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ABSTRACT  

A radial basis function neural network (RBFNN) based adaptive sliding mode controller is presented in this paper 
to cater for a 3-DOF robot manipulator with time-dependent uncertainties and disturbance. RBF is one of the most popular 
intelligent methods to approximate uncertainties due to its simple structure and fast learning capacity. By choosing a 
proper Lyapunov function, the stability of the controller can be proven and the update laws of the RBFN can be derived 
easily. Simulation test has been conducted to verify the effectiveness of the controller. The result shows that the controller 
has successfully compensate the time-varying uncertainties and disturbances with error less than 0.001 rad.   
 
Keywords: radial basis function network, adaptive control, sliding mode control, time-varying uncertainties and disturbances, robot 
manipulator. 

 
INTRODUCTION 

Robot manipulators are being used in a wide 
variety of manufacturing and technical applications. They 
are used in dangerous environments such as handling of 
hazardous materials in nuclear plants, chemical and gas 
polluted surroundings, and dangerous mining areas. They 
are also used in many places where human operation is not 
suitable. In this application, the robot manipulator is 
subjected to constant and time-varying uncertainties 
including payload, friction and disturbances. These 
uncertainties deteriorate the performance of the 
manipulator. Therefore, it is necessary to design and 
formulate a controller which can cater with all constant 
and non-constant uncertainties. In the last few decades, 
many researchers have formulated some controller to 
overcome the problems including adaptive control, Sliding 
Mode Control (SMC), intelligent control and combination 
of adaptive and sliding mode control [1-6]. 

A Radial-Basis Function Network (RBFN) is a 
branch of neural network which performs good to control 
the dynamics system. RBFN possesses great mapping 
ability and has a similar feature to the fuzzy system. The 
Radial-Basis Function Network can improve the control 
performance even in the presence of large uncertainty of 
the system. There are some advantages of RBFN such as-
simple structure, fast and computationally efficient. To get 
the better performance, the neuron numbers, the average 
and width of the radial basis function (RBF) and the 
weights must be selected carefully. 

In [7], a robust adaptive trajectory tracking SMC 
based on RBFNN proposed to control of two links 
Cleaning and Detecting Robot Manipulators which can 
cater for mass variation, external disturbance and 
modelling uncertainties. It is used due to its simple 
network structure and faster learning capacity. The 
proposed control strategy can also reduce the chattering 

phenomenon and good robustness in the trajectory 
tracking control. However, this controller is design based 
on the torque input. In [8], a SMC based RBFN is used 
where the proposed controller shows satisfied performance 
in the case of 2-DOF robot manipulators. Radial basis 
function uses curve fitting mode to obtain the nonlinear 
mapping. By choosing a suitable Lyapunov theorem, the 
update law and sliding-mode switching gain can be 
obtained. In [9], the radial basis function network based 
sliding mode controller is introduced, which is a 
combination of radial-basis function network and adaptive 
sliding mode controller. The stability is proven by 
Lyapunov theory. SMC is used to eliminate the chattering 
and control an SMA actuator. The simulation results 
showed the effectiveness of the controller in three 
different signals such as- multi-step, sinusoidal and 
triangle. Lee and Choi [10] considered an Adaptive Neuro-
controller with Radial Basis Function Network for robot 
manipulators. In previous work [11], a Function 
Approximation Technique (FAT) based adaptive sliding 
mode controller is used to compensate time varying 
uncertainties. The controller use Fourier series to 
approximate the uncertainties. This technique requires 
number of basis function and as a result it consumes high 
computational effort.      

Therefore, in this paper, a new Radial Basis 
Function Neural Network (RBFNN) based Adaptive 
Sliding Mode controller is designed for a robot 
manipulator which can carry unknown time-varying 
payload and also unknown disturbances and friction. The 
RBFN based adaptive SMC uses a low number of neuron 
or basis function and more computationally efficient. The 
contribution of this paper is the voltage-based control law 
design to compensate for unknown time-varying 
uncertainties with the utilization of RBFN as the basis 
function. Simulation test results under three different cases 
have been conducted and the controller has successfully 
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driven the robot manipulator to track the desired trajectory 
despite of the presence of time-dependant uncertainties 
and disturbances. 

This paper is organized as follows, the structure 
of RBFN is described, next the dynamic model and the 
controller design of the proposed controller is presented in 
the following sections. The results of the simulation are 
the discussed and finally conclusion is drawn. 
 
THE STRUCTURE OF RBF NEURAL NETWORKS 

Radial-basis function network (RBFN) is one 
type neural network. There are three layers in RBF 
networks; which have the input layer, hidden layer and 
output layer. The unique feature of the RBF network is the 
process performed in the hidden layer. The configuration 
of RBFN is shown as in Figure-1. [12] 
 

 
 

Figure-1. Structure of basic RBF neural network 
 

Usually the input vector is denoted by [ 1x 2x …

nx ], output layer as [ 1y 2y … ny ]. The advantages of 

this RBFN is their design simplicity, great speculation, 
solid tolerance to various noises coming with inputs and 
real time data picking up capability. The characteristics of 
RBF systems make it extremely suitable for adaptable 
control frameworks. 

In this study, RBFN is used for controlling the 
robot manipulator with 3-DOF subjected to time varying 
uncertainties and disturbances. 

Therefore, in this study, the RBFN input vector is 
chosen as [e e ], where e is the tracking error and e  is the 
rate of error vector. The output y  is representing as ZŴ , 

the architecture of a RBF neural network is given by [7] 
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Then, rewrite the equation (1), 
 











 


M

i

i
i

cx
Wy

1
22

)(
exp


, Ni ....3,2,1             (2)   

 

where, 






 


22

)(
exp


icx

Z , ic  are called average 

and    is called the width of the hidden layer. 

iW  is called weights. The estimation of the uncertainties 

can be represented as )(ˆ tZW ; where, Ŵ  is the 

approximation of W. The approximation error between the 
estimated and actual range can be written as  
 

WWW ˆ~                                                              (3)   
 

 
 

Figure-2. Structure of proposed RBF neural networks. 
 
DYNAMIC MODEL OF A 3-DOF ELECTRICAL 
ROBOTIC MANIPULATOR  

Using Lagrange equation, the mathematical 
model of an 3 degree of freedom (DOF) robotic 
manipulator considering the unknown payload and 
disturbances, can be represented 
 

)()()( tdtBUtAXX                                              (4)   

 
where, )(tX   is a 13  state vector and )(tU is 

the 13   input vector. A is a 9×9 system matrix, B is a 
9×3 input matrix and )( td  is a 13   vector of the 

unknown external disturbances.  
The measured and desired state variables can be 
represented by vector X and

dX  respectively-  

 

 TX 333222111                         (5)   

 

 TddddddddddX 333222111        (6)   

 
and 
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AAA                                                               (7)   
 

BBB                                                               (8)   
 

A and B  are the 99   and 39  nominal 
matrices respectively, A  and B  are the 33 
unknown matrices of A  and B  respectively, which 
contains the time varying uncertainties, including the 
payload, Lm  coulomb friction torque, 

ciF and viscous 

friction torque,
ciV . 

The element of A and B contains all the electrical 
parameters: 

where, :miJ moment of inertia for ith motor (kgm2) 

:)(tmi angular displacement for ith motor (rad) 

:viB viscous friction coefficient for ith motor (Nm/rad/s) 

:tik torque constant for ith motor (Nm/A)  

:vik back emf constant for ith motor (V/rad/s) 

:iL armature inductance for ith motor (H) 

:iR armature resistance for ith motor (Ω) 

:)(tiai armature current for ith motor (A) 

:)(tTLi load torque for ith motor (Nm) 

:)(tVi voltage input to the ith actuator (V) 

and i=1,2 and 3. The detailed expression for the element of 
A and B can be found in [13]. 
 
CONTROLLER DESIGN AND STABILITY PROOF 

In this section, a new Sliding Mode Control- 
Radial Basis Function Network (RBFN) based adaptive 
controller is designed for the robot manipulator for 
trajectory tracking. The sliding mode control is chosen due 
to its robustness and RBFN is used for computationally 
efficient. At first, a standard proportional integral sliding 
surface is chosen in this study, where, 
 

  dtXXXXt dd )()(2)( 2
21 

                       
(9)  

 
   

)(t  is a 1n vector, 
1  and 

2  are nn   

diagonal positive definite matrix and n is an integer 
number. The tracking error dXX  can also be denoted as

e , where dXXe  .  

The time varying uncertainties can be expressed 
by the RBFN in Equation. (1) and (2) where 
 

)()( tdtBUAXWZ                           (10) 

 

               The summation of the uncertain elements can be 
written as WZ where ε is the approximation error in 
the RBFN expression.    
Let’s consider the following control law 
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The RBF neural networks update law can be set 

as: 
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where, 

0321 ,,, K  are the real positive 

constants.                                                                                

Referring to Equation. (4), equ is the equivalent 

control terms is considered for the approximately known 
nominal system )(tBUAXX  in the absence of the 

disturbances. 
Differentiating Equation. (9), 
 

eet 2
212)(   

                                                  (14)   
 

Utilizing Equation. (14) by Substituting

dXXe  , )(t can be written as: 
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Now, substituting )(tUBXAX   in 

Equation. (15), and equating )(t to 0, 
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Rearranging Equation. (16) by putting )( tU  and 

assigning this term as 
equ , 

 

)(1 XAXBu req                                                        (18)                      
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The term  PIu  is a PI type controller and it is 

necessary to enhance the close-loop stability and improve 
the transient performance.  
 

  )2( 2
21

11 edteKBKBu PI 
       

(19)  
                                                                                                                                                                                                                          

where K is a diagonal positive definite constant matrix 

The term RBFu is responsible for compensating 

the disturbances and is defined as based on the estimated 
disturbances  
  

ZWBu RBF
ˆ1                                                             (20)                                                                                         

 
 

The term ZŴ  represents the uncertainties and 
unknown disturbances of the RBFN as displayed in 
Figure-2. 

The term au  is the term to eliminate the 

approximation error 
 

1
0 0ˆ [sgn( ( ))]au B K t                                                

(21)                                                                                                                           

 
where 

0K  is a 33  diagonal positive definite 

constant matrix and 0̂  is the estimation of 0  which is 

the upper bound of )(td  

where,  is the function approximation error 
Hence, the following control law is proposed in 

this study 
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To guarantee the stability of the proposed 

controller, consider the following Lyapunov function: 
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where 

32,1 , are the real positive constant and 
o~ is  

 

000 ˆ~                                                            (24)   

 
Differentiating Equation. (22) with respect to 

time, the following Equation. can be obtained  
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Now, utilizing
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substituting Equation. (7) and Equation. (8) in Equation. 
(25), yields 
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Utilizing Equation. (22), Equation. (26) can be simplified 
as: 
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Equation. (27) can be simplified as: 
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Substituting Equation. (12), (13)- the equation 

with the update law , Equation.(28) becomes- 
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Since 0V  and 0 ,V   0)( t and 0e  

as using Barbalat lemma t  
The block diagram of the proposed controller is 

shown in Figure-3. 
 

 
 

Figure-3. Block diagram of the proposed controller. 
 
SIMULATION RESULTS 

The simulation results show the effectiveness of 
the proposed controller. The proposed controller caters for 
various uncertainties including time-varying payload, 
friction and external disturbances.  

The robot manipulator is required to follow the 

desired trajectory, ( )di t  with i=1,2 and 3, where, 
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)0(i is the initial position, )(Ti  is desired final 

destination and 
i = )(Ti - )0(i , where i= 1,2,3. 

The graph of desired joint position trajectory is 
shown Figure-4. 

In all cases, the controller parameters are tuned as

501  , 12  , 1321   , K= 337 and the 

amount of coulomb friction torque of 201 Fc , 52 Fc

and NmFc 63  and viscous friction torque 61 Vc ;

5.52 Vc ; 5.53 Vc  for joint 1, 2 and 3 respectively. 

The number of neurons is chosen as 3 for all the 
simulation cases. 
 

 
 

Figure-4. Desired joint position profile for all 3 joints. 
 

From the graph, Figure-5 (a)-(c) shows the 
position response of the robot manipulator where the 
payload mass and disturbance is considered as 

5 5.5 sin 5Lm t   and ( ) 5.5sin5d t t  respectively. 

The figure shows the comparison between actual and 
desired trajectory position according for joint 1, 2 and 3 of 
the robot manipulator. The result shows that the proposed 
controller drives the robot accurately despite the 
sinusoidally varying payload mass and disturbance.  
 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Figure-5. Tracking performance of the proposed 
controller when the pay load and disturbance is 
considered as time-varying sinusoidal function. 

 
The controller is tested with random time-varying 

payload and noise disturbance with average=4 and 
variance=6. From Figure-6 it can be observed that, the 
actual position trajectory successfully followed the desired 
position trajectory for all 3 joints and the maximum error 
is less than 0.001 rad.  The result verifies that the propose 
controller is robust against the unknown friction and time-
varying uncertainties. 

 
(d) 
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(e) 

 

 
(f) 

 

Figure-6. Tracking performance of the proposed 
controller when the pay load is random time varying 

and disturbance is considered as Gaussian noise. 
 

The result in Figure-5 and Figure-6 also show 
that the RBFN based adaptive sliding mode control 
requires low number of neurons or basis function to 
produce an accurate position trajectory tracking, compared 
to the function approximation technique proposed in [11].  

The average and variance of the noise has been 
increased to evaluate the limit of effectiveness of the 
controller with 3 RBFN neuron. From the simulation, it 
has been the found that the adaptive sliding mode control 
with 3 neurons works well on noises with maximum 
average= 40 and maximum variance=60. Figure-7 shows 
that the number of neurons is sufficient when the average 
and variance of the noise are 56 and 70, which are greater 
than the maximum limit.  
 

 
(g) 

 

 
(h) 

 

 
(i) 

 

Figure-7. Tracking performance of the proposed 
controller when the pay load is random time varying and 
disturbance is considered as Gaussian noise where the 
average and variance are greater than the maximum limit. 
 
CONCLUSIONS 

In this paper, a RBF neural network based 
sliding-mode controller is proposed to control a 3-dof 
robot manipulator. The controller is robust against the 
time-varying uncertainties and disturbances where the 
tracking error is less than 0.001 rad. It gives good result 
three number of neurons. Future works involves the 
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hardware experimental test of the develop RBFN based 
adaptive sliding mode controller. 
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