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ABSTRACT 

In this paper a formulation of boundary element method for shear deformable plate theory with material 
nonlinearity is presented. The material is assumed to undergo small strains. The von Mises criterion is used to evaluate the 
plastic zone and elastic perfectly plastic material behaviour is assumed. An initial stress formulation is used to formulate 
the boundary integral equations. Not only the plastic strain due to bending but also the plastic strains due to membrane are 
considered. The domain integral due to material nonlinearity is evaluated using a cell discretization technique. A total 
incremental method is applied instead of an incremental and iterative procedure, to solve the nonlinear boundary integral 
equations. Numerical examples are presented to demonstrate the validity and the accuracy of the formulation. 
 
Keywords: shear deformable plate, material nonlinearity, total increment method, boundary element method. 
 
INTRODUCTION 

Plate structures are widely used in engineering 
applications, for example aircraft, cars, boiler drums, 
pressure vessels, building slabs, ships, etc. During its 
services, the plate may be subjected to variety of loads, 
such as tension, bending or combined tension and bending. 
In the case of tension, the plate is considered as a two-
dimensional problem and it can be solved using the plane 
stress theory of elasticity (Timoshenko, 1970). On the 
other hand, the bending problems are explained by plate 
bending theory (Reissner, 1947, Timoshenko, 1959) and 
the combined tension and bending cases can be 
represented by superposition of plate bending theory and 
two-dimensional plane stress theory. 

There are two widely used plate theories. The 
first one was developed by Kirchhof (1850)] and is 
commonly referred to as the classical theory. The other 
was developed by Reissner (1945), and is known as the 
shear deformable theory. The classical theory is adequate 
for analyzing certain applications, however, for problems 
involving stress concentrations and cracks the theory has 
been shown not to be in agreement with experimental 
measurements (Aliabadi, 1998). Unlike the classical 
theory, the Reissner theory takes into account the shear 
deformation. In the shear deformable plate theory, the 
problem is represented in terms of three degrees of 
freedom, involving generalized displacements (i.e. two 
rotations and deflection) and generalized tractions (i.e. 
moments and transverse shear forces). 

The analysis of plate bending problems by the 
boundary element method (BEM) has been reported by 
many researchers. However, its application to elastoplastic 
plate bending analysis is very limited. The application of 
the BEM to elastoplastic analysis of Reissner plates can be 
found in the works by Karam and Telles (1988), Karam 
and Telles (1992), Karam and Telles (1998) and Ribeiro 
and Venturini (1998).  

Karam and Telles (1992) presented a formulation 
of elastoplastic analysis of Reissner plates as an extension 
of their previous work (1988). Later, they also formulated 
the boundary integral equations for the same application 

using an initial stress approach and the cell discretization 
technique was applied to evaluate the domain integral in 
which the triangular cells are used (1998). To solve the 
elastoplastic problem an incremental and iterative 
procedure was adopted together with von Mises and 
Tresca yield criteria. The classical plasticity theory was 
used in which plastic strains are time independent. The 
plastic strain was considered only due to bending and 
elastic-perfectly plastic material was considered. An 
alternative approach for dealing with elastoplastic analysis 
of Reissner plates by BEM was presented by Ribeiro and 
Venturini (1998). In their work, an incremental and 
iterative algorithm based on the initial stiffness method 
was implemented. 

This paper presents the boundary element 
formulation of elastoplastic analysis of Reissner plates. 
The formulation follows closely the work by Karam and 
Telles (1998); however not only the plastic strain due to 
bending but also the plastic strain due to membrane are 
considered. The total incremental technique is applied in 
dealing with nonlinear system of equation. The cell 
discretization method using 9-nodes quadrilateral cell is 
employed to evaluate the domain integrals appearing in 
the formulation. Elastic-perfectly plastic material is 
considered. Throughout this paper, the cartesian tensor 
notation is used, with Greek indices varying from 1 to 2 
and the Latin indices varying from 1 to 3. 
 
GOVERNING EQUATION 

In order to define a general formulation for 
material nonlinearity of plate bending, it is considered that 
plastic strains are only due to bending and membrane, 
hence total strain rates can be defined as: 
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where, 


are the total bending strain rates, 


 

are the total in-plane strain rates, and 
3


 shear strain 

rates respectively. The total bending strain rates consist 

linear parts e


 and nonlinear parts a



. Similarly total 

in-plane strain rates consist of linear parts and nonlinear 
parts. The nonlinear parts of equations (1) and (2) are due 
to plasticity (p) and they can be expressed as 
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On the other hand, the rates of the stress 

resultants can also be stated as 
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for moment resultants 
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for shear resultants and 
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for membrane stress resultants. The stress-

displacement relationships can be presented as 
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where, 
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The equilibrium equation can be expressed as: 
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DISPLACEMENT AND STRESS EQUATION 

Applications BEM in solid mechanics are based 
on the Somigliana’s identities. Somigliana’s identity for 
displacements in elastoplastics shear deformable plate 
bending problems states that the rate of the displacements 
(two rotations and one deflection) at any points X’ [ w
i(X’)] that belong to domain (X’Є V) to the boundary 
values of displacement rates [ w j(x)] and traction rates [ p
j(x)] can be expressed as (Karam, 1998): 
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for rotation and deflections 
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for in-plane displacement. Where, Wij(X’,x), 

Pij(X’,x), χij(X’,X), Uij(X’,x), Tij(X’,x), and ij(X’,X) are 
called fundamental solutions representing a displacement, 
a traction and strain in the j direction at point X due to a 
unit point force in the i direction at point X’and can be 
found in Supriyono (2007). 

Equation (15) and (16) are valid for any source 
points within domain (X’Є V), in order to find solutions on 
the boundary points, it is necessary to consider the limiting 
process as X’→ x’Є S. After limiting process, boundary 
displacement integral equations can be expressed as 
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where, Cij(x’) are free term that are Cij(x’)=δij(x’)+αij(x’), 
for smooth boundary the free term is 0.5. 

The Somigliana’s identity for stresses can be 
expressed respectively as: 
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for moment resultants,  
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for shear resultants, and 
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for membrane resultants. 
 
DISCRETIZATION AND SYSTEM OF EQUATION 

In order to solve equation (17), (18), (19), (20) 
and (21), a numerical method is implemented. The 
boundary S is discretized using quadratic isoparametric 
elements. The domain V is divided into number of cells of 
9 nodes quadrilateral cell (as shown in Figure-1). 
 

 
 

Figure-1. Discretization. 
 

In this formulation, boundary parameter xj, the 
unknown boundary values of displacements wj and 
tractions pj are approximated using interpolation function, 
in following manner: 
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The shape functions Nα are defined as 
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After discretization and point collocation on the 

boundary as well as in the domain, the equations (17) and 
(18) can be written in the matrix form as 
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(24) 

 
where [H] and [G] are the well-known boundary 

element influence matrices, [T] is the influence matrix due 
to plasticity. The superscript w and u show the plate and 
the in-plane mode respectively {.w}, {u}, {.p} and {t} are 
the displacement and the traction rate vectors on the 
boundary. {b} is the load rate vectors on the domain and 
{Mp} and {Np} are the nonlinear term due to plasticity. 
After imposing boundary condition, equations (24) can be 
written as 
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where, [A] is the system matrix, {x} is the 

unknown vector and {f } is the vector of prescribed 
boundary values. Similarly, the stress integral equations of 
equations (19), (20) and (4) can be presented in matrix 
form as 
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SOLUTION ALGORITHM 
 The total incremental method solves the nonlinear 
system of equations of equation (25) based on the 
incremental procedure. It has an algorithm as: 
 
1. Solve the equation (25), assume that the nonlinear 

terms (Mp, Np =0) are equal to zero for the first load 
increment. It means that the linear system equations 

ah

Cell node

Boundary node
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are solved. For the (k+1)th load increment it is 
assumed that (Mp )(k+1)th=(Mp )kth 

2. Solve equation (26) based on the boundary values 
obtained from number 1. The same case as number 1 is 
implemented for the nonlinear term. 

3. Evaluate of the plastic zone based on the stress 
obtained from the number 2. In this stage the von 
Mises criterion is used. 

4. If the plasticity has taken place then, obtain the 
nonlinear term otherwise go to the number 5. The clear 
explanation of the determination of the plastics term 
can be found in the work by Supriyono (2007). 

5. If the load is less than the final load then go to number 
1 and repeat until the load is equal final load 

 
NUMERICAL EXAMPLE 

In order to show the validity and the accuracy of 
the BEM formulation and total increment method in 
dealing with nonlinear term, an example is presented. 

A plane stress problem of a rectangular plate with 
center hole as shown in Figure-2 is subjected to tension 
load (=50 MPa) as well as uniformly tranverse load 
(q=0.184 MPa). The tension load is acting on the two side 
of 20 mm length, whereas the uniformly tranverse load is 
acting on the whole surface of the plate. The material has 
properties of E=70 Gpa, ν=0.2 and σY=243 Mpa. 
 

 
 

Figure-2. Hole-Plate with tension of  and surface 
presure of q. 

 
BEM model (see Figure-3) which has 72 

elements on the boundary with 64 domain cells and found 
to give converged solutions is used in this example. 
 

 
 

Figure-3. BEM model. 

Figure-4 shows the deflections at point B during 
loading which are compared to the FEM results. The FEM 
results are obtained using ANSYS with 763 domain cells 
of plastic 4-node 43 shell element which is also found to 
give converged results. The nondimensional parameters 
are defined as in the figure. It can be seen from the figure 
that BEM and FEM results are in good agreement. 
 

 
 

Figure-4. Deflection at point B of the example plate with 
bending load q and tension load. 

 
Figure-5 presents the displacement contour in the 

x−direction (Figures a and b) and the deflection contour 
(Figures c and d) of the example plate in millimeter. It can 
be seen that the contours look similar, however FEM 
deflection contour has slightly bigger region with 
maximum deflection compared to the BEM. The values 
for both displacement and deflection differ sligthy, but are 
considered acceptable as the two methods are based on 
numerical solution.  

Plastic zone (von Mises stress) at the final load is 
presented in Figure-6 for both FEM and BEM analysis in 
MPa. It can be seen that the contours as well as the values 
look slightly different; however they are considered 
acceptable as the two methods are based on numerical 
solution. 
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Figure-5. Displacement in x−direction and deflection 
contour for both FEM and BEM analysis. 

 

 
 

Figure-6. Plastic zone at the final load for both FEM 
and BEM analysis. 

 
CONCLUSIONS  

The application of BEM to material nonlinearity for 
shear deformable plate bending analysis was presented and 
the total incremental method was implemented to solve the 
nonlinear system of equation, .from the results obtained it 
can be concluded that: 

 
1. The BEM formulations presented in this paper have 

good agreement with FEM and it has been shown that 
BEM model simpler compared to the FEM model. 

2. The total incremental method was shown to be an 
efficient approach for this problem as repeated 
solution of system of equations is not required and the 
nonlinear terms are updated by back substitution. 
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