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ABSTRACT 

Thorough understanding of the rainfall-runoff processes that influence watershed hydrological response is 
important and can be incorporated into the planning and management of water resources. This study assessed rainfall-
runoff models through inferential statistics and benchmarked their runoff predictive accuracies against a proposed new 
runoff model. Linear regression model has been in use to model urban rainfall-runoff. However, the model was found to be 
statistically in-significant in this study. Hydrological implications from the regression model became in-consistent and 
obsolete. The 1954 simplified SCS runoff model was also statistical in-significant under two Null hypotheses rejection and 
paved way for the regional model calibration study. A new rainfall-runoff model was developed with calibration according 
to regional hydrological conditions. It out-performed simplified SCS runoff model and reduced RSS by 54%. 
 
Keywords: urban runoff model, linear regression model, SCS, inferential statistics. 
 
INTRODUCTION 

In Malaysia, about 97% of the total water 
demands for irrigation, domestic and industrial uses come 
from surface runoff (DID, 2000). Rain that falls on 
watershed surfaces will be transformed into surface runoff 
or become interflow after being infiltrated and percolated 
into soil.  The flows will leave the watershed as discharge 
into receiving water and eventually into the sea to 
complete the hydrological cycle. As a result of rapidly 
growing human activities, stormflow volume and 
peakflow have increased significantly due to expansion of 
impervious land area and the decreased availability of 
depression storages (Adams and Papa, 2000). These 
increased flows are conveyed to natural watercourses and 
eventually discharged through the watershed outlet.  
Unfortunately, the natural receiving watercourses in 
downstream areas are often not sufficient to cope with the 
larger and more frequent runoff events. The resulting 
effects are the increased frequency of flooding in the 
downstream of urban watersheds. Impacts of disturbance 
at local watersheds tend to aggravate or vary as the 
watershed scale becomes larger, affecting people living 
downstream. Therefore, from a management viewpoint, a 
thorough understanding of the rainfall-runoff processes 
that influence watershed hydrological response is 
important and can be incorporated into the planning and 
management of water resources (Chan, 2005).  

 
Linear Regression Model 

One dimensional linear regression model has 
been in use to model urban rainfall-runoff. The slope of 
the regression model could be implied as hydrological 
reduction factor (Harremoës  and  Arnbjerg-Nielsen,  
1996) or as the percentage of impervious area (Abustan 
and Ball, 2000). The interception on x-axis is regard as  
the estimation of initial loss, local depression or the 
depression loss (Huber and Dickinson, 1988), (Abustan et 

al. 2008, 2008b) of a watershed. The base form of this 
model is: 

 

Q = mP + c        (1) 
 
Q  = Runoff amount (mm) 
P  = Rainfall depth (mm) 
m  = gradient (slope) 
c  = constant 
 
SCS Runoff Model 

In 1954, the United States Department of 
Agriculture (USDA), then Soil Conservation Services 
(SCS) proposed a rainfall runoff prediction model. Since 
its inception, the model was incorporated into many 
official hydro design manuals and even led to the 
derivation and development of curve number (CN) 
methodology but many researchers around the world 
reported inconsistent results using the model (Hawkins et 
al. 2009), (Schneider and McCuen, 2005), (Hawkins, 
2014), (Ling and Yusop, 2013). The base model was 
proposed as: 
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Q  = Runoff amount (mm) 
P  = Rainfall depth (mm) 
Ia  = the initial abstraction (mm) 
S  = maximum potential water retention of a watershed 

(mm) 
 

The initial abstraction is also known as the event 
rainfall required for the initiation of runoff. SCS also 
hypothesized that Ia = λ S = 0.20S. The value of 0.20 was 
referred to as the initial abstraction coefficient ratio (λ), a 
correlation parameter between Ia and S. The value of 0.20 
was presented as a constant (λ value falls within 0 to 1 
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only). The substitution of Ia = 0.20S simplifies equation 
(2) into a common simplified SCS runoff prediction 
model:  
 

 2
8.0
2.0

SP
SPQ 

         (3) 
 

Equation (3) is subjected to a constraint that P > 
0.2S, else Q = 0. However, there were increasing 
evidential study results leaning against the prediction 
accuracy of equation (3) and the hypothesis that Ia = 
0.20S. The literature review of fifty-one worldwide 
studies showed inconsistent runoff results using equation 
(3), many researchers urged to perform regional 
hydrological conditions calibration instead of blindly 
adopting it as proposed by SCS (Hawkins et al. 2009), 
(Ling and Yusop, 2013). This study was inspired by a 
developed methodology (Hawkins et al. 2009) and 
utilised numerical analysis algorithm guided by inferential 
statistics to derive a new rainfall runoff model based on 
equation (2). New model was calibrated according to 
regional hydrological conditions as pertain to the given 
dataset in Melana watershed. 
 
DATA AND METHODOLOGY 
 
Study Site 
 This study adopted the rainfall-runoff dataset 
from a different research which was carried out in Melana 
Watershed. It is located in Johor, Malaysia between 1 30’ 
N to 1 35’ N and 103 35’ E to 103 39’ E (Figure-1).  
Drained by Melana River which starts in the hilly area of 
Gunung Pulai in the north, the watershed covers an area 
of 21.12 km2.  
 

 
 

Figure-1. Melana watershed in Johor (Chan, 2005). 
 

In 1993, only about 20% of the area in Melana 
Watershed was covered by urbanised area, by 2010, more 
than 60% of the area was developed mainly for residential 
area (MPJBT, 2001). 

   
METHODOLOGY 

27 rainfall-runoff datapairs were recorded 
between July and October of 2004 at this site. Linear 

regression model was first fitted with all events and 
analysed with descriptive statistics using IBM PASW 
version 18. Non-parametric Bootstrapping technique, Bias 
corrected and accelerated (BCa) procedure (2000 
samples) was conducted to double check the statistics 
results at 95% confidence level. Bootstrapping BCa 
statistics was selected for robustness and the inferential 
ability through its confidence interval. The slope and the 
constant from the linear regression model are the main 
focus under the assessment as these parameters have 
significant hydrological implications, and therefore it is 
crucial for both parameters to be statistically significant at 
least at alpha = 0.05 level in order for linear regression 
model to be considered as an acceptable rainfall-runoff 
model in this study.  

To the best of our knowledge, no attempt was 
made to validate previous research findings by performing 
regional hydrological characteristics calibration on SCS 
base runoff prediction model equation (2) in Malaysia 
until now. We are also unaware of any research which 
calibrate and apply SCS model in urban runoff study. 
Inferential non-parametric statistics was employed for two 
claim assessments set forth by the 1954 SCS proposal 
with two Null hypotheses (Rochoxicz, 2011), (Howell, 
2007), (Wright, 1997): 
 
Null Hypothesis 1 (H01): Ia = 0.20S globally. 
 
Null Hypothesis 2 (H02): The value of 0.20 is a constant in 
H01. 
 

The rainfall (P) and runoff (Q) data pairs from 
Melana site were used to derive Ia in order to calculate S 
and λ using a developed methodology by US researchers 
(Hawkins et al. 2009), (Schneider and McCuen, 2005), 
(Hawkins, 2014). The difference of rainfall depth (P) and 
initial abstraction (Ia) is the effective rainfall depth (Pe) to 
initiate runoff (Q) thus P – Ia = Pe . Substitute this 
relationship into equation (2), the model can be re-
arranged in order to calculate S and λ for each P-Q data 
pair. Bootstrapping, Bias corrected and accelerated (BCa) 
procedure was used to aid numerical optimisation 
technique in the selection of the optimum λ value and to 
assess both hypotheses. Rejection of H01 implies that 
equation (3) is invalid and not applicable for Melana 
dataset, while H02 rejection indicates that λ is not a 
constant as initialy proposed by SCS in 1954 but a 
variable. Rejection of both hypotheses will pave way to 
derive new λ value. The selection of the optimum λ and S 
value will formulate a new calibrated runoff prediction 
model of Melana watershed. 
  
STATISTICS AND HYPOTHESES ASSESSMENT 
Linear Regression Model 

Based upon linear-intercept basic form equation 
(1), PASW identified a best fitted linear regression model 
for the given rainfall-runoff dataset as:  

 
Q = 0.364P - 1.613       (4) 
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Equation (5) has adjusted R square = 0.748 and 
standard error = 3.751, the statistics is tabulated in     
Table-1.  
 

Table-1. 95% confidence interval. 
 

 
 

The constant coefficient is not significant under 
95% confidence interval and BCa test with p value >0.05. 
BCa test discounted entire linear regression model because 
both fitting coefficients of the model are not significant. 
When the constant becomes in-significant (x-intercept = 
0), another alternate linear regression fitting form is 
regression through the origin (RTO) with gradient as the 
sole fitting coefficient. PASW re-analysed Melana dataset 
with RTO and identified the best fitted RTO as: 

 
Q = 0.318P         (5) 
 
The statistics is tabulated in Table-2.  
 

Table-2. (RTO) 95% confidence interval. 
 

 
 

Although RTO model survived the 95% 
confidence interval with p value < 0.01but stringent BCa 
test rejected the significancy of the only fitting coefficient 
of the model. Therefore, every possible linear regression 
fitting model was rejected by BCa test. 

  
Simplified SCS Runoff Model 

BCa results provided confidence interval span for 
λ at Melana watershed (Table-3). BCa results consist of 
confidence intervals for λ, which can also be used to assess 
Null hypotheses. The span of λ confidence interval will be 
used to asses H01 while H02 will be based on the standard 
deviation of the derived λ dataset (Ling and Yusop, 2014, 
2014b). Neither the mean nor the median’s confidence 
interval span includes λ value of 0.2 while the standard 
deviation of λ dataset is not equal to zero. The assessment 
of H01 and H02 will base on these results. Both hypotheses 
must not be rejected in order to apply equation (3) for this 
study.  

 
Calibrated SCS Runoff Model 

Twenty-seven λ values were derived from 
Melana dataset. The study will identify a best collective 
representation of λ value for the dataset in order to 
formulate a new runoff prediction model and benchmark 
against the empirical model equation (3) where λ was 

assumed to be 0.2 by SCS. The descriptive statistics of the 
data distribution of λ values was tabulated in Table-3. 
Bootstrapping technique, Bias corrected and accelerated 
(BCa) procedure (2000 samples) was conducted at a 
stringent 99% confidence level on the λ dataset to include 
confidence intervals and aid the selection of an optimum λ 
value (Rochoxicz, 2011), (Howell, 2007), (Wright, 1997).  
 

Table-3. BCa results of Melana dataset. 
 

 
 

λ optimization study was conducted via 
numerical analyses approach base on equation (2). The 
least square fitting algorithm was set to identify an 
optimum λ value by minimizing the residual sum of 
squares (RSS) between final runoff model’s predicted Q 
and its observed values. The optimization study was based 
on λ variation within the median confidence interval due to 
the skewed λ  dataset. The optimization study via 
numerical analysis identified the optimum λ value to be 
0.015 and the best collective representation S value to be 
81.804 mm for Melana watershed. Since Ia = λ S the 
substitution of λ and S value yields Ia = 1.248 mm. With 
the substitution of Ia and S back to equation (2), the 
calibrated rainfall runoff prediction model was formulated 
as:  

 

  2

555.80
248.1

015.0 
 P

PQ        (6) 
 

Equation (6) is subjected to a constraint that 
P>1.248 mm, else Q0.015 = 0. The formulation of the 
calibrated SCS runoff prediction model equation (6) using 
the optimum λ value will have the same inherent 
significant level (at alpha = 0.01). 
 
RESIDUAL MODELLING 

Calibrated new runoff model (with λ=0.015) 
equation (6) was benchmarked against non-calibrated SCS 
runoff model equation (3), linear-intercept model equation 
(4) and RTO equation (5). Model’s prediction efficiency 
index (E), RSS and predictive model BIAS were calculated 
in order to draw further comparison. Model runoff 
prediction comparison results were tabulated in Table-4 
with following formulas:  
 

 2
1




n
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 
n

n

i observedQpredictedQ

BIAS





 1       (9) 

 
Q  = Runoff amount (mm) 
n  = Total number of datapairs 
    

Table-4. Runoff predictive models comparison. 
 

 
 

RSS value indicates the residual spread from a 
model. Lower RSS indicates a better predictive model. 
Model efficiency index (E) ranges from minus to 1.0 
where index value = 1.0 indicates a perfect predictive 
model. When E<0, the predictive model peforms worse 
than using the average to predict the dataset. Predictive 
model BIAS shows the overall model prediction error 
calculated by the summation of predictive model’s 
residual to indicate the overall model prediction pattern. 
Zero value indicates a perfect overall model prediction 
with no error, the negative value indicates the overall 
model tendency of under-prediction and vice versa. It is 
noteworthy to mention that equation (3), (4) and (5) are 
not statistically significant even at alpha = 0.05 level.  

Equation (6) and (3) are derivative from (2) with 
same mathematical framework, and therefore it is possible 
to perform residual modelling between them. A statistical 
significant model can correct and narrow the runoff 
prediction gap between two models. An effective residual 
model can transform equation (3) into proximate 
predictive model as equation (6) with goals to increase E 
index, reduce RSS and improve overall model BIAS of 
equation (3). The residual between two models was 
calculated by subtracting runoff predictions of equation (3) 
to equation (6) in order to quantify runoff prediction error 
of the simplified SCS runoff model against the new 
calibrated runoff predictive model.  

 

 
 

Figure-2. Runoff prediction equation (3) – equation (6). 

 
As shown in Figure-2, the residual distribution 

between equation (3) and (6) shows a clear pattern of 
trend. A statistical significant residual model will adjust 
the runoff prediction difference and correct runoff 
predictions into proximate results as produced by equation 
(6). Runoff prediction difference (residuals) between 
equation (3) and (6) was mapped with several non-linear 
regression models in IBM PASW. The best correlation 
was modelled with the following equation. (Adjusted R 
square = 0.991, Standard error = 0.231, p< 0.000):  
 

194.1282.02015.0343.1  PPPEvQ  (10) 

 
Qv  = Runoff difference between models (mm) 
P  = Rainfall depth (mm) 
 

Equation (10) is the runoff predictive correction 
of the simplified SCS runoff prediction model. It can be 
amended to equation (3) to improve its overall model 
predictive accuracy. The simplified SCS runoff prediction 
model correction was proposed as:  
 

  )10(
2

8.0
2.0 equationSP

SPQ 
     (11) 

 
RESULTS AND DISCUSSION 

This study explored the possibility of the 
application of linear regression model for urban runoff 
study in Melana catchment. Linear-intercept regression 
model had an in-significant fitting constant term. 
According to previous studies, the constant term is vital 
for the solution of x-intercept which implies the estimation 
of initial loss, local depression or the depression loss of a 
watershed. In-significant fitting constant infers that there 
is no initial or depression loss (local depression = 0) at 
Melana watershed according to its P-Q dataset. The 
hydrological interpretation onward is that the watershed is 
fully saturated with 100% runoff from any rainfall amount. 
The only reasonable runoff model will have to be Q = P 
but the RTO regression results stated otherwise. Although 
equation (5) is significant (under 95% confident interval), 
the gradient’s coefficient which was proposed by previous 
researchers to estimate the total impervious area was 
barely 32% instead of 100% as expected (with 68% of 
pervious area, 100% runoff is impossible). If RTO 
regression results is valid (32% of impervious area within 
Melana watershed), depression loss must still exists but 
linear-intercept regression model discounted its existence 
with an in-significant fitting constant term. Contrary, 
stringent BCa test consistently discounted both linear-
intercept and RTO regression models (Table-1 and 2). 
Same interpretation conflict was cited in Sungai Kerayong 
and Sungai Kayu Ara catchments in Kuala Lumpur 
(Abustan et al. 2008, 2008b).  

Researchers across the world concluded that SCS 
runoff prediction model had to be calibrated according to 
regional specific characteristics and the conventional 
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simplified SCS runoff prediction form of equation (3) 
could not be blindly adopted for study use. As such, we 
assessed two hypotheses as well as model efficiencies of 
non-calibrated (simplified) SCS model equation (3) and 
the new calibrated runoff prediction model equation (6). 

The initial SCS hypothesis of the λ value of 0.2 
(the value was used to simplify SCS base runoff model) as 
a constant was rejected at alpha = 0.01 level because the 
99% BCa confidence interval span did not include the 
value of 0.2 (Table-3) which deduced that equation (3) 
was invalid and not applicable to the Melana dataset. H02 

was also rejected (at alpha = 0.01 level) because the BCa 
results showed a non-zero standard deviation of λ      
(Table-3) which indicated its fluctuation nature thus λ 
could not be a constant as proposed by SCS in 1954 but a 
variable for Melana dataset. The rejection of both Null 
hypotheses in this study paves the way for model 
calibration. 

This study used numerical analysis approach 
guided by non-parametric inferential statistics to identify 
the best collective representation of λ and S value from the 
dataset for the formulation of a better runoff predictive 
model at Melana watershed. The common pitfall in the 
least square fitting algorithm is to wrongly identify local 
minima or maxima as optimum solution thus producing 
inconsistent results. The initial guess point for least square 
fitting algorithm to commence an optimization search 
often played an influential role to end results. Researchers 
often started the initial guess point with a wild guess 
which could lead to a wrong conclusion. Inferential 
statistics can be an effective guide to narrow the search 
and identify a statistical significant optimum solution in 
swift and precise manner. Inferential statistics narrowed 
the optimum search band while optimization study pin 
pointed an optimum value within the BCa confidence 
interval range; both methods supplemented each other in 
this regard. The optimum λ value was identified as 0.015 
and S = 81.804 mm to model runoff in this study at alpha 
= 0.01. Therefore, the optimum λ and S value are 
statistical significant, best collective representation of the 
dataset. The formulation of the new calibrated runoff 
prediction model equation (6) using these optimum values 
will have the same inherent significant level (at alpha = 
0.01). 

The rejection of both hypotheses concluded that 
equation (3) is invalid and not statistical significant for this 
study. Therefore, it is imminent to model the runoff 
difference between equation (3) and (6) to produce a 
correction equation and adjust the runoff predictability of 
equation (3) in order for SCS practitioners or its software 
users to perform runoff results adjustment. The correction 
equation (11) improved the runoff prediction results 
through a site specific characteristics calibration protocol 
which corrected RSS of equation (3) by almost 55% and 
achieved proximate runoff prediction results as equation 
(6).  

In the benchmark assessment against the new 
calibrated runoff prediction model represented by equation 
(6), (un-calibrated) simplified SCS  model equation (3) 

over-predicted runoff depth amount by 1.801 mm on 
average in this study (in non-linear format). When 
compared to equation (6), equation (3) showed runoff 
over-predictions at rainfall depths below 5 mm, under-
predicted runoff between 5 – 9 mm and returned to runoff 
over-predictions thereafter (Figure-2). Using the (un-
calibrated) simplified SCS runoff prediction model 
equation (3) results will incur different design risks and 
commit a type II error.  

In comparison to the new calibrated runoff 
model, un-calibrated SCS equation (3) over-predicted 
38,039 m3 (on average in non-linear format) under 
different rainfall scenarios from Melana catchment area in 
this study. The over-prediction risk was significant and 
further magnified under higher rainfall depths.  
 
CONCLUSIONS 

Linear regression model is not applicable to 
model urban runoff in this study because both linear-
intercept and RTO regression models were not statistical 
significant. Linear regression model produced in-
consistent results and left the hydrological interpretation in 
question thus it was discarded to model the runoff 
conditions at Melana watershed. 

Inferential statistics assessments rejected both H01 

and H02 at alpha = 0.01 level. Therefore, simplified SCS 
runoff model equation (3) became obsolete and not 
applicable in this study. It paved way for the development 
of regional hydrological conditions calibration 
methodology to formulate a new calibrated runoff 
predictive model on SCS runoff model framework. 
Inferential statistics guided numerical optimization 
algorithm to search for best collective representation 
values within 99% confidence interval span. Therefore, 
new calibrated runoff predictive model has the inherent 
statistical significancy (at alpha = 0.01). New calibrated 
runoff predictive model was the only model that was 
statistically significant, it also out-performed its 
counterpart models with high model efficiency (E) and 
low BIAS. A runoff correction equation was devised to 
restore simplified SCS predictive model accuracy. This 
study proved that SCS base runoff predictive model can be 
calibrated to predict urban runoff.  

Equation (10) and (11) are only applicable for 
this particular study and do not apply to any rainfall depths 
larger than 62 mm. However, design engineers and users 
of the conventional SCS runoff prediction model are 
encouraged to conduct regional specific calibration for this 
model and formulate appropriate adjustment equation(s) as 
proposed.  
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