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ABSTRACT 

In semivariogram modeling, data characteristics greatly influence the steps involved in the semivariogram 

modeling. Homogeneous data will be better modeled with simple semivariogram models such as: exponential, Gaussian, 

and spherical models. Meanwhile, heterogeneous data are expected to be better modeled with a mixture semivariogram 

models. A mixture model is a combination of several simple semivariogram models of a certain proportion. The proportion 

for each model can be determined from the mean squared error (MSE). If the MSE value is smaller, then the proportion of 

the corresponding simple models will be greater. Even though the mixture is more complicated, the model can be an 

alternative in semivariogram modeling which allows to give MSE values that is not much different than MSE values 

yielded by using the simple models.  

 

Keywords: mixture model, least square, semivariogram, proportion. 

 

1. INTRODUCTION 

In geostatistics, we observe the sequence of 

random variables {Z(s)|s∈D} where s is set of locations 

and D is random set in R
d
, d = 1,2,3. Z(s) is a stochastic 

process with index parameters such as location. The 

developments of stochastic process in spatial modeling 

quite rapidly such as Markov process. Integrating Markov 

decision processes (MDP) with geographic information 

system (GIS) was used to examine the financial optimality 

of floods disaster risk reduction in Queensland, Australia 

in 2010/2011 [1]. Markov approximations method also 

used for spatial prediction (kriging) and gave more 

accuracy compared with the covariance tapering and the 

process convolution method [2]. 

One tool to measure the variance from the 

difference between two spatial locations that are separated 

by a certain distance. Semivariograms can be classified 

based on the presence and the absence of the influence of 

the angle between a pair of locations; respectively called 

anisotropic and isotropic semivariogram. The model has 3 

parameters, i.e. nugget effect, sill, and range. Nugget 

effect is the initial semivariance when the autocorrelation 

is at its highest or just the uncertainty where distance (d) is 

close to 0, sill is the horizontal assymptote of the 

semivariance, and range is lag distance where the sill is 

reached. There are 7 simple semivariogram models, i.e. 

nugget effect, linear, spherical, exponential, power 

functions, Gaussian, and hole effect [3]. The models and 

the parameters are illustrated in Figure-1.  

 

 
 

Figure-1. Plot of semivariogram models (γ(d)) and their 

parameters (nugget effect, sill, and range). There models 

are a. Linear, b. Spherical, c. Exponential, d. Power 

function, e. Gaussian, f. Hole effect [3]. 

 

There are several other models that were 

developed from the models above as cubic model, 

prismato-magnetik, and prismato-gravimetrik. That model 

has similar properties the parabolic nature at the point of 

origin with Gaussian model. The cardinal sine have 

periodic properties, similar with hole effect model.    

The main problems in semivariogram modeling 

are to estimate the value of the model parameters and to 

decide which model would be the most suitable model for 

the data. Iguzquiza and Dowd [4] compared the inference 

methods for estimating semivariogram model parameters 

and their uncertainty for the case of small data sets. To 

avoid subjectivity in fitting models to experimental 

semivariograms, ordinary least squares, weighted least 

squares, and generalized least squares are often used. 

Uncertainty evaluation in this indirect method is done 

using computationally intensive resampling procedures 

such as the bootstrap method. 
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Moreover, Sari et al [3] used bootstrap least 

square method for estimating the parameter vector of the 

semivariogram models. This method will be applied to 

estimate the parameters after resampling the errors of the 

model. The selection of the resulting semivariogram 

models from bootstrap method will be affected by the 

number of distance lags, the precision level of the range 

partitions, the number of bootstrap iterations, and the 

given reference model. The estimation with bootstrap 

method with the same model as the reference converges 

faster with the maximum iteration of 50. The exponential 

and Gaussian models are sufficiently good in the 

estimation for the models with the same references. 

Meanwhile, the estimation yielded from spherical model is 

quite far from the reference exponential and Gaussian 

models.  

However, in the previous modeling, the real data 

hasn’t been used at all, so that the above three models can 
be less appropriate to the existing data which is usually 

indicated by the increase in the value of the mean squared 

error (MSE). Waterman [5] used different method to 

analyze the data of gold and copper ore deposits at 

Graspberg, Papua, which has outliers and not symmetrical. 

He proposed weighted jackknife-ordinary kriging in the 

estimation of the deposits.  

In this paper, we propose the mixture 

semivariogram model which is a liniear combination of 

some simple models such as exponential, Gaussian, and 

spherical. This model uses proportion for each simple 

model, which is determined by the value of the MSE from 

each estimated model. Even though this mixture model is 

more complicated, it is expected to give better result, 

along with the MSE value which is smaller than when the 

simple models are used. 

 

2. MIXTURE SEMIVARIOGRAM MODELING  

 

2.1 Notations 

The following notations will be used in this 

paper: 

d               - Distance between pair of locations 

 0 1 2, , 'θ θ θθ   - Parameters vector (nugget effect, sill,  

                               and range) 

 0 1 2
ˆ ˆ ˆˆ , , 'θ θ θθ   - Estimated model-parameters vector  

                              (nugget effect, sill, and range estimator) 

1
ˆ( )

ˆ( )

ˆ( )n

γ d
γ d

γ d

 
   
     

- Experimental semivariogram  

1( , )

( , )

( , )n

γ d
γ d

γ d

 
   
  

θ
θ

θ
- Semivariogram model 

 pj                - The proportion of the model j 

 

2.2 Parameters estimation 

In this paper, the experimental variogram from 

the real data will be fitted to some semivariogram models, 

that are exponential (exp), Gaussian (gauss), and spherical 

(sph). These models are respectively formulated as follow:  

 

exp 0 1

2

ˆ ˆˆ ( ) 1 exp ˆ
dγ d θ θ
θ

  
         

      (1)  

2

gauss 0 1

2

ˆ ˆˆ ( ) 1 exp ˆ
dγ d θ θ
θ

                     

(2)  

 

3

sph 0 1

2 2

ˆ ˆˆ ( ) 1.5 0.5ˆ ˆ
d dγ d θ θ
θ θ

    
                    

(3)  

In general, 0θ̂  dan 1̂θ  are formulated respectively as 

0 1
ˆ ˆ jba

n n
  

 
and 

 1 2
ˆ

j

j

j

j

ab
c

n

b
d

n








, where 
1

( )
n

i

i

a d


 . 

Meanwhile, bj, cj, and dj are in accordance with the model 

of the estimates (j = 1 (exp), 2 (Gauss), and 3 (sph)). For 

exponential model,  ˆ
1

1

1 i

n
d

i

b e




  , 

 ˆ
1

1

( ) 1 i

n
d

i

i

c d e
 



  , and  2ˆ
1

1

1 i

n
d

i

d e




   with 

2

1ˆ
ˆ


 . While for gaussian model, 
  2ˆ

2

1

1 i

n
d

i

b e




  , 

  2ˆ
2

1
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n
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i

i

c d e
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
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  2

2

ˆ
2

1

1 i

n
d

i

d e




  . And 

for spherical model,     3

3

1

ˆ ˆ1.5 0.5
n

i i

i

b d d 


  , 

    3

3

1

ˆ ˆ( ) 1.5 0.5
n

i i i

i

c d d d  


   and 

    
2

3

3

1

ˆ ˆ1.5 0.5
n

i i

i

d d d 


  . 

From each model estimates, we can calculate the 

mean squared errors, MSE, i.e. the average of the squares 

of the difference between the experimental semivariogram 

and the semivariogram model. In addition, there will be 

semivariogram modeling using mixture model, which can 

be written as: 

 
*

1 exp 2 gauss 3 sph
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )γ d p γ d p γ d p γ d  

                       

(4)

       

 

 

where pj, j = 1 (exp), 2 (Gauss), 3 (sph) is the proportion 

for each model.  
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Those proportions are determined from two steps, 

those are simulating using reference model (exp, Gauss, 

and sph) and approaching real data using experimental 

semivariogram. Through simulation, the determined 

reference model will be fitted to 3 simple semivariogram 

models then some proportion combinations from each 

model are determined. The purpose is to know which 

proportion combination will give the smallest MSE value. 

Meanwhile, for the real data approach, the proportion is 

determined based on the MSE values of each simple 

model. The model with smaller MSE value will contribute 

a greater proportion for the mixture model. 

 

3. RESULTS AND DISCUSSIONS 

 

3.1 Simulation 

 From simulation, the proportions in mixture 

model are determined by simulating the reference models 

(exp, gauss, and sph). For that, the following steps are 

executed: 

a. Consider one of the reference semivariogram models: 

(1) exp, (2) gauss, or (3) sph with the parameters 

vectors respectively  0 1 2, ,θ θ θ
ref ref ref

θ .  

b. Select p for forming semivariogram function.  

c. Compute the expected semivariogram 

ˆ( ), 1,2,...,iγ d i m . 

d. Take 
iε  

from the normal distribution with mean 0 

and variance 1. 

e. Add , 1,2,...,iε i m  to ˆ( )iγ d . 

f. Estimate the parameter vector, i.e.  0 1 2
ˆ ˆ ˆˆ , ,θ θ θθ  by 

using least square method with the semivariogram 

models, with respectively: (1) exp, (2) gauss, or (3) 

sph as the estimation models.  

g. Construct 3 semivariogram models *ˆ ( )iγ d  (exp, 

gauss, and sph) with θ̂ as the input for f. 

h. Compute the mean square error (MSE), formulated as 

 2
*

1

1 ˆ ˆ( ) ( )
n

i i

i

γ d γ d
m 

 . 

i. Determine the proportions p1, p2, dan p3 for exp, 

gauss, and sph models. 

j. Formulate the mixture model as a linear combination 

of the simple semivariogram models as written in (2). 

k. Compute MSE for the mixture model, which is 

formulated as  2
*

1

1 ˆ ˆ( ) ( )
n

i i

i

γ d γ d
m 

 . 

l. The best model is the one with the smallest MSE. 

 

 With the simulation steps above, the following is 

the simulation result in determining the proportions for 

three simple semivariogram models in constructing 

mixture model, along with the corresponding MSE values. 

 

Table-1. The simulation results of the proportions of the simple semivariogram 

models in constructing mixture model. 
 

Ref. Model 
MSE Mixture Model 

Exp Gauss Sph Ratio MSE 

Exp 

22 325 1248 1:1:1 84 

113 173 835 2:2:1 22 

129 192 861 1:1:0 114 

100 242 996 2:1:0 88 

38 299 1233 1:1:2 225 

Gauss 

1195 245 7500 1:1:1 1338 

681 560 4215 2:2:1 158 

693 623 3999 1:1:0 529 

1204 266 7312 1:2:0 307 

898 221 6397 1:1:2 1628 

Sph 

3418 5035 1268 1:1:1 2220 

2724 6370 2762 1:1:2 1542 

2971 4263 1010 1:1:3 1243 

3428 5052 1292 2:1:2 1828 

3179 6153 2376 4:1:1 2444 

3531 5348 1481 3:1:2 2041 

3562 5269 1347 2:1:3 1597 
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From Table-1, it can be concluded that: 

 

a. From the three semivariogram models above, the 

exponential one is the simplest model mathematically, 

followed by the Gaussian which is a square form of 

exponential model? Spherical is a polynomial model 

with the orders of 1 and 3, different with the two 

previous models; in other words, it can be considered 

to be more complicated. 

b. By assigning greater proportion to the original model, 

the MSE value will be smaller. For the case when the 

reference model is spherical, the greatest proportion 

for spherical model will give the smallest MSE value. 

In line with this, if the reference models are 

exponential and Gaussian, the greater proportion for 

the same references will give the smaller MSE. 

c. A simple model can be fitted with the more 

complicated model, but it can increase the MSE value. 

As a consequence, a simple model will be better fitted 

by another simple model, or mixture model with the 

smaller proportion for the more complicated model.  

d. Meanwhile, a complicated model will be better fitted 

by a mixture model where the proportion of the same 

model is greater than the proportions of the simpler 

models. In estimating more complicated model, a high 

proportion for simple models will increase the MSE. 

e. The mixture model is surely more complex than the 

three other models, but it is a new idea in modeling 

the semivariogram given many software that 

facilitates the determination of the model parameters. 
Moreover in general, it can provide a smaller MSE 

value unless it is fitted with a spherical model. 

 

3.2 Data 

The data used will be the reservoirs at Jatibarang 

field. Jatibarang reservoir has special characteristics. 

There are volcanic stones with fractures and low sulfur 

content. The volcanic layer is the largest oil producer 

among the Jatibarang reservoirs. This reservoir is located 

in the north of West Java and the oil field area has an 

elongated position +10 kilometers north-south and +16 

kilometers west-east. Since 1969, there have been +200 

opened and in 1998 the production reached a cumulative 

production of nearly 13 million m
3
 [6].  

About 132 wells were observed, and the 

information about the depths and k-fracture that show the 

oil permeability were provided. The data will be used is k-

fracture information. The wells with sufficiently 

homogeneous k-fracture conditional to the wells’ depth 
were selected. From 132 wells, 33 wells were taken at a 

depth of (271,326] with the contour of k-fracture values 

and its projections to the ground surface illustrated 

respectively in Figure-2a and Figure-2b. The descriptive 

statistics of the data are summarized in Table-2 and 

outliers are shown in the boxplot in Figure-2. 

 

 
(a)                                       (b)                    (c) 

 

Figure-2. (a) 3D-contour and (b) 2D-contour of the 33 selected wells’ k-fracture at a depth of (210, 270). 

 

Table-2. Numerical summary of the 33 selected wells’ k-fracture at a depth of (210, 270). 
 

Descriptive statistics 

Count 33 Variance 287.46 

Sum 1483.46 Standard Error 2.95 

Average 44.95 Skewness 0.83 

Minimum 16.09 Kurtosis 2.68 

Maximum 102.01 25th Percentile 35.87 

Range 85.92 50th Percentile 49.73 

Standard Deviation 16.95 75th Percentile 53.78 
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From the numerical summary, the wells has the k-

fracture average 44.95 with adequately high dispersion, 

16.95. there are 23 wells (68% of 33 wells) having k-

fracture included on the interval (28.0, 61.9). From 

Figure-2c, there is a well having the highest k-fracture, 

reaching 102.01, behaving as an outlier. From above 

contour, the k-fracture increases along with the direction 

of northeastern, and decreases along with the direction of 

southern. Then the k-fracture data from the 33 wells will 

be processed to determine the best semivariogram model. 

 

3.3 Semivariogram modeling 

 After getting the descriptive statistics, 

semivariogram modeling is conducted by doing these 

steps: 

a. Compute the experimental semivariogram with the 

number of the distance pairs from 33 wells 

determined from Sturgess’ rule, so that the pairs of 
distances and experimental semivariogram (di, i ), i = 

1, 2,...,n where n represents the number of pairs. 

b. Estimate the parameter vectors  0 1 2
ˆ ˆ ˆˆ , , 'j j j jθ θ θθ

 
using least square method for j-th model where j = 1, 

2,...,r and r represents the number of semivariogram 

models to be fitted. Here are 3 models to be used, 

those are 1(exp), 2 (gauss), dan 3 (sph).  

c. Compute MSE from the difference between 

experimental semivariogram and each model using 

the following formula: 

 2

1

ˆ
MSE

n

i ji

i

j
n

 






. 

d. Compute the proportion of each model (pj) for the 

mixture semivariogram model by assigning smaller 

proportion for the bigger MSE value, so that the 

proportion can be formulated as the following: 

1

MSE

MSE

m

j

j

j

j

k



 

and 

1

j

j m

j

j

k
p

k





, j = 1,2,3. 

e. Compute MSE from the difference between the 

experimental semivariogram and the mixture model,

 2

mix

1

mix

ˆ ˆ
MSE

i

n

i

i

n

 






. 

f. Compare the MSE values between the semivariogram 

modeling with simple models and mixture model.  

 

3.4 Results 

The estimation result of parameter vector and the 

comparation graphs between the experimental 

semivariogram and its corresponding models values can be 

seen in Table-3 and Figure-3. Meanwhile, the estimation 

of the models’ parameters and their MSE values can be 
seen in Table-4.  

  

Table-3. The experimental semivariogram and the corresponding semivariogram model. 
 

d γ(d) γ exp γ gauss γ sph γ mix 

0.0639 45.7 -232.1 -88.7 -358.7 -204.1 

0.1916 148.9 23.4 2.6 1.8 10.4 

0.3193 238.2 232.3 164.2 316.3 224.4 

0.4470 256.4 403.2 362.4 554.4 421.1 

0.5747 236.6 542.8 561.7 685.3 582.2 

0.7024 311.1 657 734.9 701.1 697.6 

0.8301 517.9 750.3 868.4 701.1 785.7 

0.9578 778.2 826.7 960.7 701.1 851.2 

1.0855 843.1 888.8 1018 701.1 897.5 

1.2132 1778.5 939.9 1050.8 701.1 929.9 
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Figure-3. The Experimental Semivariogram and Semivariogram Model (exponential, 

Gaussian, spherical, and mixture). 

 

Table-4. The parameter vector and MSE for three semivariogram models 

(exp, gauss, sph, and mixture). 
 

The parameter vector and MSE value 

Exp Gauss Sph Mixture 

(-380.7, 1549.2, 0.60) 

1.0896 x 10
5
 

(-100.6, 1181.7, 0.60) 

1.0578 x 10
5
 

(-546.8, 1247.9, 0.60) 

1.8540 x 10
5
 

- 

1.1779 x 10
5
 

 

These 4 models in Table-4 can be written as 

follows: 

 

exp
ˆ ( ) 380.7 1549.2 1 exp

0.6

dγ d         
  

  (3.1) 

 

2

gauss
ˆ ( ) 100.6 1181.7 1 exp

0.6

dγ d
                          

(3.2)  

 
3

sph

546.8 1247.9 1.5 0.5 , 0.6
ˆ ( ) 0.6 0.6

546.8 1247.9 , 0.6

d d
d

γ d

d

                    

  

(3.3)

                                    

 

mix exp gauss sph
ˆ ˆ ˆ ˆ( ) 0.3820 ( ) 0.3935 ( ) 0.2245 ( )γ d γ d γ d γ d   (3.4) 

 

From Figure-3, there are 10 groups of distance 

lags obtained. Based on the model-fitting result, the 

exponential model has the least MSE value among all the 

other models used (gauss, sph, and mixture), reaching 

1.0896x10
5
. Meanwhile, the mixture model has MSE, i.e. 

1.1779x10
5
, bigger than the MSE from gaussian model for 

about 1.0578x10
5
. But, the difference of MSE between 

mixture model and exponential model are not much 

different. Meanwhile, spherical model have the greatest 

MSE value. So, this model is less well in modeling the 

experimental semivariogram. The mixture model is 

formed from three simple models with the largest 

proportion is a Gaussian model, i.e. 0.3935, then followed 

by exponential and spherical model.  

 

4. CONCLUSIONS 

Mixture model can be an alternative in 

semivariogram modeling, which gives MSE values that is 

not much different from exponential and Gaussian model. 

For any data that can be modeled with simple models, 

mixture model can give smaller MSE value with a slight 

difference. This makes simple model more preferable than 

the more complicated mixture model. 
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