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ABSTRACT 

In this paper, attempts are made to use combination of numerical techniques to simulate fluid flow over a flat 

plate.  The objective was not to investigate the physical phenomenon of flow in detail but to study numerical method as 

well as modeling aspects, which influence the quality of solutions.  The incompressible Navier Stokes equations with large 

eddy simulation (LES) turbulence model were numerically solved to estimate velocity profile over surface of flat body 

exposed to current.  The results are obtained by solving the incompressible form of the mass and momentum conservation 

equations using finite volume method.  The near wall model and the subgrid scale (SGS) model plays an important role on 

modeling.  Accordingly, proper boundary layer condition based on logarithmic velocity profile was imposed to capture 

turbulent velocity near to the wall.  Several techniques such as local time steeping, residual smoothing and unstructured 

multigrid mesh were used to increase convergence acceleration.  Results from large eddy simulation with Smagorinsky 

subgrid scale model are presented in two different types of flow such as laminar ant turbulent flow.  All computed results 

are compared with Blasius solution or experimental data represented in literature.  The results show good agreement with 

the aforementioned experimental and computational data.  Imposing logarithmic law for velocity profile normal to the wall 

provide more accurate velocity profile in general especially for relatively coarse mesh. 

 
Keywords: galerkin finite volume method, artificial dissipation, method large eddy simulation, runge-kutta method, smagorinsky. 

 

INTRODUCTION 

Direct numerical simulation of the Navier-Stokes 

equations has been the subject of many intensive studies.  

In this paper, we focus on numerical simulations of 

incompressible flow over a flat plate.  To organize the 

behavior of fluid flow over flat plate, relative parameters 

such as velocity or pressure offered by CFD are required.  

Therefore, choosing a suitable computational simulation to 

solve fluid equation especially in complicated flow cases, 

has become one of the challenging areas in numerical 

research works (Bitsuamlak et al. 2004) (Tamimi, 2012). 

In recent decades, comprehensive literature 

reviews on the use of CFD for modeling flow over flat 

surface have been published.  Kraichnan used turbulent 

boundary layer (TBL) flows to model wall pressure and 

the noise for turbulent flows (Kraichnan, 1956).  He 

mentioned the pressure fluctuation presented within a 

turbulent boundary layer would exert a force on the 

boundary surface resulting in transmissions of noise.  This 

effect may make an important contribution to the noise 

levels encountered within high-speed aircraft.  (Liao, 

1999) presented new kind of analytic technique named 

homotopy analysis method (HAM), to give a valid explicit 

and uniform solution for two-dimensional laminar viscous 

flow over a semi-infinite flat plate.  He successfully 

applied HAM to solution of Blasius equation.  Later on, 

Lenormand used large eddy simulations to simulate 

compressible wall-bounded flows (Lenormand et al. 

2000).  The convective terms are discretized according to 

“skew-symmetric” method and fourth order of finite 

deference scheme was used in this flow simulation.  Good 

agreement with respect to the experimental reference was 

obtained.  For near wall region simulation, Glockner et al. 

used Reichardt’s velocity profile to apply near wall 

turbulence formulation in turbulent convection analysis 

(Glockner and Naterer, 2005).  They proved that in 

contrast with the standard law-of-the-wall, this method 

could simulate all parts of the near wall region; and 

Reichardt’s velocity profile is proper for simulation of 

turbulent flows in near wall layer. 

To calculate any characteristics of flow, related to 

any new design through the application of numerical 

simulation in CFD problems is becoming indeed cheaper 

than measuring these characteristics in field or wind 

tunnel.  Moreover, in numerical simulation, the results of 

the flow characteristics at every point of model are 

accessible simultaneously.  However, accurate simulation 

of flow in the computational domain is imperative to 

obtain correct and reliable predictions of the fluid 

behavior.  As mentioned by Blocken et al. and Franke et 

al. important parameter, such as grid resolution, iterative 

convergence loops, selected turbulence models and also 

near wall treatment have significant impact on the results 

(Blocken et al. 2007), (Franke et al. 2007).  There are 

varieties of turbulence models, which can affect the results 

in different modeling.  Kawai et al. used Large Eddy 

Simulation (LES) turbulence method to modeled wall-

bounded flow simulations; he showed that by moving 

away from the wall the numerical errors significantly 

reduced.  In addition, they illustrated that by using wall 

model, the errors due to friction can be removed (Kawai 

and Larsson, 2012).  So choosing appropriate numerical 

solver, proper technique and accurate boundary condition 

are very important to reach accurate and reliable results 

with lowest cost in time and computational price. 

The purpose of this report is to present a 

numerical analysis that yield continuous velocity and shear 

distribution for laminar and turbulent flows over a flat 
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plate.  To reach these, the Navier-Stokes equations were 

solved for an incompressible fluid flow with an 

unstructured finite volume mesh.  In this work, the 

artificial compressibility method was used to solve the 

equation of continuity and motion simultaneously.  

According to(Hino et al. 1993) and(Namazi-Saleh et al. 

2014), this technique makes the system of equations to 

hyperbolic form and  efficient numerical solution method 

can be applied. 

The large eddy simulation (LES) model was used 

to compute the turbulent eddy viscosity coefficient in 

diffusion terms of the momentum equations.  The 

assumption of incompressibility is valid for common civil, 

environmental, and offshore engineering problems.  

Therefore, for the incompressible flow condition, the time 

derivative of the density vanishes from the continuity 

equation.  Thus, to solve the two equations of motion and 

continuity simultaneously in a coupled manner, using 

pseudo compressibility technique for the steady state 

problems was helpful.  On the other hand, if the boundary 

layer thickness is negligible in the flow domain, the 

inviscid form of the equations of motion can be used in 

desired dimensions.  These set of equations that consists of 

time-independent velocity and the time-dependent 

equations of motion, mathematically represent the 

behavior of fluid flow.  As mentioned by (Sabbagh-Yazd 

et al. 2008), the effects of some parameters for instance 

artificial compressibility parameters, multistage time 

stepping limit and artificial dissipation coefficient, would 

affect the converge behavior of numerical model. 

For the first step, Navier-Stokes equations were 

used to simulate two-dimensional incompressible inviscid 

flow over flat plate.  The accuracy of the modeling was 

presented by existing analytical value of velocity profile 

for flat plate in laminar flow solved by Blasius (Ahmad 

and Al-Barakati, 2009).  In second step, turbulent flow 

over flat plate at high Reynolds number 

(Re=1.44×ᇾ10ᇿ^5) is simulated and the results are 

discussed by comparison of computed results with 

available experimental measurements (Gete and Evans, 

2003). 

 

GOVERNING EQUATIONS AND NUMERICAL 

METHOD 

The Navier-Stokes equations for an 

incompressible fluid can be described by conservation of 

mass and momentum equations: 
 

        (1) 
 

    (2) 
 

where ݔ௝  and ݔ௜  point out the Cartesian 

coordinate system for horizontal and vertical directions.  

In mentioned equations ݑ௝  and ݑ௜  implies the velocities in 

vertical and horizon direction, ݐ involve time marching, � 

illustrate pressure, ߭ indicates kinematics viscosity and ݑప́ ఫ́̅̅ݑ ̅̅ ̅ denotes Reynolds stress tensor.  According to 

Boussinesq assumption, the Reynolds stress tensor can be 

modeled by introducing �௧ as eddy viscosity, following 

formulation is obtained: 
 

     (3) 
 

where � is dimensionless turbulent kinetic energy 

and ߜ௜௝ is the Kronecker delta.  The variables of 

mentioned equations need to be converted to non-

dimensional form by dividing ݔ and ݕ by L, a reference 

length ݑ and ݒ by upstream wind velocity, �0 , and  � by ��02. 

In this research, the subgrid scale (SGS) model is 

utilized to modeling turbulence flow.  To find value of 

eddy viscosity, ϑt = ϑSGS, the Smagorinsky model are 

used as follow (Li and Cheng, 2001): 
 

     (4) 
 

    (5) 
 

where, ݔ௝  and ݔ௜  are used for two-dimensional 

computation.  The Smagorinsky model is utilized for 

definition of �ௌ�ௌ , where ∆ is the area of a triangular cell 

and  �௦ = Ͳ.ͳͲ is assumed.  In equation (5), ̅ݑ,  are ݒ̅

mean values of velocity in each edge of the triangular 

element (Sohankar, 2008), (Ferziger and Perić, 2002). 
The non-dimensional form of the governing 

equations in Cartesian coordinates can be written as: 
 

    (6) 
 

where: 

 

    (7) 
 � represents the conserved variables, ܨ௖ , �௖ 

are indicate the components of convective flux vectors and ܨௗ  , �ௗ are denote the components of viscous flux 

vectors in shape of non-dimensional form in Cartesian 

coordinates.  � is consist of three dependent variables of 

velocity , ݑ  and ݒ, and pressure, �.  �்  is the summation 

of eddy viscosity, �௧, and kinematic viscosity, �. 
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In equation (7), �2 is the artificial 

compressibility parameter used in pseudo compressible 

technique.  This parameter is applied to establish the 

correlation of equations with sound movement instead of 

compressible flow.  Due to the lack of diffusive effects, 

hyperbolic conservation laws admit discontinuous and, 

possibly, non-unique weak solutions.  By Use of this 

pseudo compressible technique, the elliptic system of 

incompressible flow equations converted to hyperbolic 

equations (Hino et al. 1993).  To find value of pseudo 

compressibility parameter, some algorithms have been 

developed on basis of constant coefficients and some 

others developed based on complex algorithms.  However, 

the values of pseudo compressibility parameter can 

affected by local velocity.  The following formula 

proposed by (Wendt, 2008) provide this ratio: 
 

      (8) 

 

As discussed by (Sabbagh-Yazdi et al. 2007) the 

optimum value of C is considered in the range of 1 to 5 

and value of �௠௜௡2
 is suggested between 0.1 to 0.3. 

Velocity gradients in vicinity of the wall, because 

of molecular viscosity of the fluid, are formed sharply.  

Therefore close to the wall, boundary layer is developed.  

Moreover, the effects of wall surface, e.g. wall roughness, 

on shear stress are considerable.  In addition, at high 

Reynolds number, especially in turbulent flow modeling, 

LES cannot resolve eddies near wall region exactly unless 

a very fine mesh is used.  Considering all the above cases, 

this requirement may be relaxed by use of wall-law 

approximation to correct instantaneous velocity at the wall 

nearest computational nodes.  In this method, the value of 

velocity for grid points near to the wall need to follow the 

law-of-the-wall velocity profile.  For flow over smooth 

walls, this law is formulated using dimensionless velocity 

and distance normal to wall surface as: 
 

     (9) 
 

where ݑ represents the resolved velocity 

tangential to the wall at the wall-nearest point and � is the 

fluid kinematics velocity.  The dimensionless distance 

from the wall,   ݕ+, depends on the friction 

velocity, ݑ� = √߬� �⁄  , ߬� is near wall shear stress, 

and normal distance of this point from the wall, ݕ.  In 

conventional turbulence models: 
 

     (10) 
 

  (11) 
 

where ߢ = Ͳ.Ͷͳ is the von Karman constant 

and ܧ = 9.79͵ (Durst et al. 1996), (Temmerman et al. 

2003), (Blocken et al. 2007).  As shown in Figure-1, for 

turbulent flow over flat wall, the boundary layer is usually 

divided in to two major zones of viscous sub-layer or 

laminar sub-layer, ݕ+ < ͷ  , and turbulent boundary 

layer, ݕ+ > ͵Ͳ  .  The buffer layer is the region between 

laminar and turbulent layer.  As mentioned by (Glockner 

and Naterer, 2005) the viscous and buffer layers are very 

thin 
 

 
 

Figure-1. Boundary layer for turbulent flow over flat 

plate. 

 

In this study, to drive the discrete form of 

governing equations, the Galekin Finite Volume Method 

based on unstructured triangular mesh is used.  

Consequently, the following 2D formulation can be 

obtained: 

In this study, to drive the discrete form of 

governing equations, the Galekin Finite Volume Method 

based on unstructured triangular mesh is used.  

Consequently, the following 2D formulation can be 

obtained: 
 

  (12) 
 

Here, ܨ௖̅, �௖̅̅ ̅ are the mean values of convective 

fluxes at the control volume boundary faces and ܨௗ̅̅ ̅, �ௗ̅̅ ̅̅  

are the mean values of viscous fluxes which are computed 

at each triangle cell. 

The main problem is growing up numerical 

errors.  These errors usually disturb the explicit solution of 

formulations and will be overcome by using artificial 

dissipation terms.  This method is suitable for the 

triangular meshes.  Actually these extra terms, artificial 

dissipation terms, are utilized to reduce and overcome 

unwanted errors to achieve stability in numerical 

simulation to conserve the accuracy of the results.  To 

obtain this numerical dissipation terms the following 

Laplacian operator are used: 

 

  (13) 

 

    (14) 
 ௜௝, is the scaling factors of the edges associatedߣ 

with the end nodes � of the edge � and ߝସ is an empirical 
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coefficient discussed by (Mavriplis, 1990), (Hino et al. 

1993). 
 

  (15) 
 

     (16) 
 

To estimate the velocity of nodes near the wall, 

accurate calculation of near wall shear stress and its 

modification based on law-of-the-wall velocity profile is 

necessary.  The shear stress will be achieved based on 

equation (9) and (11) as follow:  
 

   (17) 
 

which ݑ present tangential velocity at node � and ݕ is normal distance of node � to the wall.  ߬��௟௟−�  is 

shear stress according to Green’s Theory , ߬��௟௟−� ݑ∆= ⁄ݕ∆ . 

Having calculated wall shear stress, ߬��௟௟ , the 

value of tangential velocity, ݑ, at wall nearest node can be 

updated using following relation: 
 

   (18) 

 

To improve the computational efficiency using 

various numerical technique like edge-base algorithm, 

Runge-Kutta multi-stage time stepping and the residual 

smoothing are employed in this study (Hino et al. 1993). 

By using described formulations, despite Cell 

Centre Finite Volume Methods and similar to Cell Vertex 

Finite Volume Methods, variables are explicitly computed 

at the nodal points.  Thus, there is no need to use 

reconstruction method to transfer computed value to the 

nodal points (Sabbagh-Yazdi et al. 2007).  Additionally, 

explicit nature of formulations, despite Galerkin Finite 

Element Methods, pave the way for matrix free 

computations procedure (Iskandarani et al. 2005). 

In order to apply boundary condition, unit free 

stream velocity is imposed for inflow boundaries and unit 

pressure is imposed at outflow boundaries.  Additionally, 

for initial conditions the unit inflow velocity and unit 

outflow pressure are imposed at every computational node 

(Sabbagh-Yazd et al. 2008). 

The errors in this numerical simulation are 

computed as following: 
 

  (19) 

 

NUMERICAL RESULTS AND DISCUSSIONS 

 

Incompressible Laminar Flow 

In order to assess the changes of velocity 

distribution over flat plate with standard geometrical 

feature, the flow solver is applied to solve the 

incompressible viscous flow on a mesh of unstructured 

triangles.  The accuracy of the developed incompressible 

viscous flow solver is examined by solving case with 

Blasius analytical solution (Ahmad and Al-Barakati, 

2009).  The boundary condition for the velocity at the 

solid wall nodes can be considered as zero at normal 

velocity and tangential components are computed.  At 

inflow boundaries, unit free stream velocity and at outflow 

boundaries unit pressure is imposed.  The free stream flow 

parameters, outflow pressure and inflow velocity, are set 

at every computational node as initial conditions (Hino et 

al. 1993). 

In case of flat plate, the verification of computed 

results proved the accurate performance of the algorithm 

without any numerical conflict for velocity components.  

The general and close views of the applied mesh are 

shown in Figure-2.  The computations filed are performed 

on a triangular mesh containing 19,200 grid points, 37,818 

triangular elements and 57,017 faces.  At the solid wall 

nodes no slipping velocity are considered. 

 

 
 

Figure 2. (a) Close view (b) General view of regular mesh 

for Flat Plate in laminar test. 

 

The computed results for velocity value over flat 

plate at laminar flow were plotted in terms of colored map 

with velocity vectors, as shown in Figure-3. 
 

 
 

Figure-3. Colored map velocity with vectors at subcritical 

Reynolds number. 
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In order to present the independency of the results 

from the choice of Reynolds number in laminar flow, the 

result of (u⁄U) over flat plate, in this test case x=11.5 was 
selected, are compared with Blasius similarity solution for 

various Reynolds number.  Present simulation was 

examined for five different Reynolds number with value 

of 2000, 3000, 5000, 8000 and 10,000.  Figure-4 shows 

comparison of velocity profile at mentioned Reynolds 

numbers and Blasius solution.  In general, good agreement 

between computational result and the parameters of 

Blasius similarity solution are obtained. 

 

 
 

Figure-4. Comparison of computed u⁄U with analytical 

blasius solution. 

 

Table-1. Average and maximum errors of velocity in 

comparison with analytical solution. 
 

 
 

 
 

Figure-5. Convergence behavior of computer errors for 

velocity (Log (RMS (V)) for laminar incompressible 

viscous flow. 

 

According to Figure-4, the present computed 

results are reasonably acceptable in comparison with 

Analytical Balasius results for this case study.  The 

model’s ability in the prediction of the velocity profile was 

quantified with the root mean square error (RMSE) 

described in Table-1. 

The convergence behavior of velocity error is 

shown in term of logarithmic function.  As shown in 

Figure-5, the convergence error for laminar 

incompressible viscous flow simulation over flat plate is 

reached with adequate accuracy (ͳ × ͳͲ−଺). 

 

Incompressible Turbulent Flow 

Accuracy of the developed turbulent flow solver 

is examined by solving the case with available 

experimental measurements which is done in University of 

British Columbia (Gete and Evans, 2003).  The test section 

of the wind tunnel has 400 mm length and 250 mm cross 

section width, and the maximum free stream velocity is 

proposed on ʹͲ �/ݏ and the Reynolds number, based on 

distance along the plate, was changed between �� =Ͳ.ͳͶͶ × ͳͲହ to �� = ͳ.ͶͶ × ͳͲହ.  The applied 

mesh for this verification is considered as triangular mesh 

and containing 19,200 grid points, 37,818 triangular 

elements and 57017 faces, which is shown in Figure-2. 

Figure-6 shows the obtained values of velocity 

over flat plate at turbulent flow (�� = ͳ.ͶͶ × ͳͲହ) in 

terms of colored map a long velocity vectors. 

 

 
 

Figure-6. Colored map velocity with vectors at 

supercritical Reynolds number. 

 

To verify the accuracy of model in turbulent 

flow, at �� = ͳ.ͶͶ × ͳͲହ, the obtained velocity 

profile over flat plate with and without imposing 

logarithmic law is compared with existing experimental 

test case done by (Gete and Evans, 2003).  As shown in 

Figure-7, the results at the certain position of plate, 

x=11.5, are compared with experimental results.  Although 

not all the velocity values are agrees with within 

experimental uncertainly, the results from logarithmic law 

condition are generally in better agreement. 

As Table-2 illustrates, the errors of obtained 

velocity over flat plate in turbulent flow for two type of 

wall condition which compared with existing experimental 
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results by (Gete and Evans, 2003).  It is seen that the 

model slightly over predicts the velocity in boundary layer 

region.  However, it should be noted that in this study the 

flat plate surface has been assumed as smooth wall; 

therefor the effect of friction is neglected in this study. 

 

 
 

Figure-7. Comparison of computed ݑ �⁄  with 

experimental data reported by (Gete and Evans, 2003), �� = ͳ.ͶͶ × ͳͲହ. 

 

Table-2. The average and maximum errors of velocity, 

compared with experimental data reported by (Gete and 

Evans, 2003). 
 

 
 

 
Figure 8. Convergence behavior of computer errors for 

velocity (Log (RMS (V)) for incompressible turbulent 

flow. 

 

Figure 8 indicates the convergence behavior of 

velocity in term of logarithmic function.  As can be seen, 

the convergence error for turbulent incompressible flow is 

reached with good accuracy. 

DISCUSSION AND CONCLUSIONS 

In this paper, the flow simulation over flat surface 

in laminar and turbulent flow were numerically 

investigated in terms of non-dimensional form of velocity 

profile.  The Navier-Stokes equations with Smagorinsky 

turbulence model employed to simulate the flow pattern 

over flat plate.  The equations were discretized based on 

artificial compressibility method for unstructured 

triangular mesh and explicitly solved by use of Galerkin 

finite volume method. 

This matrix free computational model calculates 

value of pressure and velocity over flat surface.  The 

Galerkin finite volume method solver was verified by 

comparison of obtained values with validated data.  In this 

case, verification was done based on available analytical 

and experimental data reported in literature.  The findings 

of the study are in excellent agreement with numerical and 

experimental data.  In addition, the velocity profile over 

flat plate was reported which shows a good agreement 

with existing results.  To prevent fine mesh near the wall, 

adding logarithmic law as boundary layer condition 

generally improved velocity profile especially for 

turbulent flow. 

It concluded that present mathematical model has 

been well developed to simulate numerically fluid flow 

over flat plate like submarine flat surface exposed to 

current.  The results show that the artificial dissipation 

method is well adapted to limit unwanted errors in 

computational simulation of flow over flat surface in both 

laminar and turbulent condition. 
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