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ABSTRACT 

The calculations of correspondence analysis (CA) are using the long stages matrix operations, so that through 

many times rounding process, and the eigenvalues obtained by numerical process. The CA is often using standard residual 

matrix to calculate the singular value decomposition (SVD), this paper proves that 0 is a singular value of standard residual 

matrix. Based on that, this paper introduce simplification of correspondence analysis (SoCA) of 2 × J contingency table 

where J = 2, 3, 4, ڮ, where obtain the simpler and more precise calculation, because it managed to minimize rounding 

process, also does not use the numerical process, with use standardized residuals matrix as a matrix to calculate the SVD, it 

is very useful for data mining techniques.  

 

Keywords: correspondence analysis, singular value decomposition, simplification, correspondence analysis, data mining. 

 

1. INTRODUCTION 

Tufféry [1] elucidate that “the most relevant 

fields of data mining are those where large volumes of 

data have to be analyzed, sometimes with the aim of rapid 

decision making”. Data mining is a set of methods and 

techniques for exploring and analyzing data sets, by 

automatic or semi-automatic way, to find certain 

provisions of the unknown or hidden, and association or 

trends in the data set, the outputs specifically provide 

useful information while reducing the quantity of data. 

Data mining Data mining techniques was using the 

inferential statistics and ‘conventional’ data analysis 
including factor analysis, clustering analysis, discriminant 

analysis, correspondence analysis (CA), etc. Data mining 

analysis for two qualitative variables often use CA. 

CA was first discovered and developed in the 

1960s by Jean-Paul Benzécri and friends in France [2]. 

This analysis is defined as the mapping technique of a 

contingency table in an optimal small-dimensional vector 

space. This analysis is also used to grouping the categories 

of rows and columns from the contingency table.  

CA has been applied in various fields of science, 

including Education, Economics, Safety, Medical, and 

others. Zhibo et al. [3] analyzed and compared the 

competitive power of steel industry of 30 provinces in 

China, with data containing 16 economic indicators to 

reflect each province’s business conditions of steel 
industry. Lu et al. [4] investigated the associations 

between fatality levels and influence factors that involve 

place, cause, time of day, month, year and province. 

Zalewska et al. [5] described the relationship between 

asthma, region, and age, from Epidemiology of Allergy in 

Poland (ECAP) data survey in years 2006-2008.  

The improvement study of CA performed by: 

Beh [6] introduced the Elliptical confidence regions for 

CA, so the quality of the correspondence plot 

configuration is better, because it involves the cumulative 

percentage of eigenvalues of the times more than the 

dimensions used. Takagi and Yadohisa [7] introduced the 

CA based on the interval algebra, so that the calculation 

method of CA performed contingency table with shaped 

cells intervals. Beh [8] introduced the CA using the 

adjusted residuals so that data map can show the cross-

tabulation of data variability. 

The calculations of CA are using matrix 

operations with the long stages. That through many times 

rounding process, it also the eigenvalues obtained by 

numerical process, so that the values obtained are less 

precise. The principal coordinates estimate are use 

standardized residuals matrix, which is Greenacre in 2011 

[9] showed that this matrix can position an outlier in the 

CA map.  

This paper proposed to perform mathematical 

analysis of CA with one’s qualitative variables is two 
categorical data, to obtain the matrix model calculation 

method which is simpler and more precise (to minimize 

rounding process, also does not use numerical process and 

called simplification of correspondence analysis (SoCA). 

Ginanjar et al [10] has published the application of SoCA 

in 2014, while this paper writes more detailed theory of 

SoCA. 

This paper is divided into five further sections. 

Section 2 will describe the methods of data analysis using 

CA. Section 3 will describe the detailed theory of SoCA 

from 2  J contingency table, to obtain the principal 

coordinates of rows and columns matrices. Section 4 will 

describe the example of SoCA used fraud consumer data 

with two qualitatively random variables are Card type and 

Countries based on IP Address. The paper is concluded 
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(Section 6) with a brief discussion of the procedure and 

some possible avenues for further research. 

 

2. CORRESPONDENT ANALYSIS (CA) 

First at all, we construct a contingency table. This 

table is a cross-tabulation of the two categories (variables). 

The first category variables is the row category and the 

second variables is the column category, see Table-1. 

Table-1 gives a I  J contingency table, where the 

first variable has I row categories, and the second variable 

has J column categories. Suppose nij is the numbers of 

individuals in category i on the first variable and category j 
in the second variable, and the total of each row is ni• and 

the total of column is n•j, where i = 1, 2, ڮ, I and j = 1, 2, ڮ, J. ni• and n•j are called marginal for first variable with 

the category i and second variable with the category j, 
respectively. The grand total is the total number of 

individuals which is denoted by n. 

 

Table-1. Contingency table form. 
 

Row 

category 

Column category 

Column 1 Column 2 ڮ Column J Total 

Row 1 n11 n12 ڮ n1J n1• 

Row 2 n21 n22 ڮ n2J n2• ڭ ڭ ⋰ ڭ ڭ ڭ 
Row I nI1 nI2 ڮ nIJ nI• 

Total n•1 n•2 ڮ n•J n 

 

 

2.1 CA algorithm 

Consider the following contingency table (cross-

tabulation matrix):  

 

 ijnN .                                                (1) 

 

Calculate the empirical joint distributions of row 

and column with the following formula: 
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Calculate the vectors of row ( r


) and column ( c


) 

marginal distribution: 
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Let the diagonal matrices of the row and column 

marginal distribution is denoted by R and C. 

The standardized residuals matrix [9], which is a 

matrix that represents the association in contingency table, 

is calculated as follows: 
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The singular value decomposition (SVD) of the 

standardized residuals matrix is given as follows: 

 

t
UDVS  ,                                                              (6) 

 

where IUU t , IVV t , and 
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where Lll ,,2,1, 


  is square root of descending 

eigenvalues  L  21  from SSt or StS, and 

L is a number of eigenvalues are obtained. 

The matrix of principal coordinates of row and 

column, are calculated as follows: 

 

UDRY 2

1 ,                                                              (7) 

   

and column principal coordinates is: 
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t
VDCZ 2

1 ,                                                              (8) 

 

respectively. 

The first two columns of the principal coordinates 

of row and column are the coordinates to build the two-

dimensional map. 

 

3. MATHEMATICAL ANALYSIS (CA) 

 

3.1 Matrix for calculates the CA eigenvalues 

Standard residual matrix can be calculated 

directly from the elements of cross-tabulation matrix 

(Equation (5)). SVD calculation begins by calculating the 

eigenvalues of the matrix product SSt or StS.  Let I < J then 

the size of the matrix SSt < StS, thereby calculating 

eigenvalues of SSt will be simplified. 

 

Lemma 1 

If the size of a matrix N is I  J (Equation (1)), 

and SSt = A, then the elements of A is 
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where i and k = ͳ,ʹ,ڮ,I. 
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Lemma 1 is a formula to calculate SSt which is 

simpler and more precise, because each element of the 

matrix is calculated directly from the elements of the 

contingency Table. The variable often consists of two 

categories (I = 2), e.g. gender, yes or no, and others. 

Based on that, this paper formulates the lemma of SSt for 2 

× J contingency table. 

 

Lemma 2 

If the size of a matrix N is 2 × J (Equation (1)), 

and SSt = A, then the elements of A is obtained 
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3.2 Eigenvalues and orthonormal eigenvector 

The equations for calculating eigenvalues are 
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SSI .                                             (11) 

 

The calculation of SSt eigenvalues has 

uniqueness. SSt is a real symmetric matrix that has the 

following properties: 1) is positive semidefinite, 2) is 

always diagonalizable, 3) has orthogonal eigenvectors, and 

4) has only real eigenvalues. Other than that 0 is 

eigenvalue of SSt, it is proved in Theorem 1. 

 

Theorem 1 

If the size of a matrix N is I × J (Equation (1)), 

and SSt = A, then 0 is eigenvalue of A. 
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so, we obtained 
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The eigenvalues calculation involves the 

calculation of polynomial roots, which has been obtained 

through numerical process. The eigenvalues calculation of 

the matrix size 2 × 2 can be performed using 

mathematical analysis, so the eigenvalues are obtained 

more precise. If the size of a matrix SSt is 2 × 2, with 

Lemma1, Lemma 2, and Theorem 1, then the eigenvalues 

can be calculated directly from the elements of the 

contingency table, which is described in Lemma 3. 

 

Lemma 3 

If the size of a matrix N is 2 × J (Equation (1)), 
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As a result of the Lemma 3 it can be seen that for 

the size of a matrix N is 2 × J, will be obtained 1-

dimensional principal coordinate, with 100% contribution 

ratio.  

The equations for calculating eigenvector are 
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If the size of a matrix SSt is 2 × 2, and λ is the 

eigenvalues of SSt, then with Lemma 2, and Theorem 1 the 

orthonormal eigenvectors can be calculated. The 

orthonormal eigenvectors are the columns for the matrix U 

(Equation (6)), which can be calculated directly from the 

elements of the contingency table, and written on Lemma 4. 

 

Lemma 4 

If the size of a matrix N is 2 × J (Equation (1)), 

and SSt = A, then the orthonormal eigenvectors from A are 
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Proof 

With Lemma 1, Theorem 1, and the Equation 
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by using elementary row operations, so obtained 
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let tu *

12 , so the eigenvector is 

 





























t

n

n
t

u

u
1

2

*

12

*

11   

The orthonormal eigenvector is eigenvector 

vector with length is 1, so the orthonormal eigenvector for λ1, is eigenvector for λ1 which each element is divided by 
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so the orthonormal eigenvector for λ1 is: 
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and the eigenvector for λ2 =0 is: 
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the orthonormal eigenvector for λ2, is eigenvector for λ2 

which each element is divided by  
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so the orthonormal eigenvector for λ2 is: 
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then, the orthonormal eigenvectors from A are: 
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With using Equation (5), Equation (6), and 

Lemma 4, than the elements of the orthonormal 

eigenvectors  1v


 of the first eigenvalues λ1 corresponding 

to StS, this can be calculated directly from the elements in 

contingency table, which is described in Lemma 5. 
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Lemma 5 

If the size of a matrix N is 2 × J (Equation (1)), 

and SSt = A, then the elements of orthonormal 

eigenvectors  1v


 from the first eigenvalues  1  
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with Lemma 4 than the result that: 
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Because of  

222
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2
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vus
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
   and λ2 =0, then the 

value of 2jv  is undefined. 

 

3.3 Principal coordinates of rows and columns 

The main objective of the CA is to estimate the 

principal coordinates, for mapping the row and column 

categories of a contingency table. The principal 

coordinates are the linear combinations vectors from each 

row or column category. 

Based on Lemma 3, Lemma 4, and Lemma 5, 

then the author can make an equation to estimate the 

principal coordinates, which is simpler and more precise, 

which is calculated directly from the elements in contingency 

table. It was described in Theorem 2. 

 

Theorem 2 

If the size of a matrix N is 2 × J (Equation (1)), 

then the row principal coordinates Y is  
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and the column principal coordinates Z is 
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Proof 

The row principal coordinates (Equation (6)) is: 
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The column principal coordinates (Equation (7)) is: 
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with Lemma 5 than the result that: 
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4. EXAMPLE 

This section is presents an example to describe 

the steps of SoCA. The example is used fraud consumer 

data with two qualitatively random variables. The 

variables are Card type and Countries based on IP 

Address. The data are obtained from an online payment 

gateway company in Indonesia. 

 

 

4.1 Transform two qualitative variables into a  

      contingency table 

Transform two qualitative variables (card type 

and IPID Country) into contingency table, so we got the 

data shown in Table-2. 

 

Table-2. Contingency table: card type and IPID Country. 
 

Card Type 
IPID Country 

1 2 3 4 5 6 7 8 9 10 Sum 

Visa 1 1 2 2 54 0 5 3 3 2 73 

MasterCard 0 8 0 2 27 1 8 1 0 0 47 

Sum 1 9 2 4 81 1 13 4 3 2 120 
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4.2 Compute the principal coordinates of rows and 

column 

Compute the principal coordinates of rows using 

Theorem 2, where 
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Compute the principal coordinates of columns 

using Theorem 2, where 
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4.3 Plot the projections of data 

The first two columns of the principal coordinates 

of rows and columns are the coordinates to make the map 

of SoCA where presented in Figure-1. 

 

 
 

Figure-1. SoCA map of card type and IPID Country. 

 

Figure-1 show that most of the fraud customer 

from Argentina, Canada, Spain, and the USA using Visa, 

and most of the fraud customers from Australia and 

Malaysia using MasterCard. The fraud customers from 

Singapore and Indonesia predominant use Visa and 

MasterCard partly use. The fraud customer from Mexico 

and India predominant use MasterCard and Visa partly 

use. 

 

5. DISCUSSION AND CONCLUSIONS 

This paper has shown that SoCA obtains the 

simpler and more precise calculation method, because it 

managed to minimize rounding process, also does not use 

numerical process. The standardized residuals matrix is 

used for calculate the SVD, which rare objects are often 

positioned as outliers in CA map, which gives the 

impression that they are highly influential, but their low 

weight offsets their distant positions and reduces their 

effect on the results. For each N(2J) is a cross tabulation 

matrix (Equation 1) where j = 1, 2, ڮ, J, will be obtained 

one-dimensional visualization, with the contribution ratio 

of 100%. The idea of SoCA of 2 × J contingency tables 

can be highly enlightening as to the properties of these 

methods. In future work we will generalize SoCA to be 

used for I × J contingency tables where I = 3, 4, 5 and J = 

  .ڮ ,3 ,2
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