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ABSTRACT 

Empirical equations to describe flow duration curve (FDC) are mostly in the form of exponential, logarithmic, 
power or even polynomial functions but none of these fit the dataset of the study site of this research. This paper proposed 
two new empirical functions, modified from soil water retention equations. The efficiency and prediction accuracy of our 
new empirical equations were evaluated against each mentioned common function at the study site. Polynomial function 
was discarded as it failed to fit the dataset. Power function over-predicted nearly every quantile and induced un-acceptable 
huge difference especially at high flow end of the FDC. Logarithmic was the only function that yields negative predicted 
low flow and under predicted peak flow by 85%. On the other hand, exponential function almost under predicted peak 
flows by 100%. New empirical equations have highest Nash-Sutcliffe efficiency with lowest overall RMSE, quantile 
cumulative RMSE at high flow range and percentage error at the highest peak flow points. A parsimonious form of the new 
empirical equation was also presented and discussed in this paper.  
 
Keywords: flow duration curve, new empirical equation, soil water retention equation.  
 
INTRODUCTION 

A Flow duration curve (FDC) depicts magnitude 
and frequency of observed flow by defining the proportion 
of time for which any discharge is equalled or exceeded 
within a period of study interest (Vogel & Fennessey, 
1994). FDC has been used by hydrologist since the end of 
the 19th century (Sugiyama & Whitaker, 1999). It contains 
useful information for evaluating flow variability and 
characterizing hydrological regimes at a particular site. 
FDC captures full range of flow information thus it 
becomes a common tool in water management 
applications (Vogel & Fennessey, 1995; Smakthin & 
Masse, 2000). It represents a compact signature of 
temporal runoff variability which can also be used to 
diagnose catchment rainfall-runoff responses, including 
similarities and differences between catchments (Cheng et 
al. 2012).  

Studies of FDC allow in depth analysis of flow 
return period, determine probable maximum peak flow to 
aid flood prediction and low flow assessment of a region 
through its lower end of the curve. It is also useful for 
assessing water supply (McMahon, 1993), water quality 
(Vogel & Fennessey, 1995), evaluating river habitats 
(Booker & Dunbar, 2004) and designing hydropower 
facility (Warnick, 1984; Niadas & Mentzelopoulos, 2007; 
Heitz & Khosrowpanah, 2010; Baltas, 2012). FDC is also 
useful to assess flow requirements for different instream 
uses, to protect aquatic environment and evaluate 
anthropogenic environmental impacts. Some researchers 
also used FDC as an indicator of changes in land use 
(Lane et al. 2005; Brown et al. 2013). Male & Ogawa 
(1984) showed how FDCs can be used in the selection of a 
waste-water treatment plant capacity. Hughes & Smakhtin 

(1996) developed a method based on FDC for patching 
and extending observed time series of daily stream flow. 
Petheram et al. (2008) studied flow characteristics of 
rivers in northern Australia as an implication of 
anthropogenic effect. Smakthin & Masse (2000) proposed 
a methodology to simulate continuous FDC from observed 
daily rainfall data in South African while Patil & Stieglitz 
(2011) analysed FDC to determine the hydrologic 
similarity among catchments in the USA. In China, Huang 
& Zhu (2009) used FDC for hydro model calibration in 
their research. Studies of FDC allow in depth analysis of 
flow return period, determine probable maximum peak 
flow to aid flood prediction and low flow assessment of a 
region through its lower end of the curve. It is also useful 
for assessing water supply (McMahon, 1993), water 
quality (Vogel & Fennessey, 1995), evaluating river 
habitats (Booker & Dunbar, 2004) and designing 
hydropower facility (Warnick, 1984; Niadas & 
Mentzelopoulos, 2007; Heitz & Khosrowpanah, 2010; 
Baltas, 2012). Some researchers also used FDC as an 
indicator of changes in land use (Lane et al. 2005; Brown 
et al. 2013), to assess flow requirements for different 
instream uses, protect aquatic environment and evaluate 
anthropogenic environmental impacts. Male & Ogawa 
(1984) showed how FDCs can be used in the selection of a 
waste-water treatment plant capacity. Hughes & Smakhtin 
(1996) developed a method based on FDC for patching 
and extending observed time series of daily stream flow. 
Petheram et al. (2008) studied flow characteristics of 
rivers in northern Australia as an implication of 
anthropogenic effect. Smakthin & Masse (2000) proposed 
a methodology to simulate continuous FDC from observed 
daily rainfall data in South African while Patil & Stieglitz 
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(2011) analysed FDC to determine the hydrologic 
similarity among catchments in USA. In China, Huang & 
Zhu (2009) used FDC for hydro model calibration in their 
research.  

Empirical equations to describe FDC are mostly 
in the form of exponential, power or logarithmic function. 
In general, fitting results from these functions are unable 
to fit extreme values at both high and low flow quantiles. 
We took a different approach and explored possibilities of 
using other type of function to describe the curve. This 
paper presents two new empirical functions, modified 
from water retention equations developed by van 
Genuchten (1980) and Fayer and Simmons (1995). Both 
new empirical functions are aimed at improving FDC 
extreme flow quantiles fitting ability. 

 
NEW EMPIRICAL EQUATIONS AND OTHER 
COMMON FITTING FUNCTIONS 
 van Genuchten (1980) adopted the following 
general equations from Mualem (1976) 
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By equating (1) to (2) and re-arrange the 

equation, the new form of equation becomes: 
 

 
m

nh

rs

r
















1

       (3) 

 
where  is the effective saturation of soil water 

retention curve which depends on the pressure potential of 
soil (h). h in above equations is assumed to be positive. α, 
n, and m are unknown parameters.  is the soil water 
content depending on h, r is the residual water content 
and s is the saturated water content. The graphical 
interpretation of equation (3) can be illustrated in Figure-1. 
The graph of the soil-water retention vs. pressure potential 
of soil closely resembles the shape of FDC thus inspired 
and initiated the attempt to adopt and modify van 
Genuchten’s equation for fitting FDC in this study. r 

becomes Qmin, s becomes Qmax and  becomes Q. The 
general form of the modified and proposed first new FDC 
fitting equation by us is: 
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where α, n, and m are curve fitting parameters. 

Qmax and Qmin are the highest and lowest observed 

discharge within the period of study interest. When Qmin is 
equal to zero equation (4) simplifies into (5) 
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More than a decade later, Fayer and Simmons 

(1995) proposed another modified soil water retention 
function from the Brooks-Corey and van Genuchten 
functions which resulted in  a  better fitting for lower 
ranges of water content and relative conductivity values 
compared to van Genuchten and Ross,  and Nimmo’s 
functions (see Figure-2).  
 

 
 

Figure-1. Soil water retention graph of van Genuchten 
(1980). 

 

 
 

Figure-2.  Fayer and Simon’s modified function fitting 
ability comparison. 

 
Fayer and Simmons (1995) adopted the water 

absorption of soil equation proposed by Campbell and 
Shiozawa (1992):  
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where a is a curve fitting parameter representing 

the volumetric water content when h = 1 and hm is a curve 
fitting parameter representing the matric suction at the 
oven dried water content. A general form of equation (6) is 
made possible by multiplying h to a parameter , where  
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=1 and has the inverse of the units of h used to fit a. The 
bracketed term in equation (6) became (7). 
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Fayer and Simmons (1995) proposed to replace r 
in equation (3) with the combined version of (6) and (7) to 
become (8). The adopted equation became: 
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We were inspired to modify equation (8) into (9)  
where a  becomes Qmin  , s becomes Qmax and  becomes 
Q. Aimed at improving low flow end fitting ability of 
equation (4) as Fayer and Simmons (1995) achieved better 
fitting result than equation (3), the general form of the 
modified and proposed second new FDC fitting equation 
is: 
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where α, n, and m are undetermined parameters 

of curve fitting while P represents the exceedance 
probability of a distributed frequency discharge. Pmin 

denotes the exceedance probability of the minimum flow 
at low flow end. Qmax and Qmin are the highest and lowest 
observed discharge respectively. Numerical analysis 
approach can be conducted to obtain optimum values for 
α, n, and m.  When Qmin = zero, equation (9) can also be 
presented as (5).  

Two parameters logarithmic, power, exponential 
and polynomial functions were compared against our 
proposed FDC empirical equation (4) and (9). The general 
structures of these functions are given by equations (10) to 
(13) listed below: 
 
Logarithmic function: Q=a ln(P)+b   (10) 
 
Exponential function: Q= a ebP   (11) 
 
Power function: Q= a Pb    (12) 
 
Polynomial function: Q=aP2+bP+c   (13) 
 

where a, b and c are model fitting parameters, P 
is the exceedance percentile for which the flow is equalled 
or exceeded.  
 
Data and Methodology 

Daily river discharge data (Figure-3) from 1960 
to 2012 at Segamat station (station no 2528414) in Johor 
state, Malaysia was obtained from the Department of 
Irrigation and Drainage (DID), Malaysia. The station is 

located at the southern part of peninsula Malaysia in Johor 
state. Johor state is situated at the north-west direction 
from the neighbouring country Singapore. The maximum 
river discharge was logged at 1,559 m3/s and mean 
discharge of 16.18 m3/s at this site. The FDC data was 
ranked and constructed with exceeded probabilities from 
Weibull formula.  

 

 
 

Figure-3. Daily discharge (m3/s) at Segamat station from 
1960 to 2012. 

 
The data record of this site actually contains one 

entry of zero m3/s, under the suspicion of recording errors. 
Equation (4) and (9) take into consideration of both Q max 

and Q min, when Q min = 0, the general form of the modified 
FDC fitting equations in (4) and (9) can be simplified as 
(5). If zero m3/s was excluded, the next non-zero lowest 
flow (0.2 m3/s) would be used as Q min. This study analysed 
the data set both ways. When zero m3/s was included in 
the analysis, Equation (5) was used, when zero m3/s was 
excluded, either equation (4) or (9) was used in the 
analysis where Q min = 0.2 m3/s. It is of interest to explore 
and compare the predictability of the omission decision 
using equation (5). Statistical insignificant difference 
between predicted discharge generated by both choice is 
required to warrant that the exclusion decision would not 
impede the overall prediction result or else the zero m3/s 
cannot be excluded from the analysis. 
 
RESULTS AND DISCUSSIONS 

The optimum fitted first empirical equation for 
this study site is: 
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Equation (14) included zero m3/s as Qmin. The 

optimum fitted second empirical equation is: 
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Equation (15) excluded zero m3/s as Qmin and 

used next lowest flow of 0.2 m3/s as Qmin. Other fitted 
functions via least square fitting methodology of this site 
are listed below:  
 
Polynomial function: Q=0.014P2-1.9P+64.79 (16) 
 
Logarithmic function: Q=-24.91 ln(P)+105.9  (17) 
 
Power function: Q= 205.31 P-0.84   (18) 
 
Exponential function: Q= 44.42 e-0.03P  (19) 
 
Evaluation of Equation (14) and (15) 

The predicted discharges from equation (14) and 
(15) seem to overlap each other as shown in Figure-4. The 
predicted discharges from both models were plotted 
against the observed data together with 1:1 line (Figure-4). 
A magnified view near the origin on the right side of 
Figure-4 illustrates significant deviation from the 1:1 line.   
The predicted values from both equations crossed the 1:1 
line at observed discharge of 9 m3/s.  This suggests that 
these equations have overestimated the discharge when the 
observed discharge is less than 9m3/s and vice versa. 
Graphical predictability pattern of equation equation (14) 
and (15) are identical.  
 

 
 

Figure-4. Prediction comparison graph of equation (14) 
and (15). 

 
Statistical Evaluation of Equation (14) and (15) 

The predicted discharges from both equations are 
almost identical when compared across every quantile 
range. Figure-4 cannot denote the difference. From Table 
1, both prediction results are largely positively skewed 
while their median values deviated away from their mean 
significantly thus indicating a non-normal distribution of 
the data series. RMSE was also calculated to compare the 
prediction abilities of both equations across different flow 
quantiles.  
 

Table-1. Statistical summary comparison. 
 

 
 

From Table-2, the overall RMSE and quantile 
cumulative RMSE of equation (15) are slightly lower than 
those of (14). The basic statistical properties (Table-1) 
obtained from equation (14) and (15) are indeed very 
similar, thus suggesting high degree of agreement between 
both models.  

 
Table-2. Prediction comparison between empirical 

equations. 
 

 
 

Because the median of both prediction results 
deviate significantly from their mean values (Table-1), 
non-parametric Levene and Krusal-Wallis (KW) test were 
used to test the null hypothesis that equation (14) and (15) 
give similar prediction results. Should the p value of any 
tests is smaller than alpha level of 0.05; the null hypothesis 
can then be rejected at that alpha level. As p value from 
non-parametric Levene test is greater than 0.05 (p=0.23), 
the null hypothesis cannot be rejected. Both results 
indicate that the variances between both prediction models 
are fairly homogeneous. The assumption of similar 
distribution applies thus both models were re-examined 
using Kruskal-Wallis test again.  

KW mean rank values are within a close range 
and statistically similar (equation (14): 18,976.48, 
equation (15): 18,906.52, p>0.05).  Once again the null 
hypothesis cannot be rejected. There is no statistical 
significant difference between discharge results generated 
from equation (14) and (15). In the interest of the Law of 
Parsimony, the simpler empirical equation (14) referred to 
as new empirical equation was selected for the remaining 
discussion to benchmark against other fitting functions. 

 
Other Fitting Functions 

Many studies adopted polynomial function for 
fitting FDC; this paper also evaluated its fitting 
performance. Normal scale graph is unable to show an 
appropriate curve fitting grand schema view, the fitting 
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condition at low flow quantiles is unclear, and therefore 
log normal scale graph was applied. Log normal scale 
graph of polynomial functions in Figure-5 reveals dip and 
bounce curvature pattern even into negative flow zone (the 
solid blue curve is the FDC curve). Due to the 
mathematical nature of a polynomial function, 6th degree 
polynomial function (red dash curve) is wavier than 2nd 
degree polynomial function (black dash curve). Flow 
discharge data do not fluctuate nor behaves as wavelet 
function. Therefore, this study discarded polynomial 
function family because it fails to fit the observed data. 
 

 
 

Figure-5. Polynomial curve fitting equations. 
 

The power function, equation (18) over predicted 
flow values at the highest (exceedance probability <10%) 
and low quantile ranges (exceedance probability >70%). 
The maximum predicted flow was unacceptably high, 
reaching 15,500 m3/s.  Due to this over prediction issue 
(Nash-Sutcliffe efficiency of the power function is less 
than zero) and to avoid skewing the scale, power function 
was not included in Figure-6 and 7. Figure-6 shows the 
overall model prediction fitting pattern on a log normal 
scale. The prediction pattern of logarithmic function, 
equation (17) closely resembles the observed FDC until at 
discharge values less than10 m3/s where the curve begins 
to taper off around 70% quantile. However, its Nash-
Sutcliffe efficiency is only 0.49. Exponential function,  
equation (19) falls short at peak flow with maximum 
predicted value of only 45 m3/s, its Nash-Sutcliffe 
efficiency is 0.22. On the other hand, both new empirical 
equations simulated the highest peak flow of 1,428 m3/s 
which is quite close to the observed peak of 1,559 m3/s. 
 

 
 

Figure-6. Log normal graph of equation (14), logarithmic 
and exponential function. 

The simulated discharges from each model were 
plotted against the observed data in Figure-7 together with 
1:1 best line. Figure-7 reveals vital information behind 
Figure-6 where Log normal scale graph is unable to 
display negative values (because log of any negative 
number is undefined). Spreadsheet auto scaling graphing 
feature presented minus scale on Figure-7. A magnified 
view near the origin (dash circle) revealed that logarithmic 
function actually generated negative flow after 70% 
quantile. Figure-7 also shows exponential function with 
higher prediction accuracy than our new empirical 
equation at low flow quantile end only.  
 

 

 
 

Figure-7. Prediction comparison of equation (14), 
logarithmic and exponential function and magnified low 

flow end. 
 

Parameters Convergence Analysis of Equation (14) 
Convergence analysis was conducted on all three 

parameters (α, m and n) of the new empirical equation in 
order to map their sensitivity and convergence behaviour. 
This was carried out using the isolation test of each 
parameter by varying toward positive and negative scales 
while the other two were kept constant. In Figure 8, the 
dash line represents optimum fitted result derived from 
least square fitting. The ±100% lines indicate model fitting 
conditions when certain parameter(s) was (were) deviated 
away from the optimum fitted values. For example, in 
Figure-8a, when α value was increased by 100% while m 
and n remain constant, new empirical equation (14) would 
predict below best fitted dash line and vice versa.  

Since parameters m and n are the power of a 
quantitative group, they behave in similar manner and are 
very sensitive to minute variation. The convergence 
analysis concludes that setting initial guesses of both 
parameters toward same scale will converge model fitting 



                             VOL. 11, NO. 4, FEBRUARY 2016                                                                                                              ISSN 1819-6608            

ARPN Journal of Engineering and Applied Sciences 
 

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved.

 
www.arpnjournals.com 

 

 
2377

toward optimum values faster; however, setting values 
toward negative range by decreasing both m and n values 
will not yield feasible solution. As shown in Figure-8b, by 
reducing parameters m and n toward 100% scale will 
generate nearly a flat line model prediction pattern, 
approaching a threshold where the entire model will 
collapse with undefined values when m or n reached a 
certain negative value. On the other hand, α variation does 
not alter the model fitting shape as dramatically as m and 
n, it is also the only parameter in this equation with 
positive constraint and cannot be a negative number. All 
three parameters share a common converging 
characteristic where positive scale variation will drop the 
model fitting shape below the optimum fitted result and 
vice versa. 

 

 
 

Figure-8a. Convergence and sensitivity test of α. 
 

 
 

Figure-8b. Convergence and sensitivity test of m and n. 
 
Note: The ±100% lines represent variation scale of each 
parameters and model fitting conditions. 
 
Statistical Evaluation  

Statistical tests were conducted using IBM 
PASW version 18 to further evaluate differences in the 
modelling results.  The simulated flow is given in      
Figure-7. The new empirical equation (14) gave the best 
simulation and closely matched the observed data except 
at low flow end, followed by logarithmic, exponential and 
power function. The prediction results from each model 

also violated the normality requirement of having 
skewness within 1±0.50. Therefore, non-parametric tests 
are more appropriate for further statistical analyses.  

Non-parametric Friedman test is capable to 
determine overall statistical significant difference of a 
group referred as omnibus test. If the p value of the 
omnibus test is less than a pre-determined alpha value, 
null hypothesis can be rejected at the alpha confidence 
level. Friedman omnibus test result indicates that there is 
significant difference (p < 0.05) between mean ranks of 
different groups; however, the omnibus test is unable to 
further differentiate differences between any chosen pair 
within this group. This was resolved by using Post-hoc 
test. Since there are four models within the test group, 
there are six possible pairing combinations. Wilcoxon 
signed ranks test is only capable of comparing two groups 
at a time thus separate tests were repeated for six possible 
pairings within this group.  

In order to avoid committing type I error multiple 
times during pairing comparisons, post-hoc tests require 
an adjustment on alpha value under Bonferroni law. For 
six pairing groups, Bonferroni law requires an adjustment 
to divide alpha level by 6 (0.05/6 = 0.0083) thus Wilcoxon 
tests’ p values < 0.0083 is now required to reject null 
hypothesis at 95% confidence level. 2-tailed p values of all 
6 groups are less than 0.0083 hence there are significant 
differences up to 98% confidence level between every 
possible pairing within this group. Each comparing 
function is therefore unique and different from each other.  
 
CONCLUSIONS  

Proposed new empirical equation (15) and its 
special condition form (14) has a lot higher Nash-Sutcliffe 
efficiency with low variance in overall RMSE, quantile 
cumulative RMSE at high flow range and percentage error 
at highest peak flow point compared to other fitting 
equations. Both prediction results from equation (14) and 
(15) demonstrated non normal distribution pattern while 
several data normalization techniques failed to adjust the 
skewness and transform the data distribution back to 
normal distribution. Therefore, non-parametric tests were 
used to evaluate both new empirical equation (14) and 
(15). Non-parametric tests concluded that there was no 
significant difference in the predicted flow produced by 
using either empirical equation (14) or (15) for this study 
site. Observed variances are due to chances. Empirical 
equation (15) also did not improve the fitting ability at low 
flow range compared to equation (14). In the interest of 
Parsimony principal, empirical equation (14) was selected 
for FDC fitting at this site, and therefore included Q min = 
0 m3/s in this study. The exclusion of zero m3/s did not 
statistically improve model predictive accuracy in this 
study.  

Overall, the new empirical equation (14) has out 
performed the polynomial, power, logarithmic and 
exponential function but under performed at low flow 
quantiles prediction compared to exponential function 
only. Both logarithmic and exponential functions under 
predicted the stream flow values and fall short of peak 
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flow prediction with prediction error greater than 85%. 
Both logarithmic and exponential functions grossly 
underestimated the high flows with maxima up to 236.5 
m3/s and 44.4 m3/s respectively compared to the observed 
peak flow of 1,559 m3/s. Exponential function was found 
to be second best fitting function followed by logarithmic 
and power function as the poorest. Polynomial function 
was discarded as its wavelet fitting form is not suitable for 
FDC fitting. In term of return period analysis, new 
empirical equation (14) has the lowest upper quantile 
RMSE (at exceedance probability range less than 5%), this 
indicator signifies equation (14) as best prediction model 
with least error in return period analysis for this site. 
General form of the proposed new empirical equations (4) 
and (9) are suitable for flood forecasting and peak flow 
related study use. In order to predict peak flow, the 
absolute cumulative error of optimum prediction model at 
the high flow exceedance probability end of the curve 
must be kept at minimum. New empirical equations were 
able to fit the FDC of this study site very well with high 
accuracy and emerged as the best choice. 

On the other hand, should the study interest be at 
the low flow end of FDC, exponential function appears to 
outperform all others with lowest RMSE at low flow 
quantile range only which will be a better choice for water 
resources management study. Researchers are cautioned to 
understand and consider their study need prior to adopt 
any fitting function blindly. 

Curve fitting parameter m and n can be combined 
into single value to reduce fitting parameters in the 
empirical equation in order to improve its model 
efficiency even further under parsimony principal. It is the 
future intention for author to apply this empirical equation 
to different sites within a region in order to map a 
relationship between parameter m and n. It is also possible 
to utilize these two parameters as an index to represent site 
specific hydrological characteristic within a region. Such 
attempt will enable model prediction into ungauged sites 
within the study region.   
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