
                               VOL. 11, NO. 3, FEBRUARY 2016                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1494 

A SCALABLE APPROACH FOR IMPROVING DYNAMIC 
MULTITHREADED APPLICATIONS ON NUMA BASED 

ARCHITECTURES 
 

Praveen Kumar Reddy M.1 and M. Rajasekhara Babu2 
1School of Information Technology and Engineering, VIT University, Vellore, Tamil Nadu, India 

2School of Computing Science and Engineering, VIT University, Vellore, Tamil Nadu, India 
E-Mail: praveenkumarreddy@vit.ac.in 

 
ABSTRACT 

Scalability is a key concern for SMP based architecture in the current context. NUMA based architecture design 
seems to be a promising hope addressing the scalability. At the same time CC-NUMA based design architecture demands a 
deeper understanding and open vistas for key areas of improvement. With the approach of many core environments where 
memory is distributed among the different cores, it is challenging to design a thread scheduler along with proper data 
distribution across different nodes in a productive way. Our proposed research tries to investigate, evolve and analyze one 
of the key design issues for NUMA machine and proposes an innovative solution to address this key design issue under 
investigation in the current phase of our work. Our Algorithmic design proposed seems to be outperforming with respect to 
LibNUMA specifically. 
 
Keywords: NUMA, architecture, SMP, CC-NUMA, UMA, LibNUMA, open MP.  

 
1. INTRODUCTION 

With the need for multiprocessing design, shared 
memory architecture provides processors to share a 
common memory. Uniform memory access (UMA) is one 
such architecture where the memory is uniformly accessed 
by all the processors.  If the data size is increased, the 
processing speed need to be increased where in turn 
number of processors should be more. Since UMA shares 
a common bus, the allocation of bandwidth to the 
processors is a bottleneck which results in a scalability 
problem. 

To overcome this problem, Non-Uniform 
Memory Access (NUMA) based design has been 
proposed. In NUMA, the memory is physically distributed 
among NUMA nodes where a common global address 
space is maintained [12].These nodes are connected with 
an interconnect. Memory access is fast and there is no 
issue of bandwidth. In UMA the latencies are uniform 
whereas in NUMA it differs with the distance of NUMA 
nodes. In NUMA each node is associated with a local 
memory [13]. If the memory accesses happen from this 
local node, then there is no issue of bandwidth. As there 
can be an access to global address space at some time, 
there is a need to access data from the remote nodes. This 
creates a latency difference between local and remote 
memory accesses and hence remote access should be 
minimized. Even though NUMA overcomes the scalability 
issue, some factors need to be optimized .Such key design 
factors include Data placement, Processor Affinity, Load 

Balancing, Cache Coherence, Thread Scheduling [14]. In 
this paper we plan to discuss different strategies to ensure 
optimal data placement in NUMA based system using 
automatic page migration and replication scheme. In 
NUMA, design for effective data placement is the major 
concern. Improper data locality leads to increase in remote 
access. In NUMA a processor can get to its nearby 
memory speedier than non-neighbourhood memory, that 
is, memory nearby to another processor or memory shared 
between processors. For an efficient Data placement 
proper memory management along with process 
scheduling has to be done.  
Key requirements for design of optimal data placement 
NUMA engine require: 
 
 Placer data shall have to be available locally to a 

NUMA node. 
 Placer should avoid the overload transmission through 

interconnect. 
 Remote access has to be minimized. 
 If a particular node has insufficient memory, memory 

reclaim mechanism needs to be built in the Data 
placer. 

 
 In case of memory reclaim failure, there should 
be an alternate mechanism with placer to allocate 
neighbouring NUMA nodes (preferred nodes) memory.

 



                               VOL. 11, NO. 3, FEBRUARY 2016                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1495 

CPU

Cache

Memory

CPU

Cache

I/O

CPU

Cache

Memory

CPU

Cache

I/O

NUMA Node

Scalable Network
 

 

Figure-1. NUMA (Non Uniform Memory Architecture). 
 

Memory affinity is one such data placement 
policy wherein we can achieve the above mentioned 
factors. Memory affinity involves data allocation, data 
migration, data replication which is efficiently being 
designed/proposed in this paper. 

The rest of the paper is planned as follows. In 
section 2, we provided the various ways of providing 
memory affinity in NUMA architecture, section 3 gives a 
detailed explanation of various memory policies followed 
up with our algorithm in section 4. Section 5 summarizes 
our design along with discussion and section 6 provides 
the Conclusion with relevant future work in future. 
 
2. LITERATURE REVIEW 

To assure memory affinity in NUMA machines 
several works have been adopted. These works lead to 
some major solutions. In this section we briefly discuss 
various methodologies to assure memory affinity. The 
cons and pros of each method was identified and 
discussed. 
 
A. Using LibNUMA 

LibNUMA supports page migration, memory 
policies, and CPU bindings using kernel system calls 
through. These system calls allow programmer to allocate 
memory in run time. It majorly includes 
“numa_migrate_pages”, “numa_set_mpolicy ()”, 
“numa_move_pages ()”, “mbind ()” and 
“numa_get_mpolicy ()” [3]. The primary advantage of this 
kernel system call is that memory distribution can be 

controlled in a superior manner [4]. Usage of LibNUMA 
is a complex task since it involves bit masks, pointers, 
memory pages. Also to use this LibNUMA, one must 
manually enter the system calls (numactl) so that the 
application customs to the memory policies, which 
becomes a complicated work for the programmers. So 
there must be a mechanism by which the application must 
automatically adapt to the architecture. One such proposed 
mechanism is discussed in the later sections. 
 
B. Open MP 

Open MP is a language which supports efficient 
parallelism. The application must be coded using OpenMP 
primitives in order to get multithreading. To place the data 
in better way in NUMA machines, certain extensions were 
added to the OpenMP and it requires an explicit support 
from compilers. But all compilers don’t give the provision 
for OpenMP and directives are applied in a static manner 
[9].In [5] a mechanism to guarantee memory affinity on 
NUMA machine using OpenMP was presented by the 
author. The main idea in the paper was to make relation 
between threads and data .Also the work provides some 
suggestions of how to extend OpenMP in NUMA 
machines. Their results proved that OpenMP can perform 
well on tightly-coupled NUMA machines. Their work was 
not extended to automatic data placement. Our proposed 
work tries to provide this mechanism using automatic 
memory affinity in run time. 

In [6] an efficient memory allocation in OpenMP 
using certain set of OpenMP directives is presented. These 
directives guide developers to allocate data efficiently on 



                               VOL. 11, NO. 3, FEBRUARY 2016                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1496 

the NUMA architecture. All these directives are limited to 
the FORTRAN language. Using these directives efficient 
data distribution and page locality can be achieved [7] [8]. 
But these directives have to be included for an application 
in an explicit manner which requires hardware 
specifications in prior. There must be a better approach 
independent of prior knowledge on hardware which must 
provide efficient data placement.  

In [16] author presented on how to improve the 
programming of openMP applications with heavy memory 
access requirements the main idea in the paper was 
programming with openMP related with local vs remote 
accesses. Integrating the openMP and MPI, to have as 
many threads as cores in the numanode, building an index 
for MPI and openMP, pays an attention to local accesses. 
In order to minimize the MPI message rate and minimal 
sensitivity to the latency, grouping or minimization of MPI 
processes is required. The runtime setup is crucial for best 
possible abuse of NUMA with open MP. The numerous 
cores depend on a multicluster configuration, where every 
cluster highlights a few basic centres sharing Level1 
scratchpad memory. Intercluster correspondence is liable 
to nonuniform memory access (NUMA) impacts [17]. The 
programming model comprises of a broadened OpenMP, 
where extra directives permit to efficiently program the 
accelerator from a single host program, rather than writing 
separate host and accelerator programs, and convey the 
workload among groups in a NUMA-mindful way, 
accordingly enhancing the performance. 
 
C. Compiler support 

Memory affinity in a parallel application can be 
provided using OpenMP, HPF [10]. However achieving 
the memory affinity during run time is a complex task. 
This involves an effective cooperation from compilers and 
run time systems [11] so that the threads and data migrate 
dynamically according the behavior of the application. 
These special abilities have been included in the compiler. 
Now a day’s GCC, Intel C compiler are capable to 
distribute threads and at the same time achieve memory 
affinity in NUMA machine. However to accomplish 
memory policies with OpenMP, the developer should have 
a prior knowledge of operating system, the topology that 
machine uses and the application [1, 2].  In [18] author 
presented compiler-based procedure to progress page 
placement in NUMA machines, there approach has speed 
up the software operation by four times without 
programmer’s mediation. There are some limitations in 
this approach it cannot knob openMP directives, since they 
are having a specific semantics that was not yet encoded in 
there system. 
 
3. BASIC WORK 
 
Kernel’s Memory affinity policies 

Memory affinity is ensuring that processing unit 
always has their data close to them.  So, to achieve utmost 

performance on NUMA machine the number of remote 
access during the execution has to minimize. Processor 
and data need to schedule so as the distance between them 
are to be closed. To minimize the distance and accordingly 
increase the performance of NUMA architecture we need 
some mechanism and tool in order to solve memory 
allocation, replication and migration to ensure memory 
affinity in NUMA system. However, none of these 
solutions provide portability as memory affinity control. 
To achieve this, memory affinity is ensured by applying a 
memory policy for an entire process. First touch algorithm 
was proposed in Linux 2.6.24 kernel which was the default 
policy to manage memory affinity. It places the page with 
respect to thread on the NUMA node that access it first.  
By this policy data is allocated by thread or master thread 
to its local memory which reduces remote accesses. 
However first touch policy apply on application that 
access symmetric data (regular).  If thread does not access 
similar data, it leads to high number of remote access. 
 To reduce remote access the page should be 
migrated between NUMA nodes to make sure that data is 
closer to the processor that access it. Before page 
migration the following sequence of step has to be 
followed 
 
 The victim page which is to be migrated should be 

removed from the Least Recently     Used lists. 

 All the references of PTE (page table entries) to the 
old page are freed and the page is put into sleep till 
the migration of the page is over. 

 If suppose any kernel references are made to the page, 
then the page migration is aborted and should be 
further processed after the kernel usage is over. 

 New kernel references are to be made for the new 
page after migration. 

 Next touch policy was introduced to provide 
automatic page migration. This policy is applicable for 
regular and irregular data. Next touch policy provide 
automatic dynamic page migration using “copy on write 
“(COW). Using COW page migration occurs only it is 
essentially needed. Generally page table entry (PTE) 
contain protection bit (write access and read access bit) to 
check the page detail. COW is implemented in LINUX to 
modify the write access bit of the page from the page table 
entry which indirectly generates a page fault on a write 
access. The Figure-2 explains the flow of process occurred 
in the next touch policy. Initially by using first touch 
policy, thread associates/binds page with respective 
NUMA node. In next touch policy the page is marked by 
flag bit and indicates that it will be used in near future. In 
order to mark the page using flag bit in LINUX it is 
accomplished using madvise () system call. 



                               VOL. 11, NO. 3, FEBRUARY 2016                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1497 

Application

Madvise()

Next_touch flag

Modify PTE 
Protection bits

Touch
Occurs

Do nothing 

Page fault handler

Fault due to next 
touch

Migrate Page 

Restore PTE 
Protection bits 

Generates

Enables

True

False

False True

 
 

Figure-2. Next touch policy implementation. 
 
Whenever we want to set the next touch flag, we have to 
modify the PTE protection bit. Due to the load balancing 
there is need to migrate the threads from one NUMA node 
to another irrespective of the data location of the thread. 
This leads to page fault whenever touch occurs for the 
page. When this happen page fault handler take care of the 
faults by checking the next touch flag of the page. It also 
sees that actual page fault is occurred because of Next 
Touch policy or a real page Fault. If the fault is due to the 
Next touch, then page will be migrated. After the page 
migration, the Next touch flag is removed from the 
corresponding buffer and enables its original protection 
bits in the PTE. Same procedure happens if Next touch 
faults happens. In general some pages are protected. This 
can be done by using mprotect () system call which 
prevents application to access that page. If that page is to 
be accessed, it leads to segmentation fault which is 
handled by custom signal handler [4]. This custom handler 

removes the protection temporarily, then migrates the 
resultant buffers and restores its protection back. This 
mechanism is not flexible to implement as we are calling 
the mprotect () (system call) twice to handle the 
segmentation fault, resulting in changing the TLBs 
frequently.The next touch policy produces a better 
performance when compared with numa_migrate_ 
pages()(libNUMA’s API) because numa_migrate_pages() 
Shifts entire process address space on to new NUMA node 
which is not necessary as discussed in the previous 
sections. 

The proposed design addressed all the above 
mentioned policies along with replication in next touch 
policy. 

 
 
 



                               VOL. 11, NO. 3, FEBRUARY 2016                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1498 

4. DESIGN AND ARCHITECTURE OF THE  
    PROPOSED SYSTEM 

Our proposed system is trying to provide a 
replication mechanism for the aforementioned next touch 
policy with some threshold constraint. Our algorithm tries 

to give an effective mechanism for Memory affinity which 
targets in reducing the remote accesses. The proposed 
mechanism also tries to incorporate all the LibNUMA 
support (migration, replication, preferred and interleaved) 
automatically. 

 

Design 
Allocator

Behavior Engine
Or

Inference Engine 
Memory

 

Design Migrator

Design Replicator

 
 

Figure-3. Design and architecture of the proposed system. 
 
Module 1: Design allocator 

Design allocator allocates memory to a node by 
default policy (First touch). According to first touch 
policy; memory will be allocated to the thread that first 
touches it. It sets the behavior of the shared page. Then it 
sets the next touch flag indicating that the page will be 
accessed in the future. Before doing his we must check 
whether the memory is available for migrating or 
replicating the pages to the destination nodes or not. If 
page fault value is less than the threshold value and 
memory is available, migrate the page. In case if the 
memory is not available then memory reclaim has to be 
done by using madvise_free () 
 
Module 2: Behavior engine 

Behavior engine decides whether page candidate 
is fit to Migrate or Replicate based on the threshold value. 

The threshold value is to be checked with page fault 
counter. It also provides a access mechanism for pages 
(e.g. More write access implicitly disables the page from 
replication) 
 
Module 3: Design migrator or replicator 

This forms the core enabler for Migration or 
Replicator. Before the migration or replication happens 
again we have to check for sufficient memory availability. 
If the sufficient memory is not present memory reclaim 
(madvise_free ()) has to be happened. If the page fault 
count is greater than threshold frequency data replication 
has to be done. Page fault counter should be incremented 
only on the next touch. Whereas if the page faults count is 
less than threshold frequency data migration has to be 
done. Figure-4 depicts the overall proposed methodology 
flow discussed above. 

 
Table-1. Key terminologies for a proposed system. 

 

Key  parameters Semantics 

Threshold value 
Number of faults for a page to decide whether to replicate or 

migrate.

Reset interval(RST) Reset the counter after certain number of clock cycles. 

Write frequency threshold 
Maximum number of write access allowed to a page after 

which a page is not considered for the replication. 

Page fault counter 
Number of page faults for a page occurs across the NUMA 

node with in reset interval. 



                               VOL. 11, NO. 3, FEBRUARY 2016                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1499 

Memory policy

Madv_behavior()

Madv_willneed()

Change pre 
protection bits

Fault due to 
next touch

Do nothing

Check_page

Page_fault_handler()

No need of next 
touch policy

Fault > 
threshold value

Page migration Write access

Do nothing

Do replication
Restore protection 

bits

Low

True

High

False

False

True Found

Not found

 
 

Figure-4. Next touch policy with replication. 
 

To include replication mechanism we introduced 
some variables as threshold, reset (RST), and write 
frequency threshold. The threshold frequency checks the 
no of access of the page for a certain period across then 
NUMA nodes. The reset flag resets the page fault counter 
value after a particular clock cycle time (as of Table-1). 
The write frequency threshold finds how many write 
access happened to a page. If it is high, then check the 
write frequency threshold, if the number of write access is 
greater than write frequency threshold, do nothing. Else 
check for the memory again and replicate the page. 

Algorithm 

Init_configuration_cum_allocator_NUMA ( ) 
Step 1: Allocate a page in NUMA node as follows: 
 Step1.1.a Choose default memory policy ( ) 
Step 1.1.b Initialize the Memory Access parameters (like    
page_table_entry,   protection bits, pid,       bitmask, write 
access bit, vma, main memory etc…) 
Step1.2 set the behavior of the shared space using 
madv_behavior () 
Step1.3 set the next touch flag using madv_willneed () 



                               VOL. 11, NO. 3, FEBRUARY 2016                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1500 

Step1.4Change the page table entry protection bits i.e. 
pte_modify (page table entry, get_protection (0)). 
Step1.5 Initialize threshold and reset value  
Shared behavior process 
Step 2 Check the recent access to Page i.e. 
If (touch==true) do the following steps 
{ 
/*checking whether the page fault occurred from the next 
touch or not*/ 
2.1. Check the pages for its local or remote access using      
Page_found=check_page(pid,bitmask,pageaddress) 
2.2. If page is being from local node i.e. if 
(Page_found==1) 
Do nothing and abort () 
/* next touch policy not needed*/ 
Else 
/* page fault handler mechanism and increment the page 
fault count */ 
 2.2. Generate a page fault using 
intpage_fault_count=page_fault_handler (addr, 
writeacess, pagetableentry, vma, mm) 
2.2.1Increment the page fault using    
page_fault_count++; 
 /*until reset values doesn’t cross the periodical time 
value, if crosses reset the page fault values*/ 
Step 3Replication or Migration 
3.1. Check the Page faults limit& compare the same with 
threshold limit set using. 
 If (page_fault_count>= threshold value) 
{ 
3.2. Replicate the page using page_replicate (node 
mask_all, vma, page table entry, Pd, mm) 
} 

Else  
/* (if page_fault_count< threshold value) 
{ 
3.1 Migrate the page using next touch policy as 
page_migrate (mm, pte, ptl, mm, vma) 
/*provide migration*/ 
 
Algorithm for main design block design for data placer 
() 
Automatic_data_placer_for_NUMA () 
{ 
Step a) Configure the NUMA nodes & allocate the pages; 
Init_configuration_cum_allocator_NUMA ( );/* step 1 
above*/ 
Step b) Organize the NUMA shared process behavior; 
Perform step2 above; 
Step c) Based upon the threshold frequency    value 
Either Migrate or Replicate; 
 /* step 3* above */ 
} 

The algorithm describes the next touch policy 
with replication. Initially every application obeys the 
default memory policy as first touch. Madvise () system 
call gives a prior knowledge to kernel of how an 
application expects to use the memory. The following 
table describes the different functionalities of madvise () 
system call. 

By using madv_willneed () system call for which 
we change the page table entry bits (read/write access 
flag), indicates that page will be used in the future. Now 
whenever fault occurs, kernel confirms that this fault is by 
next touch policy and decides to take decision of migration 
or replication. 

 
Table-2. Different functionalities of madvise (). 

 

System call Description 

madvise_normal Default kernel way of accessing the addresses. 

madvise_sequential 
Informs kernel that application will access a listed range 

addresses in a successive way. 

madvise_random Tells kernel that page references are in a random manner. 

madvise_willneed The specified address range will be referenced in future. 

madvise_dontneed The specified address range will not be referenced in future. 

madvise_free 
Intimating kernel that the specified range of  addresses are 

no longer important(these addresses are freed when the 
memory pressure is high)

 
5. COMPARATIVE ANALYSIS AND DISCUSSIONS 

In this proposed design we have investigated and 
addressed the key concerns or limitations imposed by the 
existing works. Our Algorithmic outline proposed is by all 
accounts beating as for LibNUMA particularly.  

Consider an application which is generating 200 
threads, where these threads are randomly distributed in 
parallel among the NUMA nodes. In LibNUMA using 
mbind () we can allocate memory to any node. Cpubind () 
allows process to execute on a set of CPUs for a specified 
node. LibNUMA also provides page migration using 



                               VOL. 11, NO. 3, FEBRUARY 2016                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1501 

numa_migrate_pages () where a large buffers are to be 
moved which leads to increase in latencies (unnecessary 
pages are also transferred) [15].For the LibNUMA support 
the programmer should alter the application code manually 
which is a complex task [9]. By first touch policy adopted 
by us, the thread which touches the page first will be 
allocated to the corresponding node to make the access 
local. If other threads from different nodes need to access 
the same page (remote) very frequently in a short period, 
then migration becomes a tedious job where in TLB values 
are to be flushed frequently. So instead of migration we 
replicate the page based on the page fault count (if page 
fault is greater than the threshold count) in our proposed 
system addressing the key concern. Replication may also 
cause memory congestion. Duplicate copies indeed result 
in redundancy of data. So in order to make the memory 
available we use madvise (madv_free) resets in a 
periodical interval and the replicated page is removed 
based on the necessity. For every migration or replication 
the status of the page is checked in advance. Hence we 
ensured that our proposed system provides a better 
alternative to the existing works with dynamic processing 
built-in. 

NUMA architectures has multi cores for each 
node. The thread scheduler is required to bunch on the 
similar node threads which are getting to the same 
information, for occurrence inside of an OPENMP parallel 
segment. We in this manner hope to have simultaneous 
accesses from various threads for a buffer to be moved. 

Figure-5 shows the movement throughput on our 
experimentation stage when a few threads are certain to 
NUMA 1st node and moving memory from 0th node. It 
first demonstrates that parallelizing the movement does 
not bring any change for buffers littler than 1 MB. We feel 
that this is identified with lock dispute in the kernel in both 
executions. The figure additionally demonstrates that both 
methods accomplish somewhere around 55 and 65% 
change when moving huge buffers with 4 threads (one for 
each core). Lazy migration looks to scale somewhat better 
since despite everything it enhances a bit (+7 %) when 
including a fourth thread, accomplishing up to 1.5 GB/s. 
This throughput stays much lower than a normal memory 
duplicates between NUMA nodes, yet it must be noticed 
that a page-deficiency and serious page-table securing are 
included every hidden page relocation. Regardless of the 
possibility that the general throughput is restricted, strung 
movement still shows up as an intriguing arrangement 
when various strings taking a shot at the same dataset are 
relocated to another node in the meantime. Our kernel 
base implementation seems 33% speedier than the user-
space model. 
 

5000 10000 15000 20000 25000 30000
700

800

900

1000

1100

1200

1300

 

A
gg

re
ga

te
 M

ig
ra

ti
on

 T
hr

ou
gh

pu
t 

Number Of Pages

 Lazy-1 Thread
 Lazy-2 Threads
 Lazy-3 Threads
 Lazy-4Threads

 
 

Figure-5. Throughput of Lazy threads. 
 

5000 10000 15000 20000 25000 30000

400

500

600

700

800

900

 

A
gg

re
ga

te
 M

ig
ra

tio
n 

T
hr

ou
gh

pu
t

Number of Pages

 Sync-1 Thread
 Sync-2 Threads
 Sync-3Threads
 Sync-4 Threads

 
 

Figure-6. Throughput of Sync threads. 
 
6. CONCLUSION AND FUTURE WORK 

Scalability being a major concern in UMA based 
system NUMA addressed this key concern very 
effectively. With the advent of many core environments 
where memory is distributed among the different cores, it 
is challenging to design a thread scheduler along with 
proper data distribution across different nodes in an 
efficient manner. Since the modern architectures has 
increased there complexity by adding more number of 
cores and shared memory there are some problems in 
schedule planning between data and threads. Running 
dynamic applications with the help of OPENMP threads 
causes’ unbalanced access for threads i.e. some threads 
will be sharing more data and some threads will be sharing 
less there is no proper load balancing. We have thoroughly 
investigated existing solution with respect to data 
placement and explored their limitation in current context 
(lack of dynamic adaption to run time directives in 
OpenMP and lack of automatic placer in the current 
LibNUMA APIs). We have proposed, investigated and 



                               VOL. 11, NO. 3, FEBRUARY 2016                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1502 

evolved an efficient design for NUMA based machine for 
automatic data placement in scalable fashion, there by 
addressing the key concern (dynamic migration and 
replication), for improving Dynamic Multithreaded 
applications. This examination is done in the setting of 
planning a productive OPENMP runtime framework for 
various levelled NUMA architectures. A tight coordination 
of our Next-touch support inside of the NUMA-aware 
MARCEL user level threading library [19] is relied upon 
to establish the frameworks for dynamic scheduling 
threads and setting memory supports relying upon their 
affinities. It ought to empower a sharp dispersion of work 
and information inside of our FORESTGOMP OPENMP 
runtime which has been intended to keep running on these 
architectures [14]. 
 
REFERENCES 
 
[1] C. Compiler. 2010. Thread affinity interface. 

http://software.intel.com/en-us/intel-compilers/. 

[2] G. C. Compiler. 2010. Thread affinity interface. 
http://gcc.gnu.org/onlinedocs/libgomp/Environment- 
Variables.html. 

[3] AndiKleenSUSE Labs. 2005. An NUMA API for 
Linux” August 2004 A. Kleen. A NUMA API for 
Linux Tech. Rep. Novell-4621437. 

[4] Kleen. 2005. A NUMA API for Linux. Tech. Rep. 
Novell-4621437. 

[5] D. S. Nikolopoulos, E. Artiaga, E. Ayguadé and J. 
Labarta. 2001. Exploiting Memory Affinity in 
OpenMP through Schedule Reuse. SIGARCH 
Computer Architecture News. 29(5): 49-55. 

[6] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. 
Harris, C. A. Nelson and C. D. Offner. 2000. 
Extending OpenMP for NUMA Machines. in SC ’00: 
Proceedings of the 2000 ACM/IEEE Conference on 
Supercomputing, Dallas, Texas, USA. 

[7] H. Richardson. 1996. High Performance FORTRAN: 
history, overview andcurrent developments. Tech. 
Rep. TMC-261, 
http://hpff.rice.edu/publications/index.html 

[8] S. Benkner and T. Brandes. 2002. Efficient Parallel 
Programming on ScaleShared Memory Systems with 
High Performance Fortran. Concurrency: Practice and 
Experience. 14: 789-803. 

[9] Christiane Pousa Ribeiro, Jean-François Méhaut. 
2010. MAi: Memory Affinity Interface. inria-
00344189, version 6 -14. 

[10] Charles Koelbel, David Loveman, Robert Schreiber, 
Guy Steele and Mary Zosel. 1994. The High 
Performance FORTRAN Handbook. 

[11] François Broquedis, Nathalie Furmento, Brice Goglin, 
Raymond Namyst, Pierre-André Wacrenier. Dynamic 
Task and Data Placement over NUMAArchitectures: 
an OpenMP Runtime Perspective. published in 
International Workshop.  

[12] T. Mu, J. Tao, M. Schulz, and S. A. McKee. 2003. 
Interactive Locality Optimizationon NUMA 
Architectures. In: SoftVis ’03 Proceedings of the 2003 
ACM Symposium on Software Visualization. New 
York, NY, USA: ACM. pp. 133. 

[13] J. Marathe and F. Mueller. 2006. Hardware Profile-
Guided Automatic Page Placement for ccNUMA 
Systems. In: PPoPP ’06: Proceedings of the eleventh 
ACM SIGPLAN symposium on Principles and 
practice of parallel programming. New York, NY, 
USA: ACM, pp. 90-99. Online Available: 
http://portal.acm.org/citation.cfm?id=1122987. 

[14] Christoph Lameter. 2006. Local and Remote Memory: 
Memory in a Linux/NUMA System. In Linux 
Symposium (OLS2006), Ottawa, Canada. 

[15] Christian Terboven, Dieter anMey, Dirk Schmidl, 
Henry Jin and Thomas Reichstein. 2008. Data and 
Thread Affinity in OpenMP Programs. In: 
Proceedings of the 2008 workshop on Memory access 
on future processors (MAW ’08), pp. 377-384, New 
York, NY. ACM. 

[16] http://www.hpcsociety.org/Resources/Documents/6-
9NOV2011-AMD  
Best%20practices%20for%20programming%20with
%20openMP%20on%20NUMA%20systems.pdf. 

[17] Marongiu, A. Capotondi, S. Member, G. Tagliavini, 
L. Benini and A. Multiprocessor. 2015. Simplifying 
Many-Core-Based Heterogeneous SoC Programming 
With Offload Directives. 11(4): 957-967. 

[18] G. Piccoli, H. N. Santos, R. E. Rodrigues, C. Pousa, 
E. Borin, F. M. Quintão Pereira and F. Magno. 2014. 
Compiler support for selective page migration in 



                               VOL. 11, NO. 3, FEBRUARY 2016                                                                                                            ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 
©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                                      1503 

NUMA architectures. Proc. 23rd Int. Conf. Parallel 
Archit. Compil. - PACT ’14. pp. 369-380.   

[19] S. Thibault. 2005. A Flexible Thread Scheduler for 
Hierarchical Multiprocessor Machines. 

[20] S. Thibault, F. Broquedis, B. Goglin, R. Namyst, and 
P. a. Wacrenier. 2008. An efficient OpenMP runtime 
system for hierarchical architectures. Lect. Notes 
Comput. Sci. (including Subser. Lect. Notes Artif. 
Intell. Lect. Notes Bioinformatics). Vol. 4935, LNCS, 
pp. 161-172. 


