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ABSTRACT 

This paper proposed an approach of Fuzzy-Extended Kalman Filter (FEKF) for mobile robot localization and 
mapping considering unknown noise characteristics. The techniques apply the information extracted from EKF 
measurement innovation to derive the best output for mobile robot estimation during its observations. This information is 
then fuzzified using Fuzzy Logic technique, designed with very few design rules to control the information. The method 
can further reduced measurement error and as a result provides better localization and mapping. Simulation results are also 
presented to describe the efficiency of the proposed method in comparison with the normal EKF estimation. Preliminary 
results emphasize that FEKF has exceeds the estimation results performance of normal EKF in non-Gaussian noise 
environment. 
 
Keywords: fuzzy logic, kalman filter, mobile robot localization, mapping. 

 
INTRODUCTION 

Mobile robot localization and mapping problem 
or known as the Simultaneous Localization and Mapping 
(SLAM) problem addressed a condition where a mobile 
robot attempts to infer its position relatively to any 
observed landmarks and then concurrently build a map 
based on what it has measured (Ahmad et al., 2013, 2015). 
The problem has different types of solution categories 
including the mathematical analysis, behavioral techniques 
or the probabilistics approaches (Thrun et al., 2000, 2005). 
One of the famostly used method is the probabilistics as it 
offers easier modeling and has less computational cost.  

Extended Kalman Filter (EKF) is the mostly 
applied approach to deal with the SLAM problem 
especially when uncertainties such as the mobile robot 
kinematic model, sensor errors are concerned. However, it 
has shortcomings that could not effectively tolerate in a 
condition where a non-Gaussian noise characteristic is 
available. Due to this disadvantage, researcher explores 
other possible solution such as the Particle Filter, Graph-
SLAM, Topological SLAM and others, but each of them is 
facing the computational cost. Besides, these methods 
cannot be fully realized in real-time application as what 
EKF is capable of. Hence, EKF is still celebrated as the 
ultimate selection in real SLAM application.  

Observing an environment with a sensors or 
sensor-array with unknown surface and mobile robot 
motions requires a good modeling to represent the 
uncertainties. To aid the system reliability, Kramer et al 
(Kramer and Kandel, 2011) investigates four techniques 
which includes the FEKF to identify their strength and 
weaknesses on different situations for mobile robot 
localization problem. It was found that FEKF has better 
results than EKF and can be further improved if better 
rules designs are provided. In fact, fuzzy logic is the only 
recognized method to be successfully adopted by EKF 
(Asadian et al., 2005). FEKF unlike others such as the 

neural network technologies which requires less 
computations. Works on the mobile robot with FEKF was 
also successfully demonstrated by Raimondi et al. 
(Raimondi et al., 2006) to control the disturbance during 
the mobile robot motions. 

Most of the approaches and study in FEKF have 
focused on the state covariance, P, the process noise 
covariance Q and measurement noise covariance, R 
(Kobayashi et al., 1998), (Abdelnour et al., 2003). This is 
motivated by the means that above parameters are 
showing the amount of uncertainties exists during mobile 
robot measurements. These approaches attempts to tune 
the system output based on P, Q and R covariances to 
obtain smaller error. The study on FEKF that considered 
the inputs from innovation and past information to deal 
with uncertain noises has also been carried. Yet the output 
is only based on a singleton decisions which may 
accidentally neglects some important information (Ip et 
al., 2010). Wang et al (Wang et al., 2014) examines 
further the fuzzy logic competencies in EKF by taking into 
account the error of angle, distance and innovations as the 
inputs to lower the state covariance update, P in each 
process. However they did not clearly indicates about the 
noise characteristics being considered. Interestingly, 
bringing three parameters to be calculated simultaneously 
during observations leads to higher processing time and 
complexity.  Moreover, if more rules are designed for the 
system, it will require more time.  

Motivated by the above conditions, this paper 
deals with FEKF to design and control the measurement 
innovation information in achieving better estimation 
results. The technique also look into the estimation results 
in a non-Gaussian environment to analyze the system 
reliability. The designed rules are also few to reduce the 
processing time where only three number of fuzzy sets for 
each input are recognized for analysis. 
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The remaining of this paper is organized as 
follows. Next section describes the mathematical 
formulations of normal EKF and Fuzzy Logic design. The 
explanation will also include the methodology of FEKF 
technique that integrates both methods in estimating the 
mobile robot and its surrounding landmarks. This is then 
followed by the simulation and analysis section. Finally, 
the paper is summarized.  
 
MATHEMATICAL FORMULATIONS 
 
EKF algorithm 

SLAM consists of two distinguish models which 
are the process model that calculates the kinematic 
movement or mobile robot motions, and the measurement 
model that measures the relative angle and distance 
between mobile robot and any landmarks observed. The 
general model of both stages are presented as follows.  
 
Process model 
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where θ is the mobile robot pose angle, ω,v are the mobile 
robot turning rate, velocity respectively. x, y, L (xi, yi) are 
the mobile robot x,y positions and landmarks location 
repectively. T defines the sampling time. Note that the 
landmarks are point landmarks and is stationary at all time 
during mobile robot observations.  
 
The measurement model  
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r, ϕ = relative distance and angle between mobile robot  
and landmarks, 

vr, vϕ  = associated noise to both distance and angle 
measurements.  

 
 
 
 
 
 
 

EKF has a prediction and an update stages as 
shown below. 
 
Predicted stage 
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f        = jacobian of mobile robot motion, 
Σ       = control noise covariance, 
g       = jacobian of the control noise,  
P       =  state covariance.  
 
Update stage 
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K       =   Kalman gain of EKF.  

Being the research objectives, the noises are 
assumed to be non-Gaussian noise that holds the following 
expression. 
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Remark that Qk≥0, Rk>0 are both the process and 

measurement noise covariances. Our interest is in equation 
(7), where the updated state is being calculated based on 
the previous state, kalman gain and the innovation. The 
equation inherently expressed that the innovation or the 
measurement obtained by the mobile robot is important to 
infer the updated states. If Kalman gain has smaller 
changes or similar from time k to k+1 as well as the 
innovation, then the estimation error is decreasing. These 
characteristics are what actually this research is suggesting 
i.e to improve the estimation performances by using Fuzzy 
Logic direcly to the measurement innovation. The concept 
of design is presented in the following Figure-1. 
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Figure-1. Proposed method of FEKF for mobile robot 
localization and mapping. 

Fuzzy logic design 
The measurement innovation will be refered as 

the main reference in designing the Fuzzy logic. The 
inputs to the Fuzzy logic are the angle and distance errors. 
The outputs are also the same as the Fuzzy logic tend to 
decrease the error of both parameters affected by the 
unknown measurement noise. By choosing the output 
appropriately, the effects or measurement error due to 
sensor inaccuracies can be minimized further.  

To describe in details, again refer to equation (7) 
Normally, K intend to make the error smaller and its 
calculation is depends to the measurement matrix that 
defines the effectiveness of measurement. If the mobile 
robot is stationary and observing a specific landmark 
many times, then it has been proven that as long as its 
exteroceptive sensors are working well, the measurement 
will yield smaller error (Huang et al., 2007). In a non-
Gaussian noise, these properties are still not investigated 
and left with undefined conditions. As the noises 
characteristic are unknown, the sensors reading can be 
interfered and consequently exhibits bigger error; and 
hence bigger R. If K is recursively updated without any 
modifications and controlled, the EKF results in non-
Gaussian noise can be erroneous. To overcome this, before 
updating the states in equation (7), fuzzy logic aims to find 
the best value of measurement innovation to pursue lower 
error. This was also inherently described by Kobayashi et 
al. (Kobayashi et al., 1998) whose proposed that by 
selecting the P, Q, and R from Fuzzy logic, smaller 
uncertainties is achieved. This is also exactly what has 
Wang et al. (Wang et al., 2014) identified as Kalman gain 
is absolutely related to the measurement noises.  
 The proposed design used the Mamdani 
technique for analysis purposes. The general design is 
illustrated in Figure-2-4. The following describes the rules 
of Fuzzy logic that are used to define the output of the 
measurement innovation. 
 

 IF angle error is negative and distance error is 
negative, THEN angle is negative 

 IF angle error is negative and distance error is normal, 
THEN angle is normal 

 IF angle error is negative and distance error is 
positive, THEN angle is negative, distance is normal 

 IF angle error is positive and distance error is normal, 
THEN angle is negative 

 IF angle error is positive and distance error is 
negative, THEN distance is normal 

 IF angle error is positive and distance error is positive, 
THEN angle is negative, distance is normal 

 

 
 

Figure-2. Fuzzy logic with inputs and outputs. 
 

 
 

Figure-3. (a) Angle measurement (b) Distance 
measurement. 

 

 
 

Figure-4. (a) Fuzzified angle (b) Fuzzified distance 
measurement. 

The fuzzy sets are designed based on the 
Gaussian membership functions. Only three fuzzy sets is 
defined; can be seen through the rules, which ranging from 
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the negative, normal and positive regions. The value 
differs to each of the fuzzy sets and the designed has been 
tuned several times to obtain the best estimation results.  

To highlight the differences between this fuzzy 
membership function and what have Wang et al., (Wang et 
al., 2014) investigated, all the membership functions are 
including positive and negative range. This can be further 
assessed if previous works are referred where the 
membership function of the angle error is positive all the 
time. In contrast to this arrangement, the range is now 
change in an intuitive way to demonstrate the possibility 
of the value to be either positive or negative.  
 
SIMULATION RESULTS AND DISCUSSIONS 
 There are some assumptions being made to 
evaluate the proposed technique as mentioned below: 
 
 Data association is expected to be available at all time 
 Landmarks are point landmark and stationary 
 

 Simulations are carried in MATLAB Simulink 
for 5000[s] to ensure that the results are consistent and 
reliable. All the parameters are based on Table-1. These 
parameters are selected to model the real mobile robot 
which equipped with at least one sensor for measurement. 
The estimation results are shown in the following page for 
two different mobile robot motions between normal EKF 
and FEKF performances. 
 

Table-1. Simulation parameters. 
 

Variables Parameter values 

Process noise;  
Qmin, Qmax

 
-0.002, 0.001 

Measurement noise; 
Rθmin, Rθmax 

Rdist-min, Rdist-max

 
-0.04, 0.01 
-0.15,0.3 

Initial covariance; 
Probot, Plandmark 

Simulation time 

 
0.001, 100 

1000[s] 
 

 
(a) 

 
(b) 

 
(c) 

Figure-5. (a) Comparison between EKF and FEKF estimation (b) Squared error comparison (c) State 
covariance comparison. 
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(a) 

 

 
(b) 

 

Figure-6. (a) Comparison between EKF and FEKF estimation with different movements 
(b) Squared error comparison. 

 
Figures 5-6 illustrates the performance 

comparison between normal EKF and FEKF in non-
Gaussian noise environment where the characteristics have 
been shown in Table-1. Figure-5 has described that the 
estimation of mobile robot for normal EKF is weaker than 
FEKF. Notice that the landmark estimation also shows 
consistent results, where FEKF outperforms normal EKF. 
This is expected as the measurement innovation attempts 
to correct the measured distance and angle of the 
landmarks. The squared error analysis presented in details 
the error exhibits by normal EKF about the landmarks 
estimation. Looking on the state covariance update 
aspects, the normal EKF depicts lower uncertainties than 
FEKF. The possible reason to this behavior is because of 
the fuzziness is now included in the system which in turn 
results in more uncertainties; +/-0.01 error than the normal 

EKF. Nevertheless, the estimation is improving for 
landmarks estimation. 

Through observations of different motions of 
mobile robot, FEKF capabilities to improve estimation are 
undeniable. Figure-6 explains that now both the mobile 
robot and landmarks estimations of FEKF has surpassed 
the normal EKF performance. The error is also reduced 
and smaller than normal EKF.  Hence, it can be concluded 
that FEKF is more robust and capable to infer the 
positions of mobile robot especially landmarks if the 
Fuzzy logic is designed properly. 

The outcomes presented and discussed above 
have agreed with the preceding works and suggest that 
FEKF can be a solution for normal EKF to operate in non-
Gaussian noise condition. The proposed technique is also 
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posses less computational time as fewer rules have been 
designed in correspond to the defined two inputs. 
 
CONCLUSIONS 

FEKF is one of the possible solutions for mobile 
robot localization and mapping especially when the mobile 
robot motions are uncertain, sensors limitation and for 
robust conditions. In this context, to overcome an issue 
that EKF suffer to provide good estimation results, FEKF 
method is proposed. Even though EKF can work in the 
non-Gaussian noise with acceptable estimations, FEKF 
offers better solution for robust conditions. This can be 
achieved if at least the measurement innovation 
information is processed and observed appropriately about 
its characteristics before designing the fuzzy rules and its 
membership functions. The behavior is made as references 
to define the fuzzy sets and membership function 
accordingly. 

This paper also point out that by only using the 
measurement innovation information as an input to the 
Fuzzy logic, it is possible to gain better estimation results. 
Thanks to this, the computational cost and processing time 
can be further reduced compared to a case of using the 
distance, angle and measurement innovation information 
concurrently. 
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