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ABSTRACT 

The objective of this study is to test the robustness of a Process Analytical Technology (PAT) system design on a 
potassium dichromate crystallization process in the presence of input uncertainties using uncertainty analysis. To this end a 
systematic framework for managing uncertainties in PAT system design is used. For uncertainty analysis the Monte Carlo 
technique is used and implemented on two cases namely closed-loop operation using Proportional-integral (PI) control and 
Model Predictive Control (MPC). The analysis performed under closed-loop condition using PI control shows that the 
input uncertainties in the nucleation and crystal growth parameters affect the product-process performances (e.g. crystal 
size distribution (CSD)). Analysis of the proposed PAT system design (closed-loop using MPC controller), on the other 
hand, shows that the effect of the input uncertainties on the outputs (product quality) is minimized, and the target 
specifications are achieved, thus ensuring that the PAT system design is reliable under the considered uncertainty ranges. 
 
Keywords: crystallization, uncertainty analysis, PAT design, model predictive control. 
 
INTRODUCTION 

The introduction of the Process Analytical 
Technology (PAT) guidance (FDA, 2004) has resulted in 
increased use of process control applications and 
process/product quality monitoring in general. This trend 
is also noticeable for crystallization processes, boosted 
also by the fact that high quality crystalline products can 
be produced. The main specifications of the crystal 
product are usually given in terms of crystal size 
distribution (CSD), shape and purity. A challenge, 
however, in many crystallization processes is how to 
obtain a uniform and reproducible CSD. Considerable 
efforts have been put in development of detailed models of 
crystallization processes in order to support the 
development of improved operation and control strategies. 
To this end, a generic systematic design of process 
monitoring and control (PAT) systems has been developed 
(Samad et al. 2013a). Through this framework, it is 
possible to first generate the necessary problem-system 
specific model for a wide range of crystallization 
processes using a generic multi-dimensional model-based 
framework (Samad et al, 2011), and then to perform a 
PAT system design (Singh et al. 2009).  

Another challenge is that so far in model-based 
PAT system design, it has been assumed that the exact 
value of the model parameters is known, for example in 
the nucleation and crystal growth rate expressions (Singh 
et al. 2009; Samad et al. 2013a). These parameters are 
usually estimated from experimental data, often with 
considerable measurement errors which also implies a 
certain error on the estimated parameters. Consequently, 
there is a degree of uncertainty around the values of 
nucleation and crystal growth model parameters, which 
must be taken into account to design a reliable and robust 
PAT system.  

In the crystallization process, several approaches 
have been taken to deal with uncertainties by incorporating 
robustness in the control of crystallization (Nagy and 

Braatz, 2003; 2004; Paengjuntuek et al. 2008; Nagy, 2009; 
Saengchan et al. 2011; Forgione et al. 2015). Nagy (2009) 
proposed a robust on-line model-based optimization 
algorithm using distributional batch nonlinear model 
predictive control (NMPC) which considers the nucleation 
parameter uncertainties in the optimization problem 
formulation to determine the robust operating profiles. By 
performing this approach, the variability in the product 
CSD has been significantly reduced. However the 
uncertainties around the crystal growth parameters are not 
considered in their work. Meanwhile, Forgione et al. 
(2015) used iterative identification control where the 
uncertain model parameters are iteratively estimated using 
the measured data. In the work of Saengchan et al. (2011), 
improvement of batch crystallization control on potassium 
sulfate crystallization given uncertain kinetic parameters 
has been proposed using model predictive control (MPC). 
Moreover, Yang et al. (2014) also proposed NMPC to 
handle the changes in process parameters.   

Furthermore, the impact of parameter uncertainty 
and control implementation inaccuracies on the 
performance of optimal control trajectory are quantified in 
the work of Ma et al. (1999). These quantitative estimates 
are then used to decide whether more laboratory 
experiments are needed to provide more accurate 
parameter values or to define performance objectives for 
control loops that implement the optimal control 
trajectory. As a result, a robust feedback control whether 
using a simple PID controller or more advanced controller 
such as MPC is needed to deal with uncertainties and to 
ensure the desired crystal product is achieved. Before 
deciding for an appropriate approach to deal with 
uncertainties in crystallization process, foremost the 
impact of such model parameter uncertainties on the 
predicted system performance needs to be quantified and 
evaluated. Such an evaluation is useful to find out whether 
uncertainties considered may lead to a situation where the 
target specifications of the crystal product are no longer 
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reached. The latter situation is of course not desirable in a 
pharmaceutical production process. This requires 
expansion of model-based methods with formal 
uncertainty analysis in a comprehensive way. 
Therefore, it is important to develop robust model-based 
design tools with the necessary features to detect such 
potential product quality related problems. In this study, 
the application of uncertainty analysis is highlighted using 
a potassium dichromate crystallization case study, where 
the objective is to test a PAT system design in achieving 
the target crystal properties under the considered input 
uncertainty ranges of nucleation and crystal growth model 
parameters. 
 
SYSTEMATIC FRAMEWORK FOR PROCESS 
MONITORING AND CONTROL (PAT) SYSTEM  
 The architecture of the generic framework for 
systematic design of monitoring and control (PAT) 
systems is illustrated in Figure-1 (Samad et al. (2013b)). 
There are 6 main steps through which the design proposal 
is created to achieve the target product properties. The first 
step is the problem definition for the crystallization 
process under study where the overall objective is defined. 
Step 2, crystallization model development, involves the 
generation of a problem-chemical system specific model 
using the generic multi-dimensional modelling framework 
(Samad et al. 2009). The third step is concerned with the 
generation of the supersaturation set-point for the 
crystallizer. The objective here is to generate the necessary 
supersaturation set-point that guarantees a targeted CSD is 

achieved. Two methods are available: an analytical CSD 
estimator based method and a response surface method 
(RSM). In step 4, the PAT system that would be applicable 
for the process monitoring and control system to achieve 
the desired end product properties, is designed. For this 
purpose, the design methodology for PAT systems 
developed by Singh et al. (2009) is adopted. For step 5, the 
methods for performing uncertainty and sensitivity 
analysis have been incorporated into the PAT system 
design framework (Samad et al. 2013a). 
 The method (see Figure-1 (right)) contains two 
main steps: (i) framing of uncertainty and sensitivity 
analysis, and (ii) decision making. In the first step (step 
5.1), the sources of uncertainties are identified, e.g. 
parameters in the nucleation and crystal growth rate in the 
crystallization process. Afterwards the uncertainty analysis 
using Monte Carlo simulations is carried out to test the 
effect of uncertainty of parameters from nucleation and 
crystal growth kinetic models on the predicted system 
performance, where the performance is quantified by 
variables such as the solute concentration and the CSD. 
Subsequently, the most significant parameters are 
identified through global sensitivity analysis techniques 
using Standardized Regression Coefficient (SRC) and 
Morris sampling methods. In the decision making (step 
5.2), the robustness of the model-based solution is 
evaluated by judging on a number of criteria including the 
probability of failure to meet target product specifications. 
 

 

 
 

Figure-1. Incorporation of a methodology for combined uncertainty and sensitivity analysis in the framework for model-
based design of product-process problems (Samad et al. 2013b). 
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If the target product specifications are not met 
due to the effect of the input uncertainties, then an 
alternative operating strategy is to be identified in order to 
reduce the probability of failure. One of the alternative is 
to propose new controller structure for example by using 
MPC. This new proposed controller is then implemented 
in the framework until an acceptable risk level is achieved.  

 
Model Predictive Control (MPC) Algorithm 
 The concept of MPC is to determine a set of 
control moves for a time horizon minimizing an objective 
function subject to a dynamic process model with path 
and/or end point constraints (Saengchan et al. 2009). In 
this case, the objective function is set to minimize the error 
between the simulated CSD (fn) and the target CSD. At 
each control interval, an open-loop sequence of 
manipulated variables is computed in such a way to 
optimize the future behavior of the plant. Only initial 
value of the control profile is applied and then the 
optimization procedure, based on new information (C, T, 
fn), is repeated to modify a new input profile (Csp) with the 
control and prediction horizons moving forward one 
sampling time step. The control strategy for MPC is 
shown in Figure-2. In addition, the optimization problem 
is solved by sequential quadratic programming (SQP) 
method using fmincon routine in Matlab optimization 
toolbox to compute a set of control moves (Csp).  
 

 
 

Figure-2. The MPC control strategy for this crystallization 
process. 

 
Application of the Systematic Framework: Potassium 
Dichromate Crystallization Case Study. 
 Application of the framework is demonstrated for 
potassium dichromate crystallization (adopted from Aamir 
et al. 2010) where it will be investigated how the input 
uncertainties affect the target CSD and how this 
uncertainty can be minimized to achieve the desired target 
CSD.  
 
Problem Definition (Step 1) and Crystallization Model 
Development (Step 2) 
 The objective of this study is to develop a robust 
PAT system design for potassium dichromate 
crystallization in order to achieve the target CSD in the 
presence of parametric uncertainties. The desired product 
is potassium dichromate with the following predefined 
qualities: target CSD assumed as a normal distribution 
with mean characteristic length of 490 μm and standard 
deviation of 52 μm. In step 2, the problem-chemical 

system specific model for potassium dichromate 
crystallization is generated using the generic modelling 
framework (Samad et al. 2009)  by using similar 
conditions and assumptions as reported in the literature 
(Aamir et al. 2010) as shown in Table-1. 
 
Generation of Supersaturation/Concentration Set-
point (Step 3) 
 In this step, the set point profile that yields the 
desired target one-dimensional CSD is generated using 
model-based optimization involving the analytical CSD 
estimator. Firstly, the initial seed distribution (fn0) for the 
potassium dichromate crystallization case is specified and 
assumed as a normal distribution by using a mean 
characteristic length of 156.89 µm and a standard 
deviation of 43.75 µm. The analytical CSD estimator for 
the one-dimensional and the case of size dependent growth 
as shown in Table-2 is used and the growth parameters for 
the potassium dichromate system needed in the analytical 
CSD estimator is obtained from Aamir et al. (2010). A 
model-based optimization approach is then used to 
optimize the supersaturation set-point and the total 
crystallization time in order to achieve the desired target 
CSD, respectively. The objective is to minimize the sum 
of squares of the relative errors between the target CSD 
and a predicted CSD obtained through the analytical CSD 
estimator. The optimal supersaturation set-point to be 
maintained is 1.25x10-4 g/g and total crystallization time is 
180 minutes. 
 
Design of PAT System (Step 4) 
 In this step, the closed-loop operation is 
considered where the PI controller is employed to 
maintain the supersaturation at the desired set-point 
obtained in Step 3. Here the closed-loop simulation results 
are shown in Figure-3 where the potassium dichromate 
concentration initially started at 0.1928 g potassium 
dichromate/g water and the PI controller successfully 
maintained the concentration at the set point once the 
concentration set point was reached.  
 In Figure-3 (left, top), approximately 0.1377 g 
potassium dichromate/g water remains by the end of the 
operation. Figure-3 (right, top) shows the temperature 
profiles obtained from closed-loop simulation initially at 
30°C and then cooled down to 20°C in 180 minutes. 
Figure-3 (right, bottom) shows the final CSD (mean of 
488.1 µm and a standard deviation of 51.83 µm) that has 
been achieved at the end of the batch crystallization. The 
final CSD obtained is in good agreement with the mean 
(490 µm) and standard deviation (52 µm) for the target 
CSD. Based on this closed-loop operation, it is confirmed 
the PI controller is efficient to maintain the super 
saturation at the desired trajectory. However it is important 
to note that in this operation, it has been assumed that 
there is no uncertainties presence in the crystallization. 
Therefore in the next section, the capability of the PI 
controller to handle the effect of input uncertainties will be 
investigated further in the next section. 
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Table-1. List of model equations for the potassium dichromate crystallization. 
 

 
 

Table-2. Generic analytical CSD estimator expressions. 
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Figure-3. Closed loop simulation results for potassium dichromate concentration, temperature, inlet water temperature 
(manipulated variable) and final CSD. 
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Evaluation of Designed PAT System (Step 5) 
 In this study, the uncertainty analysis is 
performed under closed-loop operation. Notes that the 
sensitivity analysis is not carried out in this work due to 
the purpose of this work is to focus on reducing the 
uncertainties. The objective here is to quantify the effect 
of input uncertainties in nucleation and crystal growth 
parameters on the prediction of the crystallization process. 
If the input uncertainty is indeed affecting the model 
predictions, then the influential parameters are identified 
and used as an input in the closed-loop condition. In the 
framing scenario of uncertainty and sensitivity analysis 
(step 5.1), the input uncertainty has been chosen based on 
the 6 parameters  xxxgxb pgkbk ,,,,,   from the nucleation 

and the crystal growth models (see Equations (7) and (8) 
in Table-1) (step 5.1.1). Table-3 shows the input 
uncertainty of nucleation and crystal growth parameters. 
The values for lower and upper bound of each parameter 
are calculated based on the 95% confidence interval taken 
from Aamir et al. (2010). The Monte Carlo procedure 
(step 5.1.2) consists of 3 sub-steps. The first sub-step is 
the sampling of uncertainties (step 5.1.2.1) using the Latin 
hypercube sampling (LHS) method to sample the 
uncertain parameters (Helton and Davis, 2003). In this 
work, 100 is selected as a suitable number of samples. 
Step 5.1.2.2 consists of the Monte Carlo simulations. Here 
the open-loop potassium dichromate model is simulated 
100 times, i.e. once for each different set of model 
parameters. The Monte Carlo simulations have been 
performed in the Matlab.  
 The results from the Monte Carlo simulations are 
analyzed in the step 5.1.2.3 (evaluation of output 
uncertainties) by calculating typical statistics such as 
mean, standard deviation and relevant percentiles of model 
output distributions. The uncertainty is indicated by the 
variance of the distribution or using the percentiles, which 
indicates the spread of the data and the extent of 
uncertainties in the outputs. The larger the spread of the 
simulated data indicates the larger the uncertainty in that 
model output or the further the 10th and 90th percentiles 
away from the mean, the larger the uncertainty of the 
model output. Based on Figure-4, the potassium 

dichromate concentration (Figure-4, left, top) shows only 
a small variation indicating a low extent of uncertainty. 
This shows that the PI controller is able to counteract the 
effect of input uncertainty. The inlet water temperature is 
used as a manipulated variable in this study. Figure-4 (left, 
bottom) shows the inlet water temperature profile where 
the profile changes rather vigorously by the end of the 
operation in order to maintain the concentration at the set 
point and thus counteract the effects of the input 
uncertainties. Meanwhile the uncertainty is almost non-
existent in the temperature profiles. The final CSD 
obtained as shown in Figure-4 (right, bottom) indicates 
that a small variation of the final CSD is achieved. In step 
5.2 (decision making), it has been concluded that there is 
still a presence of uncertainty in the final CSD under 
closed-loop simulation. Therefore, in this study, the 
advanced control structure using MPC is proposed to 
further investigate the capability of MPC in reducing the 
effect of this input uncertainties on the CSD. Now the 
MPC is employed as controller and the Monte Carlo 
simulation in Step 5 is therefore repeated for the same 
framing scenario and parametric uncertainties as for the 
closed-loop operation using PI control. The results from 
the Monte Carlo simulations (using MPC) for 100 
parameter samples are presented in Figure-5.  
 Based on Figure-5, the uncertainty of CSD data 
has been reduced after MPC is employed in the closed-
loop condition compared to the CSD data obtained using 
PI control. This indicates that the MPC controller has been 
successfully counteract the variations of uncertain 
parameters and minimized the uncertainty in the CSD data 
compared to PI control. The data has been further 
analyzed using the 10th and 90th percentile values of the 
Monte Carlo simulations under both controllers as shown 
in Figure-6. Using PI controller, the 10th and 90th 
percentile values are little bit far away from the mean 
value indicating the presence of uncertainty. However, the 
MPC controller performance has been better and limits the 
uncertainty effects on a low level as indicated in Figure-6. 
 

 
Table-3. Input uncertainties on nucleation and crystal growth parameters for potassium dichromate crystallization. 
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Figure-4. Closed loop simulation results for potassium dichromate concentration, temperature, inlet water temperature 
(manipulated variable) and final CSD obtained from the Monte Carlo simulation (in total there are 100 lines). 
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Figure-5. Comparison of CSD data based on different controllers: PI controller (left); MPC (right). 
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Figure-6. Representation of uncertainty using mean, 10th and 90th percentile values of the Monte Carlo simulations under 
different controllers: PI controller (left); MPC (right). 
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For the purpose of highlighting the acceptable range of 
desired target CSD, the target envelope for CSD is then 
assumed as  3.9x10-3 ± 0.2x10-3 no. of particles/µm. g 
solvent (mean of CSD ± variance). Therefore the 
minimum acceptable CSD is 3.7x10-3 (lower variance) 
and maximum acceptable CSD is 4.1x10-3 (upper 
variance).  
 

Table-4. Performance comparison between PI control, 
MPC and the desired target CSD. 

 

 
 

Table-4 shows the performance comparison 
between PI control and MPC where it can be clearly 
seen the CSD obtained by PI control is exceeding the 
target envelope for CSD. Meanwhile the CSD obtained 
by MPC in the range of target envelope for CSD 
indicating the effect of uncertainty has been greatly 
reduced and satisfy the acceptable range of target CSD. 
In addition, based on this performance, it is proven the 
MPC shows a robust controller compared to PI control 
in terms of counteract the effects of input uncertainties. 
 Finally, it is confirmed that the MPC controller 
used is capable to deal with uncertainties, indicating that 
a robust PAT system design has been successfully 
developed, and is thus ready to be implemented in step 
6. However, so far the designed PAT system has been 
implemented only in a simulation and was shown to 
achieve the target crystal product. In order to have a 
practical application, the simulation results need to be 
supported by results from laboratory experiments. 
However, this is beyond the scope of this contribution 
but will be subject of future work.   
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CONCLUSIONS 

 The methodology for performing uncertainty 
analysis of PAT systems of crystallization processes is 
successfully applied to the potassium dichromate 
crystallization process. The analysis is performed in the 
frame of the model-based design of a PAT system for 
closed-loop scenarios. In closed-loop using PI controller, 
the output uncertainty was found for the final CSD, 
which confirms the influence of input uncertainties on 
the model predictions. Subsequently the analysis for the 
closed-loop condition using MPC controller structure 
was carried out to test the reliability of the PAT system 

design and it was demonstrated that the PAT system 
using a MPC controller developed for the potassium 
dichromate crystallization is reliable and sufficiently 
robust to produce the desired CSD under a range of 
uncertainties. 

In the future work, the uncertainty also present 
in the initial conditions, for example in the temperature, 
concentration and seed crystals. The presence of noise 
usually affecting the temperature and concentration 
profiles which significantly influences the CSD 
prediction. In addition the amount and size of seeds to be 
added to the crystallizer is determined from experimental 
data which contribute to some extent to the uncertainties. 
Therefore also, it could be interesting in the future to 
consider the properties of the temperature, concentration 
and seed crystals as an input uncertainty as well. As 
indicated earlier, implementation of the proposed PAT 
system in a real crystallization process could both be 
used to verify and confirm the methodology and the 
results obtained here. 
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