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ABSTRACT 

A delayed SIR epidemic model in which the susceptible are assumed to satisfy the logistic equation will be taken 
up for detailed study. The locally asymptotical stability of the disease-free equilibrium and endemic equilibrium will be 
studied. Further, the Hopf bifurcation analysis will also be addressed. Also, the theoretical analysis will be supported by 
Numerical simulations for different parametric values. 
 
Keywords: SIR model, logistic growth rate, basic reproduction number, stability, Hopf bifurcation. 

 
1.  INTRODUCTION 

Mathematical modelling in epidemiology 
provides us with an understanding of the mechanisms that 
impact and influence the spread of diseases and in the 
process, advances the possibilities for control strategies. 

To start with, the study takes into account a 
population that is divided into three types:  susceptible, 
infective and recovered. Let S(t), I(t) and R(t) be the 
number of susceptible, infective and recovered individuals 
at time t. 

The terminology that comes in handy to discuss 
and develop the concept advanced is SIR- a concept that 
elegantly describes a disease that promises immunity 
against re-infection and indicates that the passage of 
individuals is from the susceptible class S to the infective 
class I and then to the removed class R. 

Kermack-MC Kendrick proposed a classical SIR 
epidemic model in 1927. i.e. 
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Where S(t), I(t), R(t) represent the number of 

susceptible, infective and recovered individuals 
respectively at time t. The parameters  ,   are 

transmission rates and recovery rates respectively. 
The interpretation of the above model is based on 

the interaction of the population in question. Infectives are 
instrumental in the decrease of susceptible per unit time. 
After Kermack-MC Kendrick model, different epidemic 
models have been proposed by investigators such as 

Hethcote [3] and Tudor, Ruan and wang, Derrick, Van den 
Driesche and  R. M. Anderson and R. M. May [6]. 

In mathematical epidemiology, an important 
theme that is popular is one that is related to basic 
reproduction [10]. To begin with, one has number R0 
which serves as a threshold parameter that determines the 
spread of infectious diseases in a population. R0 is defined 
as the average number of secondary infections produced 
when a single infected individual is introduced into a 
susceptible population. When R0>1, the disease can 
permeate a totally susceptible population and the number 
cases will register an increase as a consequence, while on 
the other hand when R0<1, the disease will fail to spread. 
In SIR model the basic reproduction number determines 
whether there will be an epidemic. 
  This paper argues that susceptible individuals are 
assumed to have the logistic growth with a carrying 
capacity K (K>0) as well as intrinsic birth rate r(r>0) and 
where the incidence term is of bilinear mass action. It is 
apparent that time delays can exercise a role that is both 
complex and intriguing on the dynamic behaviour of a 
system [1, 2, 4, 5, 7, 8]. They can have an adverse impact 
on the stability of a system by creating oscillations and 
chaos phenomena. It is common knowledge that studies on 
dynamical systems not only involve stability but also 
involve several other kinds of behaviour, such as 
persistence, attractiveness and periodic solution [11]. In 
particular the properties of periodic solutions carry 
significant interest to any explorer. Based on this 
consideration, the inclusion of time delay into susceptible 
and infective individuals in transmission rate, although 
only in the first equation becomes imperative since 
susceptible individuals infected at time t   are expected 
to just as they are able to spread the disease at time t as 
well. 

The rest of the work is organized as follows. It 
ferrets out all mathematically conceivable equilibrium 
points and their stability analysis in sections 3 and 4. We 
study the existence of the Hopf bifurcation at the positive 
equilibrium in section 4. Numerical simulations are 
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performed in section 5. Finally, our conclusions are in 
section 6. 
 
2. MATHEMATICAL MODEL 

In this paper, we shall consider the following 
delay differential equations 
 

   1
dS S

rS S t I t S
dt k

dI
SI dI

dt

   
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where S(t), I(t)  represents the  number of susceptible and 
infected population respectively. And ‘r’ represents 
intrinsic birth rate constant, ‘k’ represents Carrying 
capacity of susceptible, ‘β’ represents the force of 
infection or the rate of transmission, ‘µ’ represents 
Immigration coefficient of S(t), ‘d’ represents death 
coefficient of I(t) and  is time delay. 
 
3. EQUILIBRIUM ANALYSIS 

Now we investigate the existence of equilibria of 
system (1). System (1) has always a disease-free 

equilibrium 0 ( ),0
k

E r
r
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The basic reproduction number for the model is 

0

( )k r
R

rd

 
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4. LOCAL STABILITY ANALYSIS 

In this section, we shall investigate the stability 
analysis of disease-free equilibrium E0 and endemic 

equilibrium E1. Let  1 2, ( )u t u t be small perturbations for 

S(t), I(t) respectively, i.e. by considering  

     * *
1 2( ) ,S t S u t I t I u t    ,  and by 

linearizing (1) we get   
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4.1. Disease-Free equilibria and stability 
 

Theorem 1: The disease-free equilibrium is 
locally asymptotically stable if R0<1 and unstable if R0>1. 
Proof: For the disease free equilibrium E0, the system (3) 
reduces to 
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with characteristic equation 
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The characteristic roots are given by  
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1 2,
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system is stable if  k r rd   0. ., 1i e R  . 

Hence, given system is stable if 0 1R  , and 

unstable if 0 1R   

 
4.2. Endemic equilibria and stability 

For the endemic equilibrium E1, the system (3) 
reduces to 
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The characteristic equation of (6) for the endemic 
equilibrium is 
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We need to find the necessary and sufficient 
condition for every root of the characteristic equation (6) 
having negative real part. 
 

Case1: For 0  , (6) becomes 
 

   2
1 1 2 2 0P Q P Q                        (7) 

 
By Routh-Hurwitz criteria, all roots of (7) are real 

and negative or complex conjugate with negative real part 

if 1 1 2 20& 0P Q P Q    . 

Hence the system (1) without delay is locally 

asymptotically stable when 0 1R  . 

Case2:  If  0    

Put i   in (6), we get 
 

 2
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Separating the real and imaginary parts, we get 
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which is equivalent to  
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Thus, if  2 2 2 2
1 2 1 2 22 0, 0P P Q P Q      

then there is no   such that i  is an Eigen value of the 

characteristic equation (6) i.e.,  will never be a purely 
imaginary root of equation (6). Thus the real parts of all 
Eigen values of (6) are negative for all 0  . Hence 

endemic equilibrium 1E  is asymptotically stable for all 
if the following conditions hold: 
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If any one of   2 2 2 2
1 2 1 2 22 ,P P Q P Q    is 

negative, there is a unique positive 0  satisfying (10). 

That is there is a single pair of purely imaginary roots  

0i  to (6). 

From (9) k  corresponding to  0  can be 

obtained 
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For 10, E  is stable, it remains stable for 

0  if 
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Differentiating (6) with respect , we get 
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Under the condition 2 2
1 2 12 0P P Q   , we 

have

0
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0

i

d
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


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Therefore, the transversality condition holds and Hopf 
bifurcation occurs at 0 0,     . 

 
5. NUMERICAL SIMULATION 

In this section, we present some numerical results 
of system (1) to verify the analytical predications obtained 
in the previous section. We take the parameter values of 
the system as 

0.1, 10, 10, 0.78, 0.95r k d      , which 

has a positive equilibrium as 1(9.5,12.8)E &
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0 1.1347R  and satisfies conditions indicated in 

theorem (1). We can obtain positive time delay

0 11.416  . Thus we know that 0 10 , E    is 

asymptotically stable. When  passes through the critical 

value 0 , 1(9.5,12.8)E loses its stability and a Hopf 

bifurcation occurs and a family of periodic solutions 
bifurcate from 1E , which can be illustrated in Figures 1-3. 

 

 
 

Figure-1. The trajectories and graphs of system (1) with 010.5 11.416   
.
 

 

 
 

Figure-2. The trajectories and phase graphs of system (1) with 0 11.416  
.
 

 

 
 

Figure-3. The trajectories and phase graphs of system (1) with 012 11.416   
.
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6. CONCLUSIONS 
In this paper we have considered a SIR model 

with time delay and the susceptible follow the logistic 
growth. The global dynamical behaviour of the model is 
studied and the threshold value R0 of the system is defined 
which determines the behaviours of the system. If R0<1, 
the disease free equilibrium E0 is asymptotically stable and 
if R0>1 the endemic equilibrium E1 is asymptotically 
stable. The system changes its behaviour from stable to 
unstable nature around E1 when   crosses 0 , the 
equilibrium loses its stability and Hopf bifurcation occur 
at E1 and periodic orbits bifurcating from E1. The 
numerical simulations performed illustrate our theoretical 
results. 
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