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ABSTRACT 

The autonomous underwater vehicle (AUV) mostly has fewer control inputs than the degree of freedoms (DOFs) 

in motion and be classified into underactuated system. It is difficult tasks to stabilize that system because of the highly 

nonlinear dynamic and model uncertainties. Hence, it usually required nonlinear control method and this paper presents the 

stabilization of an underactuated X4-AUV using integral backstepping control method. The X4-AUV system is executed 

by separating system into two parts subsystem which is translational and rotational subsystems. Integral backstepping 

control is applied for translational and rotational subsystem. The effectiveness of the proposed control technique for an 

underactuated X4-AUV demonstrates through simulation. 
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INTRODUCTION 

Underwater robotics is an important research area 

due to its great applications: i.e., from a scientific research 

of ocean, surveillance, inspection of commercial undersea 

facilities, military operations and many more. 

Nevertheless, controlling such system is a challenging task 

because the dynamic model has nonlinearity and uncertain 

external disturbances besides difficulties in hydrodynamic 

modelling. Thus, it attracted further research and attention 

correlate with underactuated AUV, defined as the system 

with a fewer number of control inputs than a number of 

DOF and generally falls in nonholonomic systems. 

Control of nonholonomic systems is theoretically 

challenging and practically interesting. Brockett’s 
Theorem (Brocket, 1983) defined those systems cannot be 

stabilized to a point with pure smooth (or even continuous) 

state feedback control, usual smooth and time invariant. A 

stabilization problem consists of designing control law 

which guarantees equilibrium of a closed loop system is 

asymptotically stable or at least locally asymptotically 

stable. Therefore, control problems for underactuated 

systems usually required nonlinear control techniques. 

There are numerous nonlinear control techniques can be 

applied for controller and backstepping approach has 

gained the attention recently. 

 

 
 

Figure-1. X4-AUV with an ellipsoidal hull shape. 

A model of X4-AUV with six DOFs and four 

control input (thrusters) is presented. It categorized in 

underactuated AUV and has equations of the motion 

appear as second-order nonholonomic constraints. Zain 

(Zain et al., 2010) proposed an X4-AUV with an 

ellipsoidal hull shape as shown in Figure-1. The slender 

body of ellipsoidal hull shape make it works efficiently 

than conventional X4-AUV (Okamura, 2009) in term of 

drag pressure. 

This study proposed an integral backstepping 

control strategy to stabilize position and angles of an 

understated X4-AUV. The main idea in integral 

backstepping controller design is adding the integral of 

tracking error between the original system input and the 

input to design as a first step of control strategies. The 

proposed technique widely applied and effective in 

stabilizing the quadrotor helicopters which also generally 

falls into underactuated system (Tahar et al., 2011), 

(Bouabdallah and Siegwart, 2007). 

In this paper, an integral backstepping is applied 

to stabilize an underactuated X4-AUV with four thrusters 

and six DOFs in motion. The X4-AUV is executed by 

nonlinear control strategy with separate into two parts 

subsystem: i.e., translational and rotational subsystems. 

The controller for translational subsystem stabilizes the 

position and for rotational subsystem achieves the desired 

roll, pitch, and yaw angles.  

 

COORDINATE SYSTEM 

A special reference frame must establish in order 

to describe the motion of the underwater vehicle. There 

are two coordinate systems: i.e., an inertial coordinate 

system (or fixed coordinate system) and motions 

coordinate system (or body-fixed coordinate system). The 

coordinate frame {E} is composed of the orthogonal axes 

{ExEyEz} and is called as an inertial frame. This frame is 
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commonly placed at a fixed place on Earth. The axes Ex 

and Ey form a horizontal plane, and Ez is the direction of 

the field of gravity. The body-fixed frame {B} is 

composed of the orthogonal axes {X, Y, Z} and is attached 

to the vehicle. The body axes, two of which coincide with 

the principle axes of inertia of the vehicles are defined by 

Fossen (Fossen and Sagatun, 1991) as follows: X is the 

longitudinal axis (directed from aft to fore); Y is the 

transverse axis (directed to starboard); Z is the normal axis 

(directed from top to bottom). Figure-2 shows the 

coordinate systems of an AUV, which consist of a right-

hand inertial frame {E} in which the downward vertical 

direction is to be positive, and a right-hand body frame 

{B}.  

Letting �  Tzyx denote the centre of mass 

of the body in the inertial frame, and defining the 

rotational angles of the X, Y, and Z axes as �   , 

the rotational matrix R from the body frame {B} to the 

inertial frame {E} is reduced as: 

 



























cccss

cssscccssssc

sscscsccsscc

R

                (1) 

 

wherecα denotes cos α and sα is sin α. 
 

X4-AUV DYNAMIC MODEL 

Following a Lagrangian method, this section 

describes the dynamic model of the X4-AUV with the 

assumption of balance between buoyancy and gravity. The 

kinetic energy formula is: 

 ܶ = ௧ܶ௥௔௡௦ + ௥ܶ௢௧                                                                                              (2) 

 

where ௧ܶ௥௔௡௦and ௥ܶ௢௧are the translational kinetic 

energy and the rotational kinetic energy is defined by: 

 ௧ܶ௥௔௡௦ = ଵଶ �ሶ ሶ�ܯ�                                                               (3) 

 ௥ܶ௢௧ = ଵଶ �ሶ ሶ�ܬ�                                                                    (4) 

 

in which M is the total mass matrix of the body, 

and J is the total inertia matrix of the body. From the 

characteristics of added mass, it can be written as: 

 � = diagሺ�ଵ, �ଶ, �ଷሻ  = �௕ܫ +  (5)                             �ܯ

ܬ    = diag(ܫ௫ , ௬ܫ , (௭ܫ  = ௕ܬ +  (6)                                        �ܬ

 

Here, �௕is a mass of the vehicle, ܬ௕ is an inertia 

matrix of the vehicle and ܫis a͵ × ͵identity matrix. 

Letting ߩ denote a density of the fluid and using 

the formulation of the added mass and inertia under the 

assumption of�ଵ = ͷ�ଶ and rଶ = �ଷ  = �, where�ଵ, �ଶ and  �ଷthe added mass matrixܯ�and the added  inertia matrix ܬ�are: 

�ܯ  = diagሺ0.͵ͻͶߨߩ�ଷ, ͷ.ͻ͸ߨߩ�ଷ, ͷ.ͻ͸ߨߩ�ଷሻ               (7) 

�ܬ  = diag ሺ0, ʹͶ.ʹ͸Ͷͺߨߩ�ହ, ʹͶ.ʹ͸Ͷͺߨߩ�ହሻ                   (8) 

 

From the assumption of the balance between the 

buoyancy and the gravity, i.e., the potential energy ܷ =0, the Lagrangian can be written as: 

ܮ  = ܶ – ܷ = ௧ܶ௥௔௡௦ + ௥ܶ௢௧                                                                                                    (9) 

 

The dynamic model of X4-AUV summarized as:  
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(10) 

 

Where �ଵ, �ଶ, �ଷ, and �ସare the control inputs 

for the translational (x, y, and z-axis) motion, the roll (�-

axis) motion, the pitch (�-axis) motion, and yaw (߰-axis) 

motion, respectively. A detailed derivation for dynamics 

model (10) given in (Zain et al., 2010). 

Defining that ܾis a thrust factor, d is a drag 

factor, taken from ���  = ݀߱�ଶ then Ω, �ଵ,�ଶ, �ଷ, and �ସ 

are given by: 
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Figure-2. Coordinate systems of AUV. 

 

The dynamic model (10) can be rewritten in a 

state-space form�ሶ = ݂ሺ�, ܷሻ by introducing � =ሺ�ଵ ⋯ �ଵଶሻ�� ℜଵଶ as state vector of the system as follows: 
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with,  
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INTEGRAL BACKSTEPPING CONTROLLER 

DESIGN 

The rotational system and its derivatives do not 

rely on the translational system; however the translations 

rely on the rotational system. The complete system 

described by equation. (12) composed of two subsystems, 

the angular rotations and the linear translations as shown 

in Figure-3. 

 

 
 

Figure-3. Connection of rotational and translational 

subsystem. 

 

Rotational control 

The control of rotational subsystem is considered 

first due to its complete independence compare than 

translational. For the first step, consider the roll tracking 

error   de1 and its dynamics: 

 

xde   
1                                                                  (13)

 

 

The angular speed ߱௫ is not an input and has its 

own dynamics. So, set desired behaviour and consider it as 

virtual control. 

 

1111 Xec dxd   
                                                 (14)

 

 

With ܿଵand �ଵ a positive constant and 
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t
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isan integral of the roll tracking error. 

 

Since ߱௫ has its own error ݁ଶ, compute its 

dynamic equation. (14) as follows: 

 

     1112 ece dxd                                  (15)
 

 

where the angular velocity tracking error, ݁ଶ defined by: 

 

xxde  2                                                             (16)
 

Using equation. (13) and equation. (15), rewrite 

the roll tracking error dynamics as: 
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                                                  (17) 

 

By substitute �ሷ  in equation. (14) by its 

corresponding expression model equation. (9), control 

input �ଶ appears as follows:
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21112101112 )( ubxxece dxd                (18) 

 

The desirable dynamics for the angular speed 

tracking error is: 

 ሶ݁ଶ = −ܿଶ݁ଶ − ݁ଵ                                                            (19) 

 

By combining equation. (12) and dynamics 

model equation. (10), control input �ଶ given by: 
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whereܿଶ is a positive constant which determine the 

convergence speed of the angular speed loop. 

Similarly, the same steps are followed to extract �ଷand�ସ 
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with: 
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whereሺcଷ, cସ, cହ, c଺, �ଶ, �ଷሻ > 0 and߯ଶ, ߯ଷ is an 

integral of tracking error of ݁ଶ and ݁ଷ. 

 

Translational Control 

The altitude control keeps the X4-AUV stabilized 

in desired point. By used same approach described in 

subsection rotational control, the control law for altitude 

controller is: 
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with: 
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where ܿ଻,଼ܿ and �ସ is a positive constant while ߯ସ is an 

integral of tracking error for x-position. 

 

RESULTS AND DISCUSSIONS 

In order to stabilize the position and angles of the 

X4-AUV, a nonlinear control strategy; integral 

backstepping is implemented. The simulation is conducted 

to verify the proposed control method by using �ଵ, �ଶ, �ଷand�ସ respectively as control input. The system 

started with an initial state �଴ = ቀ0, 0, 0, 0, 0, 0, �ସ , 0, �ସ , 0, �ସ , 0ቁ�
and desired value �–

position is setting at 3m with all orientation angles is zero. 

Parameters used as follows: ,81 c ,22 c 83 c , 

,24 c ,45 c ,26 c ,26 c ,37 c 18 c and ,5.01 
,5.02  ,5.03  .5.04  Note that this integral 

backstepping technique widely used for Unmanned Aerial 

Vehicles (UAV) studied in [4-5]. The physical parameters 

shown in Table-1 were used for simulating X4-AUV. 

Rotational controller responsible for stabilizing 

and maintaining all angles (�, � and ߰ ሻ to zero during 

X4-AUV cruising. Figure-4 show the response of integral 

backstepping controller succeeded in stabilizing roll, pitch 

and yaw angles of X4-AUV less than 5s. The position 

control and rate response of X4-AUV in Figure-5 indicate 

the controller effectively stabilized �-position at desired 

point 3m. Figure-6 illustrate the rotor speed response and 

inputs for controlling X4-AUV using an integral 

backstepping controller where �ଵ, �ଶ, �ଷand�ସ denote 

command signal for a position and angles. Note that this 

simulation only stabilize �-position and angles 

(�, � and ߰ሻ. 

 

Table-1. Physical parameters for X4-AUV. 
 

Parameter Description Value Unit 

bm  Mass 21.43 kg  

  Fluid density 1023.0 3kg/m  

l  Distance 0.1 m  

r  Radius 0.1 m  

b  Thrust factor 0.068 2sN   

d  Drag factor 3.617e
-4

 2smN   

bxJ  Roll inertia 0.0857 2mkg   

byJ  Pitch inertia 1.1143 2mkg   

bzJ  Yaw inertia 1.1143 2mkg   

tJ  
Thruster 

inertia 
1.1941e

-4
 2smN   
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(a) 

 

 
(b) 

 

Figure-4. (a)Attitude control (b) Attitude rate control. 

 

 
(a) 

 

 
(b) 

 

Figure-5. (a)Position control (b) position rate control. 

 

 
(a) 

 

 
(b) 

 

Figure-6. (a)A control inputs (b) Control inputs 

in rotations. 

 

CONCLUSIONS 

This article presented an integral backstepping 

control method in stabilizing attitudes and x-position for 

an underactuated X4-AUV with four inputs and six DOFs. 

The controller designs are executed by separating the 

system into two parts subsystem which is translational and 

rotational subsystems. Integral backstepping control is 
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applied for translational and rotational subsystem. 

Simulation results demostrate effectiveness of the 

proposed control method in stabilizing x-position and all 

attitude into desired point. 
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