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 ABSTRACT  

A genuine variational principle developed by Gyarmati, in the field of thermodynamics of irreversible processes 
unifying the theoretical requirements of technical, environmental and biological sciences is employed to study the mixed 
convection heat transfer about a semi infinite inclined plate in the presence of magnetohydrodynamic (MHD) and thermal 
radiation effects. The velocity and temperature distributions inside the boundary layer has been considered as a simple 
polynomial functions and the variational principle is formulated. The Euler-Langrange equations are reduced to coupled 
polynomial equations in terms of boundary layer thicknesses. The effects of the magnetic parameter (M), the mixed 
convection parameter (Ri), the angle of inclination ( ), the radiation-conduction parameter (Rd), the temperature ratio 

( W ) and the Prandtl number (Pr) on the velocity and temperature profiles as well as on the skin friction and heat transfer 

parameters are presented and analyzed. For some specific values of the governing parameters, the results agree very well 
with those available in the literature. The present study establishes a high accuracy of results obtained by this variational 
technique. 
 
Keywords: magneto hydrodynamics, mixed convection, thermal radiation, heat transfer. 
 
INTRODUCTION 

The MHD boundary layer theory has a significant 
place in the development of the magneto hydrodynamics. 
In recent years, the study of mixed convection flow and 
heat transfer for electrically conducting fluids past a 
surface has attracted much interest of researchers in view 
of its applications in many engineering problem such as 
geophysics, astrophysics, boundary layer control in the 
field of aerodynamics. Alam et al[1, 2] studied the 
combined effects of viscous dissipation and Joule heating 
on steady magneto hydrodynamic free convective heat and 
mass transfer flow of a viscous incompressible fluid past a 
semi-infinite inclined radiate isothermal permeable 
moving surface in the presence of thermophoresis. Takhar 
et al[18] investigated MHD natural convection from a 
non-isothermal inclined surface with multiple 
suction/injection slots embedded in a thermally stratified 
high-porosity medium. 

The radiative effects have important applications 
in physics and engineering. The radiative heat transfer 
effects on different flows are very important in space 
technology and high temperature processes, and very little 
is known about the effects of radiation on the boundary 
layer of a radiative-MHD fluid past a body. Duwairi and 
Damseh [7, 8] studied the radiation-conduction interaction 
in free and mixed convection fluid flow for a vertical flat 
plate with the presence of a magnetic field effect. The 
MHD mixed convective heat transfer flow about an 
inclined plate has been studied by Aydin and Kaya[3]. 
Mukhopadhyay [14] has unsteady mixed convective flow 
and heat transfer past a porous stretching surface. 
Bhattacharyya et al [4] have investigated an MHD 
boundary layer slip flow and  heat transfer over a flat 
plate. Hassain and Takhar [11] analyzed the effect of 

radiation using the Rosseland diffusion approximation on 
the mixed convection along a vertical plate with uniform 
free stream velocity and surface temperature. 
Shanmugapriya [17] investigated an MHD mixed 
convection of a viscous dissipation fluid about a vertical 
flat plate with uniform suction/injection.  

The object of this paper was to investigate the 
radiation effect on MHD mixed convection flow about an 
inclined plate. The viscous dissipation effects are 
negligible and the radiative heat flux in the x-direction is 
considered negligible in comparison with that in the y-
direction. The governing equations describing the problem 
are transformed into a polynomial equations interms of 
velocity and thermal boundary layer thicknesses by using 
the Governing Principle of Dissipative Processes. The 
velocity, temperature profiles, skin friction and heat 
transfer are analyzed for various values of governing 
parameters. 
 
FORMULATION OF THE PROBLEM  

Consider a steady, laminar, two-dimensional and 
MHD mixed convection boundary layer flow of a viscous 
incompressible fluid along a semi-infinite inclined plate 
with an acute angle  . The fluid is assumed to be a gray, 
emitting and absorbing, but non-scattering medium. The x 
co-ordinate is measured from the leading edge of the plate; 
y co-ordinate is measured along the normal to the plate. A 
magnetic field B0 is applied in the y-direction. The external 
flow with a uniform velocity 

U  takes place in the 

direction parallel to the inclined plate. The Rosseland 
approximation is used to describe the radiative heat flux in 
the energy equation. Under these assumptions and using 
Boussinesq approximations, the boundary layer equations 
for this problem are given by 
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where subscript indicates partial differentiation, u, v, T, 

,T U , 
0B , Cp and qr represent the velocity component in 

x-direction, velocity component in y- direction, 
temperature of the fluid, the free stream temperature, the 
free stream velocity, the magnetic flux density, specific 
heat at constant pressure and  radiative heat flux in the y 
direction respectively. The symbols  ,,,,, Bg  

mean, kinematic viscosity, the acceleration due to gravity, 
the coefficient of thermal expansion, the angle of 
inclination, the fluid density and electrical conductivity of 
the fluid respectively. 
  

Making use of the Rosseland approximation for 
radiation for an optically thick layer (Brewster [5]), we 
have 
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where a is the Stefan-Boltzmann constant and k* is the  
mean absorption coefficient. If temperature differences 
within the flow are sufficiently small such that  T 4 may be 
expressed as a linear function of the temperature, then the 
Taylor series for T 4 about 

T  after neglecting higher order 

terms, is given by 
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In view of equations (4) and (5), equations (3) 

reduces to 
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The appropriate boundary conditions for the 
velocity and temperature of this problem are
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THE FORMULATION OF GOVERNING 
PRINCIPLE OF DISSIPATIVE PROCESSES (GPDP) 

Gyarmati [9, 10] introduced a genuine variational 
principle called the “Governing Principle of Dissipative 
Processes” (GPDP) which is given in its universal form 
 

 
V

dV .0][        (8) 

The principle (8) is valid for linear, quasi-linear 
and certain types of non-linear transport processes at any 
instant of time under constraints that the balance equations 
 

ρȧ i+∇.
→−
Ji= σi   (i=1,2,3…..f)                       (9) 

 
are satisfied. In Equation (8), σ is the entropy production Ψ 
and Φ are dissipation potentials and V is the total volume 

of the thermodynamic system. In the Equation (9),


iJ is the 

flux and σi is the source density of the ith extensive 
transport quantity ai. σ can always be written in the 
bilinear form as 
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 and 
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iX  are fluxes and forces respectively. 

According to Onsager’s [15, 16] linear theory the fluxes 
are linear functions, that  is 
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or alternatively 
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The constants Lik and Rik are conductivities and 

resistances respectively and they satisfy the reciprocal 
relations [15] 
 
Lik=Lki and  Rik=Rki (i,k =1,2,3,...f)                           (   13) 
 

The matrices of Lik and Rik are mutual 
reciprocals. That is 
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where δik is the Kronecker delta. The local dissipation 
potentials Ψ and Φ are defined as 
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Since in the case of transport processes iX


can be 
generated as gradients of certain “Γ” variable, it is written 
as  
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The principle (8) with the help of equations (10), 

(13), (15), (16) and (17), takes the form 
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The principle (8) is also in energy picture as 
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Here T  is the energy dissipation and the 
dissipation potentials *  and *  are given by 
 

* = T  and * = T .     (20) 
 

It is found that GPDP in energy picture given by 
Eq.(19) is always advantageous for dealing with 
thermohydrodynamic systems. This variational principle 
has been already applied for various dissipative systems 
and was established as the most general and exact 
principle of macroscopic continuum physics. For the 
description of viscous flow systems Vincze [19] used the 
GPDP to derive the equation of thermohydrodynamics. 
Many other variational principles have already been 
showed as partial forms of Gyarmati’s principle. 

The balance equations of the system play a 
central role in the formulation of Gyarmati’s variational 
principle and hence the governing equations (1), (2) and 
(6) are written in the balance forms as 
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These equations represent the mass, momentum 
and energy balances respectively. In Equation (22) P  
denotes the pressure tensor which can be decomposed as 
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where p is the hydrostatic pressure,   is the unit tensor, 

and 

vs

P  is the symmetrical part of the viscous pressure 

tensor, whose trace is zero. In the energy picture, the 
energy dissipation for the present system is given by 
 
Tσ =−Jq(∂lnT/∂y)−P12(∂u/∂y)    (25) 
 

the heat flux qJ and 
12P  the only component of 

momentum flux 


vs

P  satisfy the constitutive relations 
connecting the independent fluxes and forces as 
 
Jq=−Lλ(∂lnT/∂y),and P12 =−Ls(∂u/∂y).  (26) 
 

Here Lλ= λT and Ls= µ where λ and µ are the 
thermal conductivity and viscosity respectively. It is well 
known that lnT is the proper state variable instead of T 
when the principle assumes energy picture. With the help 
of Equation (26) the dissipation potentials in the energy 
picture are found as follows. 
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s  . Using the equations 

(25), (27) and (28) Gyarmati’s variational principle in the 
energy picture (19) is formulated in the following form 
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in which ‘l’ is the representative length of the surface. 
 
SOLUTION PROCEDURE 

As a starting point of the variational treatment for 
the present problem the velocity distribution inside the 
boundary layer is approximated as a fourth degree 
polynomial function. 
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Where d 1  and d 2  are hydrodynamical and thermal 

boundary layer thicknesses respectively. The velocity and 
thermal profiles (30) satisfy the following compatibility 
conditions:    
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The transverse velocity component v is obtained 
from the mass balance Equation (1) as 
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To formulate Gyarmati’s variational principle the 

velocity and temperature functions (30) are substituted in 
the momentum and energy balance Equations (2) and (6), 
and on direct integration with respect to y with the help of 
smooth fit boundary conditions (uy  =0 and Ty =0) the 
fluxes P12 and  Jq are obtained respectively as given below. 
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The prime indicates the differentiation with 

respect to x. 
With the help of equations (30), (32), (33) and 

(34) the GPDP given by (29) is formulated and the 
integration of the Lagrangian with respect to y is carried 
out. The variational principle, after simplification, is 
written in a simple form 
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principle. 
The boundary layer thicknesses d1 and d2 are the 

independent parameters to be calculated and the Euler-
Lagrange equations corresponding to these variational 
principles are 
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The equations (36) and (37) are second order 

ordinary differential equations in terms of d1 and d2 
respectively. Instead of solving these equations directly by 
using numerical method, the following transformations are 
used in the variational principle to obtain analytical 
solution for the present problem,  
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The Euler-Lagrange equations of the transformed 
principle assume the simple forms  
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The coefficients of the equations (39) and (40) 

depend on the independent parameters 
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The equations (39) and (40) are obtained as 

coupled algebraic equations in non-dimensional boundary 

layer thicknesses d
*
1  and d *

2  and the coefficients of these 

equations depend on the independent parameters of the 
problem

wandRdRiM  Pr,,,, . These equations can be 

solved for the following range: M = 1, 2, 3, Ri = 1, 2, 3, 
,90,60,45,30,0  Rd =1, 2, 3, Pr = 1 and .7.1w  

 
ANALYSIS OF RESULTS 

After getting d
*
1  and d *

2  the local skin friction 

values and local heat transfer values are calculated with 
the help of the following relations respectively. 
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The results have been compared by work done by 

Chamkha et al [6], Lin and Lin [13], Yih [20] and 
Kunzetsor and Nield [12]. A good agreement is seen 
between the results. 

 
Figure-1 shows the effect of the mixed 

convection parameter Ri on the dimensionless velocity and 
temperature profiles. The velocity and temperature 
gradients increase with Ri and the momentum and thermal 
boundary layer decrease. The effect of the mixed 
convection parameter Ri on the local skin friction and the 
local heat transfer parameters are shown in Figure-2. Both 
the skin friction and the local heat transfer parameters 
increase with an increase in the mixed convection 
parameters Ri. 
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Figure-3 depicts the velocity and the temperature 
profiles for various angles of inclination

)90,60,45,30,0(  . From this figures it is clearly 

observed that increasing the angle of inclination decreases 
the velocity inside the hydrodynamic boundary layer. The 
thermal boundary layer thickness increases by increasing 
the angle of inclination, with an accompanying decrease in 
the wall temperature gradient. In Figure-4, the effect of the 
angle of inclination   on the local skin friction and local 

heat transfer parameters are displayed. This figure shows 
that the local skin friction and local heat transfer 
parameters decrease with an increase in the angle of 
inclination  . 

 

 
 

 
 

In Figure-5, velocity and temperature profiles are 
exhibited for the different values of the magnetic 
parameter M. The increasing of the magnetic parameter M 
increases the velocity and temperature profiles. Both the 
local skin friction and heat transfer parameters increase 
with the magnetic parameters M in Figure-6. 
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CONCLUSIONS 

The present study gives the numerical solution 
for steady mixed convection heat transfer about a semi 
infinite inclined plate in the presence of 
magnetohydrodynamic (MHD) and thermal radiation 
effects. Using simple transformation technique the 
governing partial differential equations are simplified into 
polynomial equations, the coefficients of which are 
functions of independent parameters

wandRdRiM  Pr,,,, . 

 From the present numerical investigation, the 
following conclusions can be drawn: 
 
 An increase in the mixed convection parameter 

increases the local skin friction and local heat transfer 
parameters. 

 An increase in the radiation parameter decreases the 
local skin friction and increases the local heat transfer 
parameters. 

 An increase in the radiation parameter decreases the 
local skin friction and increases the local heat transfer 
parameters. 

 An increase in the surface temperature parameter 
increases the local skin friction and decreases the 
local heat transfer parameters. 

 An increase in the magnetic parameter increases the 
local skin friction and the local heat transfer 
parameters. 

 An increase in the angle of inclination decreases the 
local skin friction and local heat transfer parameters. 
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Nomenclature 
x, y -coordinates in horizontal and vertical directions, 
 respectively 
u, v -velocity component in the x and y directions, 
 respectively 
T - temperature of fluid 

T0 - temperature of plate 

T  - temperature of ambient fluid 

d1 - hydrodynamical boundary layer thickness 
d2 - thermal boundary layer thickness 
P12 - momentum flux 
Jq - thermal flux 

LLs ,  - conductivities 

d
*
1  , d *

2  - non dimensional boundary layer thicknesses 

g - acceleration of gravity 
cp - specific heat the convective fluid 
Re - Reynolds number 
M - Magnetic parameter 
Pr - Prandtl number 
Gr - Grashof number 
Rd - Radiation parameter 
Ri - Mixed convection parameter 
 
Greek symbols 
  - angle of inclination 

  - similarity variable 

  - non-similarity variable 

w  - temperature ratio 

  - symbol for variation 
  - coefficient of thermal conductivity 

  - kinematic viscosity 

  - dynamic viscosity 

,  - dissipation potentials in entropy picture 
**,  - local dissipation potentials in energy 

   picture 
  - density of the fluid 

  - entropy production 

 
Subscripts 
  - free stream condition 

  0 - temperature at the wall 
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