked
control systems. American Control Conference.

[9] Rafael V. Aroca, GlaucoCaurin. A Real Time
Operating Systems (RTOS) Comparison.

[10] Cedeno, W. and Laplante P. A. 2007. An overview of
real-time operating systems. Journal of the
Association for Laboratory Automation.

[11] Barbalace A., Luchetta A., Manduchi G., Moro M.,
Soppelsa A. and Taliercio C. 2008. Performance
comparison of vxworks, linux, rtai, and xenomai in a
hard realtime application. Nuclear Science, IEEE
Transactions on. 55(1):435-439.

[12] Gerd Kortuem and FahimKawsar Lancaster
University, Daniel Fitton. University of Central
Lancashire, Vasughi Sundramoorthy University of
Salford. Smart objects as building blocks for the
Internet of Things. Published by IEEE computer
society.

[13] Srikanth, Narayanaraju Samunuri. 2013. RTOS Based
Priority Dynamic Scheduling for Power Applications
through DMA Peripherals. International Journal of
Engineering Trends and Technology (IJETT). 4(8):

[14] http://doc.micrium.com/display/osiiidoc/uc-OS-III
documentation home, µC/OS III the Real Time Kernel
User’s Manual, 2015[Online].

[15] http://micrium.com/iot/iot-rtos/The Internet of Things
and the RTOS,
2015.[Online]http://www.rtai.org.[Online].

