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ABSTRACT  

This work answers the need for improvement in fuel economy in heavy duty vehicles (HDV’s), in a manner 
simple enough to be used in open road missions. A lookahead anticipatory control (LA) method is designed to adjust 

longitudinal motion (signified by velocity of the vehicle system) using knowledge of fluctuations in road grade. The 

prediction of driving behaviour is done using a fuzzy logic function based on a predefined rule-base. Control action of the 

brake and throttle positions are implemented by taking the state-dependent riccati equation approach. The results of the 

proposed controller are compared against those of a standard PI cruise controller. Moreover, results of simulations on a 40 

ton vehicle show the proposed method capable of increasing fuel economy. 

 

Keywords: fuzzy forecasting, dynamic programming, state dependent riccati equation. 

 

INTRODUCTION 

The regulation of vehicle speed is a major 

contributor to fuel economy. In [1] fuel economy was 

showed to be specifically a result of the application of 

intelligent energy management systems. These systems are 

complex algorithms able to fulfill the task of learning the 

behavior of the driver, environment and vehicle 

conditions. Then modify the propulsion and operation of 

the hybrid electric vehicle accordingly. The same can be 

said of conventional and electric powertains with 

appropriate modifications.  

Systems of predictive driving, that makes choices 

according to a set of assumption and criteria for the 

maximization of a defined objective, in this case fuel 

economy were used in [2] and [3]. As a solution to the fuel 

economy problem, full vehicle speed trajectories were 

generated by the use of future road information as part of a 

Lookahead control strategy. The constructed conceptual 

vision of the road ahead was the basis for decision-

making, done using topographical maps combined with 

GPS and three dimensional road maps, which were used to 

increase or decrease velocity of the vehicle before 

significant changes in road slope. Optimization was 

achieved using a Dynamic Programming algorithm which 

generated an efficient velocity profile for the vehicle to 

follow in response to changes in uphill or downhill road 

travel. A fuel economy of 3.5% was achieved in [2] and 

3.53% in [3]. However, the computational complexity 

within the system due to DP implementation is a major 

limitation to the system. In [4] the optimal speed 

trajectories were also produced using Dynamic 

Programming (DP), however, within an advisory system 

which gives a warning to the driver in real time on the 

optimal speed appropriate to a certain road condition. 

The speed profile was generated and applied in this case 

to a conventional powertain vehicle. The results varied 

between 3.8%-3.9% improvements in fuel economy 

while maintaining time constraints. While [5] assumed 

the vehicle operates in a stochastic environment due to 

the uncertain nature of traffic. Then, generated speed 

trajectory using a stochastic dynamic programming 

(SDP) algorithm to reduce consumed fuel. This SDP 

policy algorithm describes the optimal vehicle speed as 

a function of current values of road grade and speed 

(reference speed). 

Intelligent optimization and data based methods 

were another approach to solve the problem. In [6] a 

neural network works as the trajectory generator of the 

entire vehicle speed profile. The optimizer used 

instantaneous road grade, limited history of previous 

vehicle speeds, vehicle fuel consumption and road grade 

which were all used to calculate the appropriate cruise 

speed. The results from simulations showed 8-10% over 

constant road segments, out of which 3.7 to 10.6% were a 

direct result of the use of road information.  

In the same context, [7] used a Quadratic 

Programming (QP) in the design of an online velocity 

planner as part of an advisory system (ADAS) for the 

driver.  The velocity trajectory was designed with the 

objective of fuel efficiency and the results showed an 

average reduction of 11.4%, with a prediction horizon of 

1.8 millisecond in real world driving. The paper [8] 

studied the performance of predictive energy management 

in terms of computational complexity and accuracy. The 

problem solved in this study was fuel efficiency in 

traffic driving and fuel efficient lead vehicle following. 

Furthermore, several solutions to the predictive 

optimality problem were examined: exponential varying 

velocity prediction, Markov chain velocity prediction 

and Neural network prediction with three respective 

types back propagation (BP-NN), layer recurrent (LR-

NN) and radial basis function(RBP-NN). While as 

mentioned above the control action was done in NMPC. 

The comparison between velocity profile generators 

techniques was done with respect to sensitivity to tuning 

parameters, prediction precision and computational cost 

and resultant vehicle fuel economy. The results showed 

that the neural predictors showed the best overall 
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performance across a range of real-world drive cycles 

although no future driving profiles is assumed known 

and no telemetry on-board sensor information is 

available for the controller. In this study three velocity 

prediction strategies applied in the MPC framework. 

However, no exact number for fuel reduction was given in 

the paper. 

In the model predictive control context, [9] 

developed two prediction algorithms with low system 

requirements for speed prediction, all within a V2V initial 

stage framework. The preceding vehicle used an MPC 

algorithm and the leading vehicle speed prediction 

algorithm used a Markov chain to extend the prediction 

horizon. The focus was on the ego vehicle, and results in 

the car-following scenario on a highway showed a 

significant 15% reduction in fuel consumption while 

ensuring ride comfort. As did [10] by developing a 

Predictive Cruise Control (PCC). This cruise controller 

used prior knowledge of the road condition as an input to 

vary the speed and achieved a reduction of 4.8% as a 

result. In [11]future road information (curve and slope) 

were utilized in another control strategy that combined 

both Pontrygin’s minimum principle (PMP) and linear 
quadratic regulator (LQR) to solve optimal control 

problem. A switching control strategy was suggested to be 

used to handle speed limitation due to curvature; this then 

reacts to the speed resulting from previously mentioned 

controllers which would implement in anticipatory 

driving. 

The focus of this paper is on attaining fuel 

economy by adjusting cruise speeds in intelligent control 

methodologies. Applied mainly as forecasted cruise 

control where vehicle properties and road grade are used 

as inputs to regulate upcoming vehicle speed by small 

increments. In addition, reducing the complexity of the 

problem the prediction inputs to only road grade to the 

intelligent optimizer. Then the vehicle nonlinear equations 

were reformulated to enable implementation of a state 

dependent riccati equation (SDRE) to ensure fuel 

economy.  

The paper is organized as follows: Section 1 was 

the introduction and related work to this study. In Section 

2 the system equations are discussed. Next the Forecast 

function is explained followed by the action control 

strategy in Section 3. Then, Section 4 and 5 contains the 

simulation across different scenarios with the discussion 

then the conclusion respectively.  

 

VEHICLE MODEL   

The dynamic model of the vehicle in this section 

is based on the analysis of longitudinal dynamics in [12]. 

The torque output from the engine is assumed in this study 

as an equation of fuelling uf , and engine speed we, 

 

),( efe wufT                                                 (1) 

 

The engine map was thus generated relating the 

values of uf  and we in the following function:  

 

efeeee cubwaT                                                   (2) 

 

The engine is modeled without taking into 

consideration the internal friction torque as an expression 

of driving torque and torque from the clutch, as follows:  

 

ceee TTwJ 
.

                                               (3) 

 

The engine mass moment of inertia is Je, and the 

value of engine speed is we is kept between the range of 

operation [500, 2400] rpm. The maximum fueling function 

is dependent on engine speed: 

 

nenenf cwbwau  2

max,
                                             (4) 

 

f  [0, c] is normalized fuelling signal i.e.  where the 

value of c is determined from the simulation.  

In this study, for simplicity reasons the clutch is 

assumed stiff.  

 

ec TT                                                   (5)  

 

ce ww                                                  (6) 

 

To further simplification the transmission is 

constant with no gear shifting occurs. Thus the gear is kept 

constant at G=12 is always engaged and the gear ratio i 

and the input speed wi and the output speed wo , are related 

as follows: 

 

oi wiw                                                                       (7) 

 

Transmission ratio it and the efficiency of that 

gear �� show the energy losses, it denotes the current 

gear’s conversion ratio.  
 

 fttctttp TniTnTiT                                 (8) 

 

ettt wwiw                                                                   (9) 

 

Similarly the final drive inertia are neglected and 

modeled by the efficiency  �� this brings thus: 

 

wfffd TniTT                                                 (10) 
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where the value of if  is the conversion ratio in the final 

drive.  

As noted before the drive shafts are neglected and 

the driveline is inflexible thus: 

 

wdbwww FrTTwJ 
.

                                           (11) 

 

the wheel (driveline) inertia Jw and the wheel 

radius is rd. While Fw represents wheel’s friction force. 
The brake torque Tb is simply obtained from the following 

equation  

bbb kT                                                                  (12) 

 

where b    [0, 1], is the brake control signal 

and kb is a constant.  

The aerodynamic resistance force is expressed 

by:  

 

2

2

1
vAcF aawa                                                (13) 

 

a  is the air density, v is the velocity of the 

vehicle, Aa is the cross sectional area of the vehicle and 

wc  is the air drag coefficient.  

The resistance force Fr is modeled proportionally 

to the rolling resistance coefficient Cr, to the normal force 

of the vehicle on the tires FN  

 

Nrr FcF                                         (14) 

 

cos mgFr                                                         (15) 

 

the road slope is θ and the m is the mass of the truck.  

The resistance force due to gravity is Fg and 

represents the gravitational force. It is dependent on the 

road slope θ and the mass of the vehicle m and is 

expressed as:  

 

sin mgFg                                                 (16) 

 

The traction force is dependent on the 

longitudinal slip. Longitudinal slip (s) can be simplified by 

assuming it is at low values, and can be defined as: 

 

v

vwr
sor

wr

vwr
s wd

wd

wd 



                      (17) 

 

The above equation connects tire rotation ww  and 

vehicle speed v using the wheel radius rd. Using Equation. 

(12), it is seen that this corresponds to a situation of a 

constant slip level. 

The vehicle motion in the longitudinal direction 

is modelled here taking all the previous equations. The 

governing dynamics for the velocity v is 

 

graw FFFFvm 


                                            (18)  

 

where Fw is the resulting friction force at the 

wheel. Table-1 shows the model parameters. 

 

Table-1. Vehicle Parameters. 
 

Je Engine inertia  Aa Cross section area 

Jw 

Lumped 

inertia 
 cw 

Air drag 

coefficient 

rd Wheel radius  g Gravity constant 

Cr Roll resistance d1 







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2
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11

d

pe

r
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
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

d
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r

nvkb 21  
d5 





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




d
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r

invkb 2

11
 

d6 



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



d

ep

r

nbI 2  
d7 




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



d

ep

r

inbI 2
 

d8 








d

ep

r

inbI 2  
d9 3nkb pe

 

 

The fuel flow is expressed as integral of the 

function of engine speed expressed by we [rad/s] and 

fueling function fu [g/cycle], this is shown in the 

following equation: 

 

fe

r

cyl

fef uw
n

n
uwm

2
),(

.

                                              (19) 

 

The value of ncyl represents the number of 

cylinders and nr  is the number of crankshaft revolutions 

per cycle. The value of fuel consumed is the integral of 

fuel flow Equation. (19).  

From all of the above, the longitudinal system 

dynamic results:  

 

grabw FFFTTvm 
.

                                      (20) 

  

grabetf FFFTTiivm 
.

                (21) 
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))(

(
222

.

grad

bbetttf

etttfww

d

FFFr

kTinin
JininmrJ

r
v






 
                (22) 

 

The driver model is modeled as the throttle signal

f , and controller is represented as:  

 

11



 eIek ppf                                                          (23) 

 

The brake signal is shown as the following 

equation: 

 

22



 eIek bbb                                                    (24) 

 

The brake and throttle are engaged at different 

instances according to the predefined velocity limits. Two 

reference velocities are highlighted for the brake and the 

throttle where e1 shows the error as a result of the throttle 

set-point and e2 is the brake error signal as a result of the 

difference between actual velocity and the brake set-point.  

Substituting Equation. (23) and (24) into the 

torque function in Equation. (2):  

 

98764

2

261

3

3 )()( dvdvdvddvvdddvdTe 


             (25) 

 

Where the values of d1-d9 are constants shown in 

Table-1 and v is the speed of the vehicle. Then Assuming 

that the input throttle and brake signals are disengaged the 

system equation becomes:  

 

 )sincos(5.0)(

)(

2

211

222












rda

ttffdw

d

cmgrvAcvca

iimrJ

r
vf

dt

d

  

 )sincos(5.0)()( 2

211   rdat cmgrvAcvcamvf
dt

d
   (26) 

 

Where the values are as follows:  

 

d

te

r

ia
c 1

  ,
ecc 2

,
fftt iia 1

 , 

ttffdw

d
t

iimrJ

r
m

 222 
  

 

To reformulate the system it is assumed to have 

two states: 

 

),,(1 uvfvx 


                                                         (27) 

 

12 xvx 


                                                                    (28) 

 

The nonlinear state matrix becomes:  

 

u
x

xuvf

x
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
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









1

1

01

0),,(

2

1

2

1 
                           (29) 

 

CONTROLLER STRUCTURE  

The control structure is based on a two loop 

control configuration. The outer loop contains forecasting 

decision function that builds an initial guess velocity (Vref) 

based on road grade and is implemented by a fuzzy logic 

controller. The inner loop employs the reference velocity 

tracking by translating it into fueling and braking level, 

representing the cruise controller and is done using a state 

dependent riccati equation SDRE controller. The 

schematic of the control strategy is depicted in Figure-1:  

 

 
 

Figure-1. Schematic block diagram of the (LA) controller. 

 

Fuzzy logic forecasting  

The vehicle behaviour is forecasted by a fuzzy 

decision function. The inputs to the decision function were 

chosen as future road slope θ(t) and current velocity v.  The 

fuzzy logic decision function would use these inputs to 

generate a preliminary forecast of what the future velocity 

of the system should be. The rules are based on expert 

knowledge, which was developed in this study. These 

rules are adaptable to the system requirements as well as 

the driver ability which makes it easy in terms of 

application. Thus, fuzzy logic is preferred because of the 

black-box input output relationship.  

The main objective is to find the velocity 

trajectory that would be appropriate for each road 

condition and would give the best fuel economy. It must 

be restated that the environment is represented by the road 

grade, which is known in this study. The engine provides 

the propulsive force for the vehicle’s motion, and the road 
grade represents a significant influence on the resistance 
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forces as seen in Equation. (15) and (16), due in part to the 

large mass of the vehicle.  

The expert knowledge shows that fuel reduction 

occurs during transitions between positive and negative 

road grades. Therefore, during positive road grades it is 

advised to slightly increase speed to counter the loss in 

speed in that situation. And in the case of negative road 

slopes naturally the speed of the heavy vehicle in this case 

increases due to the gravitational forces, thus the driver 

decelerates before the negative slope. Therefore, the 

driving conditions mapped in the fuzzy decision space are: 

level road, negative road (downhill driving) and positive 

road (uphill driving).  

The membership functions used are triangular 

symmetrical distribution function for each of the inputs 

(current velocity and future road slope). And the linguistic 

interpretation of road slope ranges from a positive (-5%) to 

a negative (-5%). The input velocity also ranges between 

the two limits of 80 < V < 90 Km/h. The If-Then-part of 

the rules of the controller refers to the values of the output 

variables. In this study the method used is generally 

known as the Mamdani’s minimum inference operation, 
which is the most popular method.  The inputs are fuzzy 

singletons, ܣ′ = �0 and ܤ′ = �0, the results C’ can be 
obtained from the following relation:       

 

)()]()([)( 001 wvt CiBiAi

n

ic                        (30) 

 

To obtain the crisp control output from an 

inferred fuzzy inference engine, the centroid area method 

was used in this study as follows:   

 






z

C

z

C

coa
dzz

Zdzz

Z
)(

)(




                                                    (31) 

 

The value Z is output from the given inputs and 

their fuzzy relation, and )(zC  is the aggregated output 

membership function. The output is the reduction or 

increase, which must occur to the average velocity within 

range of -5 to 5 km/h. Therefore, crisp output of the fuzzy 

forecast controller to the cruise controller increases or 

decreases the speed before uphill’s or downhill’s.  
 

Cruise control  

The cruise controller (SDRE) tracks the velocity 

trajectory supplied by the fuzzy forecasting function. 

Therefore, control action is taken by the SDRE controller 

which provides both the throttle and braking signal to the 

vehicle system. SDRE is a nonlinear control method and 

can be thought of as a variation of the LQR control 

concept, possessing its simplicity. It uses a semi-global 

linearization method as opposed to linearization around a 

certain set-point as is the case in other nonlinear control 

algorithms [13]. This conciliates complexity with 

applicability. The SDRE approach requires the nonlinear 

state equations to be reformulated into a pseudo-linear 

state-dependent coefficient (SDC) form in which the 

system matrices become functions of the current state:  

 

uxBxxAx )()( 


                                             (32) 

 

From the system dynamics in Equation. (26), 

(27), (28) and (29) the nonlinear vehicle system is 

factorized to generate:  

 

11111 )5.0( xxAcamx atr 


                (33) 

 

Thus, the coefficient of the A matrix becomes:   

 

)5.0( 11111 xAcama atr                  (34) 

 

then the system equation becomes:  
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1
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2
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After obtaining the quasi-linearized system 

matrices in Equation. (35), a standard Riccati equation can 

be then solved at each time step to design the state 

feedback control law on-line. For implementation, the 

equations could be approximately discretized at each time 

step.  

The SDRE controller is then specified similar to 

LQR by:  

 

xxKxxPBRu T )()(1                                  (36) 

 

where the value of P(x) is calculated from the 

Riccati equation [14]:  

 

   0)( 1   QPABPBBRPBPA TTT
               (37) 

 

the approach is an extension of the LQR for 

tracking of a reference signal, in our case, the reference 

signal is the generated Vref, and input is added to the 

control input vector:  

 

))(())(()(1

refref

T

k VxxKVxxPxBRu  
          (38) 

 

The next task lies in the choice of the values of Q 

and R which have a crucial role in the stabilization and 

tracking ability of the system. In the spirit of simplicity 



                               VOL. 11, NO. 6, MARCH 2016                                                                                                                 ISSN 1819-6608 

ARPN Journal of Engineering and Applied Sciences 

©2006-2016 Asian Research Publishing Network (ARPN). All rights reserved. 

 
www.arpnjournals.com 

 

 
                                                                                                                                               4169 

only constant values are considered in the choice of the 

two values, where: 

  ]01[01
1'  

CCQ                  (39) 

 

In tuning the above values the following 

considerations were taken: large values of Q would 

contribute to the increase in the gain matrix and thus more 

control input and faster the time it takes to reduce 

disturbances. In addition, an increase in the value of R 

would produce a decrease in values of feedback gain. This 

would increase sluggishness, however, that could be 

advantageous for the control of overshoot.  

In this particular application the values of tuned 

Q were: 











00

0200
Q  while R is chosen as � = [1]. 
 

SIMULATION 

The described system in this study and the 

designed controller were implemented in Matlab and 

Simulink. The road data used were constant uphill road 

and a road profile that mimics real road segments 

according to [15] and [16]. All road profiles spanned over 

a distance of 3.5 Km, while the simulation parameters are 

detailed in Table-2. 

From Figure-1 the general structure of the 

designed control system is depicted. The system is the 

heavy vehicle model while road data is taken from the 

previously defined road profile. The calculated road slope 

data and current vehicle velocity are both inputs to the 

fuzzy inference system discussed in the previous section. 

The fuzzy forecasting function alters the velocity set-point 

in order to increase fuel economy. Then the second level 

controller, SDRE controller translates the reference 

velocity to vehicle parameters (throttle and brake signals) 

which are fed into the vehicle system.  The vehicle is 

assumed moving without stoppage all throughout the 

simulation i.e. V = 0 never occurs. 

The assessment of the designed system 

performance is carried out with respect to fuel economy. 

The difference in fuel consumption is defined as follows:  

 

%100
1

21 



fuel

fuelfuel
fuel                                           (40) 

 

The values of fuel1 and fuel2 are the fuel 

consumption resulting from the standard PI controller and 

the designed (LA) controller respectively.  The results of 

the proposed controller with the different road conditions 

are summarized in Table-3.  

The first studied scenario is a constant uphill road 

depicted in Figure-2-(a) with a 2% slope.  The slope of 

this segment road is pre-calculated by a preprocessing 

algorithm which outputs the position and the slope of the 

individual point on the road. The velocity response is 

shown in Figure-2-(b) while the fuel consumption of the 

controller is shown in Figure-2(c). From Table-3 and 

Figure-2-(d) a reduction of -4.8583 % in the consumed 

fuel is shown between the standard PI cruise controller and 

the developed Lookahead Anticipatory controller.  

The second segment is also a constant uphill 

profile of 3% shown in Figure-3(a), over a distance of 3.5 

Km which is slightly steeper than the previous segment. 

With the increase in steepness of the road profile the fuel 

consumption is reduced further as shown in Table-3, by 

the use of the designed controller. As accelerations 

appropriate to the road segment increase are chosen by the 

controller then implemented by the second level 

controller. The vehicle speed response is shown in Figure-

3(b) while the fuel consumed and normalized fueling are 

both shown in Figure-3(c) and Figure-3(d) respectively. 

The fuel economy was increased by a percentage of 

8.0576% with the use of the proposed controller over the 

standard PI controller.  

The final scenario was a generated road profile 

also over a distance of 3.5 Km shown in Figure-4(a). The 

speed response and fuel consumption are shown in Figure-

4(b) and Figure-4(c). The values of reduction in fuel 

consumption are shown in Table-3 showing enhancement 

in performance by a percentage of 15.2963 % in favour of 

the developed controller. 

 

 
(a) 

 

 
(b) 

 

 
(c) 
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(d) 

 

Figure-2. (a-b-c-d) Results in response to a 2% 

uphill slope. 

 

 
(a) 

 

 
(b) 

 

Figure-3. (a-b) Results in response to a 3% uphill slope. 
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(d) 

 

Figure-3. (c-d) Results in response to a 3% uphill slope. 

 

 
(a) 

 

 
(b) 

 

 
(c) 
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Figure-4. (a-b-c-d) Results in response to generated road. 

 

CONCLUSIONS 

This study offers a two loop control structure to 

adapt velocity of conventional heavy duty vehicles 

(HDV), in response to changes in road topography. The 

control strategy uses a combination of current velocity 

state and future and current slope to choose the speed of 

the vehicle (Vref), while keeping the velocity of the vehicle 

within constraints determined by the driver or traffic 

regulations. A fuzzy forecasting function was used to 

apply the above prediction strategy by selecting the 

appropriate velocity for each road section. Then a 

nonlinear controller is used to implement the selected 

velocity (Vref). The simulations were done and the results 

show that the reduction in fuel occurs during uphill 

fluctuations in road grade. In application, the uphill road 

of 2% and 3% inclination respectively, obtained a 

reduction of 4.8583% and 8.0576% in fuel consumption, 

in favor of the LA controller. The generated road gave a 

further reduction of 15.2963% which shows that the 

designed controller satisfies the objective. In addition, the 
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need for braking was reduced as the velocities were kept 

within the constraints throughout the simulations.  

It is worth noting, that although the value of fuel 

consumption is improved, however, the solution to the fuel 

optimization problem is only suboptimal. Therefore, in 

future the forecasting in the LA controller would be 

replaced by a fuzzy linear programming optimization 

algorithm which would also increase the optimality of the 

solution.  

 

Table-2. Simulation parameters. 

Description Values symbol 

Mass 40 tons m 

Number of 

cylinders 
6 ncyl 

Ratio final drive 3.27 if 

Efficiency final 

drive 
0.97 nf 

Wheel inertia 32.9 Jw 

Engine inertia 3.5kgm
2
 Je 

Rolling resistance 7x10
-3

 Cr 

Gravity coefficient 9.81 G 

Cross section area 10 Aa 

Air density 1.29 pa 

Wheel radius 0.52 rd 

Gear ratio (G=12) 1 it 

Gear efficiency 

(G=12) 
0.99 nt 

 

Table-3. Controller performance. 
 

Road segement LA controller performance 

2% uphill slope 4.8583% 

3%uphill slope 8.0576% 

Generated road 15.2963% 
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